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Abstract

In this paper we present a novel ap-
proach for discovering fuzzy unex-
pected sequences, such as certainly
unexpected, almost unexpected and
a little unexpected, from databases
with respect to user defined beliefs.
We first formalize the belief on se-
quences and the different types of
unexpectedness, then we detail the
algorithm Taufu that finds fuzzy
unexpected sequences with beliefs.
Our approach has been verified with
various experiments.

Keywords: Data Mining, Belief,
Fuzzy Unexpected Sequence.

1 Introduction

As the one most concentrated in KDD and
data mining research, the sequential pattern
mining [1] gives a frequency based view of the
correlations between elements contained in se-
quences. However, when we consider domain
knowledge (in this paper we interpret knowl-
edge as beliefs) within the discovery, most
of the frequent sequences might have already
been confirmed, and in many cases the most
interested are the sequences that contradict
existing knowledge.

For instance, in Web site log analysis, a be-
lief may require that the access of home.php
should be followed, but not directly (con-
sidering online statistic and advertisement
systems involved in the same session), by

the access of login.php, and the access of
login.php should not be replaced by the ac-
cess of logout.php. So that an expected se-
quence like “access of home.php is followed by
stats.cgi then followed by ad.cgi and then
followed by login.php” may have strong fre-
quency support, and an unexpected sequence
like “access of home.php is directly followed by
login.php” will be hidden by the sequential
pattern model since it is included in expected
ones. Furthermore, another unexpected se-
quence like “access of home.php is followed
by stats.cgi then followed by logout.php”
may have weak support and be difficult to be
discovered by frequency based criteria.

On the other hand, even though we know that
the access of home.php could not be directly
followed by the access of login.php, it is dif-
ficult to point out how many elements should
exactly occur between them, since the number
of involved online statistic and advertisement
systems may be uncertain. It is therefore nec-
essary to consider fuzzy unexpectedness with
beliefs to respect such uncertain occurrences,
such as “access of home.php is directly fol-
lowed by login.php” is certainly unexpected,
“access of home.php is followed by login.php
after 1 elements” is almost unexpected, and
“access of home.php is followed by login.php
after 3 elements” is a little unexpected.

In this paper, we propose a novel approach,
Taufu (τ fuzzy), for discovering fuzzy unex-
pected sequences from databases with respect
to user defined beliefs. The rest of this paper
is organized as follows. Section 2 introduces
the related work. Section 3 presents our ap-
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proach Taufu. Section 4 shows our experi-
mental results. The conclusion and our future
research directions are listed in Section 5.

2 Related Work

The interestingness measures for data mining
can be classified as objective measures and
subjective measures [7]. Objective measures
typically depend on the structure of extracted
patterns, and the criteria based on probabil-
ity and statistics approaches like support and
confidence; subjective measures are generally
user and knowledge oriented, such criteria can
be actionability, unexpectedness etc.. The be-
lief driven unexpectedness is first introduced
by [9] as a subjective measure where beliefs
are categorized to hard beliefs and soft be-
liefs.

In the most recent approach to semantics
based unexpected association rule discovery
presented by [8], a belief is represented as a
rule. For example, the belief professional →
weekend shows that professionals do shopping
at weekend, and a rule Dec. → weekday,
shows that in December people do shop-
ping at weekday, is unexpected to the belief
professional → weekend (since weekend se-
mantically contradicts weekday) if: (a) the
rule Dec. ∪ professional → weekday satis-
fies given support/confidence threshold val-
ues; (b) the rule Dec. ∪ professional →
weekend does not satisfy given minimum sup-
port/confidence.

On unexpected sequence discovery, [10] pro-
posed an approach based on beliefs con-
strained by frequency. Given a belief, if the
support/confidence values of specified subse-
quences within a frequent sequence do not sat-
isfy frequency constraints introduced by the
belief, then such a frequent sequence is un-
expected. On the other hand, various fuzzy
approaches have been proposed on discover-
ies of sequential patterns [3, 2, 5, 11, 4], most
of them focused on finding frequent sequences
with fuzzy quantity on each items, like “60%
of people who eat a lot of candies purchase
few potato chips”

We are concentrating on finding unexpected

sequences with semantics and occurrence
based fuzzy beliefs.

3 Taufu: An Approach for Fuzzy
Unexpected Sequence Discovery

3.1 Preliminary Concepts

Given a set of distinct attributes, an item,
denoted as i, is an attribute. An itemset, de-
noted as I, is an unordered collection of items
(i1i2 . . . im). A sequence, denoted as s, is an
ordered list of itemsets 〈I1I2 . . . Ik〉. A se-
quence database, denoted as D, is generally a
large set of sequences.

Given two sequences s = 〈I1I2 . . . Im〉 and
s′ = 〈I ′

1I ′
2 . . . I ′

n〉, if there exist integers 1 ≤
i1 < i2 < . . . < im ≤ n such that I1 ⊆
I ′

i1
,I2 ⊆ I ′

i2
, . . . ,Im ⊆ I ′

im, then the sequence
s is a subsequence of the sequence s′, denoted
as s ⊑ s′. In particular, we denote the first
itemset of a sequence s as s⊤ and the last
itemset as s⊥. We therefore note s ⊑⊤ s′ if
s⊤ ⊑ s′⊤, s ⊑⊥ s′ if s⊥ ⊑ s′

⊥, and s ⊑⊤
⊥ s′ if

s⊤ ⊑ s′⊤ and s⊥ ⊑ s′
⊥. If s ⊑ s′, we say that

s is contained in s′, or s′ supports s.

The support of a sequence is defined as the
fraction of total sequences in D that support
this sequence. If a sequence s is not a sub-
sequence of any other sequences, then we say
that the sequence s is maximal.

The length of a sequence is the number of
itemsets contained in the sequence, denoted
as |s|. An empty sequence is denoted as ∅, we
have s = ∅ ⇐⇒ |s| = 0. The concatenation
of sequences is denoted as the form s1 ·s2, and
we have |s1 · s2| = |s1|+ |s2|.

3.2 Belief on Sequences

In order to discover fuzzy unexpected se-
quences from databases, we first propose the
semantics and occurrence constrained belief
on sequences.

Definition 1 (Belief). A belief on sequences
consists of a sequence rule sα ⇒ sβ and a pair
〈η, τ 〉 of constraints. The rule sα ⇒ sβ intro-
duces that in a sequence s, the occurrence of
sα ⊑ s implies an occurrence of sβ ⊑ s later.
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The pair 〈η, τ 〉 consists of a semantical con-
straint η = sβ 6∼ sγ and an occurrence con-
straint τ = [nb..ne] on sβ and sγ. We denote
a belief on sequences as [sα; sβ ; sγ ; τ ]. A se-
quence s verifies a belief b is denoted as s |= b.

The semantical constraint η is a contradic-
tion relation 6∼ between two sequences, so
that given two sequences s1 and s2, the re-
lation s1 6∼ s2 constrains that s1 cannot be
replaced by s2 in any concentrated sequences.
For example, as illustrated in Section 1, the
access of login.php could not be replaced by
the access of logout.php, so that we have
login.php 6∼ logout.php.

Given a sequence s, the constraint τ is an in-
terval [nb..ne] on two subsequences s1, s2 ⊑ s
that s1 7→[nb..ne] s2, where nb and ne are two
integers that 0 ≤ nb ≤ ne ≤ ∗ where ∗
stands for the end of sequence s. The con-
straint s1 7→[nb..ne] s2 ensures that if s1 oc-
curs before the occurrence of s2 in s, then
between s1 and s2 there should exist a se-
quence s′ such that nb ≤ |s′| ≤ ne, denoted
as |s′| |= [nb..ne]. We denote s1 7→[0..0] s2 as
s1 7→ s2 and s1 7→[0..∗] s2 as s1 7→∗ s2.

Example 1. The constraint home.php 7→[3..5]

login.php requires that if home.php is fol-
lowed by login.php, then between them
there should be 3 to 5 occurrences of other
elements. Therefore, considering the be-
lief [home.php; login.php; logout.php; [3..5]],
the constraint login.php 6∼ logout.php fur-
ther requires that if home.php is followed
by logout.php, then between them there
should not be 3 to 5 occurrences of other ele-
ments. �

3.3 Fuzzy Unexpected Sequences

An unexpected sequence is a sequence that vi-
olates the constraints introduced by a given
belief. Given a belief b = [sα; sβ; sγ ; τ ] and an
unexpected sequence s, the constraints 〈η, τ 〉
can be represented as a constraint on the
length of a subsequence s′ ⊑ s such that |s′| <
nb or |s′| > ne and sα ·s′ ·sβ ⊑ s, or such that
nb ≤ |s′| ≤ ne and sα · s′ · sγ ⊑ s. We denote
that s satisfies the constraint τ = [nb..ne], i.e.
nb ≤ |s| ≤ ne, as |s| |= τ .

We partition the satisfiability of τ into several
fuzzy sets by a fuzzy membership function µ,
then s |= (τ, U) denotes that the length of
s satisfies the constraint τ , where U is the
membership degree. Considering the possible
violations of a belief [sα; sβ; sγ ; τ ], we propose
three types of unexpectedness.

Definition 2 (The α-unexpectedness). Given a
belief b = [sα; sβ; sγ ; ∗] and a sequence s such
that sα ⊑ s, if there does not exist sβ, sγ such
that sα 7→∗ sβ ⊑ s or sα 7→∗ sγ ⊑ s, then
s supports α-unexpectedness, denoted as s |=
(α ⊢ b), and we say s is α-unexpected.

The meaning of the α-unexpectedness is given
by the primary factor sα contained in such
unexpected sequences. The α-unexpectedness
is crisp since the constraint τ is fixed to ∗,
which cannot be fuzzy.

Definition 3 (The β-unexpectedness). Given a
belief b = [sα; sβ; sγ ; τ ] and a sequence s such
that sα ⊑ s, if τ 6= ∗ and there exists sβ such
that sα 7→∗ sβ ⊑ s, and there does not exist s′

such that |s′| |= (τ, U) and sα 7→ s′ 7→ sβ ⊑ s,
then s supports β-unexpectedness, denoted as
s |= (β ⊢ b, U), and we say s is β-unexpected.

Definition 4 (The γ-unexpectedness). Given
a belief b = [sα; sβ; sγ ; τ ] and a sequence s
such that sα ⊑ s, if there exists sγ such that
sα 7→∗ sγ ⊑ s and there exists s′ such that
|s′| |= (τ, U) and sα 7→ s′ 7→ sγ ⊑ s, then
s supports γ-unexpectedness, denoted as s |=
(γ ⊢ b, U), and we say s is γ-unexpected.

The meaning of the β-unexpectedness and
γ-unexpectedness is given by the factor sβ

and sγ contained in the unexpected sequences.
Such unexpectedness can be fuzzy, where the
membership degree U of unexpectedness is
measured by the fuzzy membership function
µ, and we have 0 < U ≤ 1. Note that
we have U ≡ 1 for α-unexpected sequences,
so that for uniforming the notations, we can
also denote an α-unexpected sequence as s |=
(α ⊢ b, U) where U = 1 (in fact we have
τ = ∗ =⇒ U = 1). Without loss of general-
ity, a sequence supporting the unexpectedness
u ∈ {α, β, γ} stated by a belief b is denoted as
s |= (u ⊢ b, U); a fuzzy unexpected sequence
s and its membership degree U are denoted

Proceedings of IPMU’08 1711



as a pair 〈s, U〉.
Example 2. Given a user defined belief
b = [home; login; logout; [0..5]] on Web site
log files, we consider three fuzzy sets for
the each unexpectedness, they are “little”
(µL), “almost” (µA) and “certainly” (µC).
To crisp unexpectedness, a sequence s =
〈(home)(ad1)(ad2)(ad3)(ad4)(login)〉 is ex-
pected since |(ad1)(ad2)(ad3)(ad4)| = 4 and
4 |= [0..5]. However, let fuzzy membership
functions for measuring β-unexpectedness be
shown in Figure 1, we have µL(4) = 0.67,
µA(4) = 1 and µC(4) = 0.5, so that the best
description of the sequence s is “almost” un-
expected. In the fuzzy set “certainly” for such
β-unexpectedness, we have s |= (β ⊢ b, 0.5)
since the degree U = µC(4) = 0.5, and we
can so write sequence s as 〈s, 0.5〉 for β-
unexpected of belief b. �

1 3 4 5 82 6 7

0.5

1
almost certainlylittle

µ
τ = [0..5]

Figure 1: Fuzzy sets for β-unexpectedness with
τ = [0..5].

Figure 2 and Figure 3 represent the fuzzy
set “certainly” for β-unexpectedness and γ-
unexpectedness with (a) τ = [0..3], (b) τ =
[3..3], (c) τ = [3..5] and (d) τ = [3..∗].

u
1

0 0

1 1

0 0

1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

u u u u

(a) (b) (c) (d)

u µµµµ
τ = [0..3] τ = [3..3] τ = [3..5] τ = [3..∗]

Figure 2: Fuzzy measure of the “certainly” set
for β-unexpectedness.

For better describing the behaviors of all those
unexpected sequences, we propose the notion
of bordered unexpected sequences.
Definition 5 (Bordered Unexpected Sequence).
Given a belief b = [sα; sβ; sγ ; τ ] and an un-
expected sequence s |= (u ⊢ b, U), a bordered
unexpected sequence su is the maximal subse-
quence of s: (1) if s is α-unexpected, we have

1

0 0

1 1

0 0

1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

u u u u

(a) (b) (c) (d)

µµµµ
τ = [0..3] τ = [3..3] τ = [3..5] τ = [3..∗]

Figure 3: Fuzzy measure of the “certainly” set
for γ-unexpectedness.

s′ · su = s (|s′| ≥ 0) such that sα ⊑⊤ su; (2)
if s is β-unexpected, we have sa · su · sc =
s (|sa| , |sc| ≥ 0) such that sα ⊑⊤ su and
sβ ⊑⊥ su; (3) if s is γ-unexpected, we have
sa · su · sc = s (|sa| , |sc| ≥ 0) such that
sα ⊑⊤ su and sγ ⊑⊥ su.

The composition of an unexpected sequence
can therefore be considered as at most three
maximal subsequences, called the antecedent
sequence (denoted as sa, and |sa| ≥ 0), the
bordered unexpected sequence (denoted as su,
and |su| > 0) and the consequent sequence
(denoted as sc, and |sc| ≥ 0).

Example 3. Let us consider a belief b =
[〈11〉 ; 〈21〉 ; 〈31〉 ; [0..2]] on sequence of events,
where the numbers 11, 21, 31, . . . stand for
event IDs. The above belief b requires that
the event 11 must be followed by the event 21,
but not of the event 31, within no more than
two intervals. Thus the event sequence s =
〈(12)(22)(12)(11)(12)(11)(12)(21)(31)(12)〉 is
β-unexpected to the belief b. The antecedent
sequence, the bordered unexpected sequence
and the consequent sequence of the sequence
s are shown in Figure 4. �

(12)(22)(12)(11)(12)(11)(12)(21)(31)(12)

s

sa su sc

Figure 4: The composition of an unexpected se-
quence.

Given a belief b and set S of sequences that
support an unexpectedness u ⊢ b, that is, for
each s ∈ S we have s |= (u ⊢ b, U). Let Sa

be the set of all antecedent sequences, Su be
the set of all bordered unexpected sequences
and Sc be the set of all consequent sequences.
By studying Sa, Su and Sc, for example, by
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performing the sequential pattern mining to
them, we can further discover the implication
rules on such unexpected behaviors, such as,
the maximal frequent sequences in Sa reflect
the implications of the unexpectedness u ⊢ b,
and the unexpectedness u ⊢ b implies the con-
sequences depicted by the maximal frequent
sequences in Sc. All the same, the maximal
frequent sequences in Su depict the internal
structures with the unexpectedness u ⊢ b.
The discovery of such rules and structures is
out of the scope of this paper and is detailed
in our previous article [6].

3.4 The Algorithm Taufu

Our algorithm Taufu finds all fuzzy unex-
pected sequences from a sequence database
D, with respect to the belief base B, the fuzzy
sets F and the minimum membership degree
ω. The output of Taufu includes all fuzzy
unexpected sequences 〈s, U〉 associated with
the membership degree U , and the bordered
unexpected sequence su, the antecedent se-
quence sa and the consequent sequence sc of
each pair 〈s, U〉. Algorithm 1 shows the main
routine of the algorithm Taufu.

Algorithm 1: The algorithm Taufu.
Input : D, B, F, ω
Output: All 〈s, U〉, su, sa and sc

foreach s ∈ D do1
foreach sα ∈ B do2

if sα ⊑ s then3
foreach b contains sα do4

if α ⊢ b then5
uxps alpha(s, b,B);6
uxps crisp(s, b.sα, b.sγ);7
continue;8

end9
uxps fuzzy(s, b,B,F, ω);10

end11
end12

end13
end14

The belief base B is indexed by the sequence
sα contained in each beliefs, so that for each
sequence s contained in the sequence database
D, and for each sα indexed in B, the algo-
rithm first verifies whether sα ⊑ s. If sα ⊑ s,
then for each belief b ∈ B associated with
sα, the algorithm first finds α-unexpectedness
from s by the subroutine uxps alpha and finds
γ-unexpectedness from s by the subroutine
uxps crisp if b states the α-unexpectedness;
then finds fuzzy β- or γ-unexpected from s

by the subroutine uxps fuzzy if b does not
state α-unexpectedness.

Algorithm 2 shows the procedure uxps alpha.
Note that in order to maintain the consis-
tence of the belief base B, only the sequences
violating all of the beliefs that state an α-
unexpectedness and contain the same sα are
considered as α-unexpected to B, see Example
4. Therefore the procedure uxps alpha out-
puts 〈s, 1〉 if s is α-unexpected to each belief
that states the α-unexpectedness with sα.

Algorithm 2: Subroutine uxps alpha.
Input : s, b, B
Output: 〈s, 1〉 if s is α-unexpected, su, sa and sc

foreach b′ associated with b.sα do1
if b′.sα · b′.sβ ⊑ s then2

return;3
end4
if b.sα · b.sβ 6⊑ s then5

generate su and sa from s;6
sc = ∅;7
output(〈s, 1〉 , su, sa, sc);8

end9
end10

Example 4. Given a belief base consists
in two beliefs b1 = [〈(11)〉 ; 〈(21)〉 ; 〈(31)〉 ; ∗]
and b2 = [〈(11)〉 ; 〈(22)〉 ; ∅; ∗], the sequence
s1 = 〈(11)(22)〉 is α-unexpected to b1 but
not to b2; the sequence s2 = 〈(11)(21)〉 is α-
unexpected to b2 but not to b1; the sequence
s3 = 〈(11)(12)〉 is α-unexpected to both of
b1 and b2; the sequence s4 = 〈(11)(31)〉 is γ-
unexpected to both of b1 and b2. Our algo-
rithm outputs s3 as an α-unexpected sequence
for b1 and b2; outputs s4 as a γ-unexpected se-
quence for b1 and b2 with membership degree
U = 1. �

The procedure uxps crisp simply verifies
whether b.sα · b.sγ ⊑ s and outputs the re-
sult sequences.

The procedure uxps fuzzy is shown in Algo-
rithm 3, which is detailed in Example 5.

Example 5. As detailed in Figure 5, to illus-
trate Algorithm 3, let the input sequence s be
〈(11)(11)(12)(21)(12)(22)(21)(22)(21)(12)〉,
and [〈(11)(12)〉 ; 〈(21)(22)〉 ; 〈(31)〉 ; [1..3]] be
the belief b, where the numbers stand for
event IDs. We have two fuzzy sets “almost”
(labeled as A) and “certainly” (labeled as
C) for the partitions of β-unexpectedness
of belief b, shown in Figure 5(b). The part

Proceedings of IPMU’08 1713



Algorithm 3: Subroutine uxps fuzzy.
Input : s, b, F, ω
Output: 〈s, 1〉 if s is β-unexpected or γ-unexpected, su,

sa and sc

L = get labels(F, b);1
foreach sb ∈ {b.sβ , b.sγ} do2

foreach l ∈ L do3
l : X =4

find fuzzy bounds((b.sα)⊥, (sb)⊤,F, b, ω);

end5
foreach l ∈ L do6

foreach x ∈ l : X do7
if occu = backward(s, x) then8

if occu′ = forward(s, x) then9
generate su, sa, sc from s,10
occu and occu′;
output(〈s, x.degree〉 , su, sa, sc);11
break;12

end13
end14

end15
end16

end17

of the belief base containing the belief b is
shown as Figure 5(c).

The procedure uxps fuzzy first finds all the
labels of fuzzy partitions corresponding to b
in the fuzzy set F , in this example we have
L = {A,C}. The procedure then finds fuzzy
unexpectedness with respect to sβ and sγ

of the belief b. In this example, we only
illustrate how uxps fuzzy extracts the β-
unexpectedness from s. The extraction of the
γ-unexpectedness is the same one.

The subroutine find fuzzy bounds of the
procedure uxps fuzzy finds all intervals of
itemsets between the last itemset of sα and
the first itemset of sβ (or sγ) with respect to
the fuzzy partitions and the minimum mem-
bership degree ω. The result returned by
find fuzzy bounds is a set of intervals and
begin-end positions categorized by the label
of fuzzy partitions corresponding to current
belief b, and the ranges are sorted with the
descendant membership degree order. In this
example, the algorithm finds all fuzzy bounds
between (12) and (21). Within the sequence
s, there are totally 3 intervals for the fuzzy
partition A and 5 intervals for the fuzzy par-
tition C, the order is shown as the two tables
in Figure 5(a).

For each fuzzy partition, the algorithm finds
the unexpectedness by the backward match-
ing procedure backward, that finds sα ⊑
s, and the forward matching procedure
forward, that finds sβ ⊑ s (or sγ ⊑ s).

(11) (11) (12) (21) (12) (22) (21) (22) (21) (12)

C=0.5, A=1

C=1, A=0

C=0.5, A=1

C=0.5, A=1

C=1, A=0

A A CC
1

1 2 3 4 50

(a)

(b)

A C

1

2

3

1

A C

2 4

3 5

(c)

1©

2© 3©

4©
5©

µ B

〈(11)(12)〉

[〈(11)(12)〉 ; 〈(21)(22)〉 ; 〈(31)〉 ; [1..3]]

Figure 5: Illustration of a fuzzy β-unexpected
sequence extraction.

In this example, for both of the fuzzy parti-
tions A and C, the forward procedure finds
the first sequence that contains sα, that is
⊑ (11)(12) shown as 1© in Figure 5(a). For
the fuzzy partition A, the first (the best) in-
terval between (12) and (21) is shown as 4©,
with which the algorithm finds an occurrence
of sβ, as shown as 5©. For the fuzzy partition
C, the first (the best) interval between (12)
and (21) is shown as 2©, with which the algo-
rithm finds an occurrence of sβ, as shown as
3©. Imagine that if the first interval between
(12) and (21) does not drive the sβ, then the
second one will be verified, and till to the last
one; if no sβ is found, the algorithm returns
without output.

Therefore, finally the algorithm out-
puts the bordered unexpected sequence
〈(11)(12)(21)(12)(22)(21)(22)〉 ( 1© 4© 5©) for
the fuzzy partition A; outputs the bordered
unexpected sequence 〈(11)(12)(21)(12)(22)〉
( 1© 2© 3©) for the fuzzy partition C. �

As depicted in the above instance, our algo-
rithm will minimize the length of the bordered
unexpected sequences.

4 Experiments

To evaluate our approach Taufu, we perform
a group of experiments to extract unexpected
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sequences from the access log of a security
testing Web server, where a large number of
attacks are logged. The sequence database
converted from the access log contains 67,228
session sequences corresponding to 27,552 dis-
tinct items.

Totally 4 groups of 20 beliefs corresponding
to 4 categories of occurrence constraints are
considered in our experiments: CAT1 stands
for 5 beliefs with τ = [0..∗]; CAT2 stands for
5 beliefs with τ = [0..X] where X ≥ 0 is an
integer; CAT3 stands for 5 beliefs with τ =
[Y..∗] where Y > 0 is an integer; and CAT4
stands for 5 beliefs with τ = [X..Y ] where
Y ≥ X > 0 are two integers.

5 6 7 9 10 11

1

0.6

0.2

1

0.6

0.2

0 1 2 3 4 5 6 7

L A C

0
4 8 12 13 14

C A L

(a) (b)

Figure 6: (a) β-unexpected fuzzy partitions. (b)
γ-unexpected fuzzy partitions.

To simplify the procedure of our experiments,
the ratio of membership function µ is fixed to
±0.2 for all fuzzy partitions, further more, the
partitions “almost” and “a little” do not cover
the interval ranges within which the member-
ship degree of the partition “certainly” is 1.
The interval value of the partitions “almost”
and “a little” where there membership degree
equals 1 is fixed to 2.

For instance, for the following belief of CAT2
[〈(login)〉 ; 〈(list)(view)〉 ; 〈(logout)〉 ; [0..5]],
the fuzzy partitions are shown in Figure 6.
Note that the partitions “almost” and “a lit-
tle” are partial. The numbers of unexpected
sequences that we find with respect to ω = 1,
ω = 0.7 and ω = 0.2 are listed in Table 1
(β-unexpected/γ-unexpected).

ω = 1 ω = 0.7 ω = 0.2
Certainly 47/22 49/23 55/25
Almost 4/2 7/2 10/6
A Little 4/1 5/5 6/12

Table 1: β-unexpected/γ-unexpected sequences
extracted from a belief in CAT2.

Figure 7 shows the number of unexpected
sequences in the fuzzy sets “certainly unex-
pected”, “almost unexpected” and “a little
unexpected” when the minimum fuzzy degree
ω = 1.0. Figure 8 and Figure 9 show the num-
ber of unexpected sequences in the same fuzzy
sets when ω = 0.7 and ω = 0.2.
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Figure 7: Minimum fuzzy degree ω = 1.0.
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Figure 8: Minimum fuzzy degree ω = 0.7.
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Figure 9: Minimum fuzzy degree ω = 0.2.

Such unexpected sequences are difficult to dis-
covered by classical sequential pattern algo-
rithms because of the low support and the
inclusion of sequences, and even because of
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the classification of those fuzzy partitions. As
shown in this section, in our testing sequence
database of Web attacks, some kind of beliefs
drive a clear view of the unexpetedness, for
example CAT2 and CAT3, but the unexpected-
ness stated by the beliefs of CAT4 are quite
“fuzzy”. Hence in the case of CAT4, the unex-
pected sequences extracted by a fuzzy method
is more important for post analysis, and even
for improving the belief base. On the other
hand, even in such a database, the sequen-
tial pattern 〈(login)(logout)〉 can be discov-
ered with a minimum support less than 0.1,
but such a sequential pattern cannot state any
unexpectedness contained in the database.

5 Conclusion

In this paper we introduce a novel approach
for the discovery of fuzzy unexpected se-
quences from databases, with respect to user
defined beliefs. We also present the algorithm
Taufu, which has been verified with real Web
server log file analyzing. The experimental re-
sults show that our approach Taufu extracts
the unexpected sequences corresponding to all
predefined fuzzy partitions.

We are interested in discovering belief driven
fuzzy unexpected sequential patterns and fuzzy
unexpected sequential rules from database,
that are helpful to extract the internal rela-
tions within the unexpectedness and to find
the implications before/after the occurrences
of unexpectedness, where a fuzzy method can
be creditable.
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