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Abstract. Research in the areas of privacy preserving techniques in
databases and subsequently in privacy enhancement technologies have
witnessed an explosive growth-spurt in recent years. This escalation has
been fueled primarily by the growing mistrust of individuals towards or-
ganizations collecting and disbursing their Personally Identifiable Infor-
mation (PII). Digital repositories have become increasingly susceptible to
intentional or unintentional abuse, resulting in organizations to be liable
under the privacy legislations that are increasingly being adopted by gov-
ernments the world over. These privacy concerns have necessitated new
advancements in the field of distributed data mining wherein, collabo-
rating parties may be legally bound not to reveal the private information
of their customers. In this chapter, firstly we present the sequential pat-
tern discovery problem in a collaborative framework and subsequently
enhance the architecture by introducing the context of privacy. Thus we
propose to extract sequential patterns from distributed databases while
preserving privacy. A salient feature of the proposal is its flexibility and
as a result is more pertinent to mining operations for real world applica-
tions in terms of efficiency and functionality. Furthermore, under some
reasonable assumptions, we prove that the architecture and protocol em-
ployed by our algorithm for multi-party computation is secure. Finally
we conclude with some trends of current research being conducted in the
field.

1 Introduction

The increasing popularity of multi-database technology, such as communication
networks and distributed, federated and homogeneous multi-database systems,
has led to the development of many large distributed transaction databases for
real world applications. However, for the purposes of decision-making, large or-
ganizations would need to mine these distributed databases located at disparate



locations. Moreover, the Web has rapidly transformed into an information flood,
where individuals and organizations can access free and accurate information
and knowledge on the Internet while making decisions. Although this large data
assists in improving the quality of decisions, it also results into a significant chal-
lenge of efficiently identifying quality knowledge from multi-databases [1, 2].
Therefore large corporations might have to confront the multiple data-source
problem. For example, a retail-chain with numerous franchisees might wish to
collaboratively mine the union of all the transactional data. The individual trans-
actional databases contain information regarding the purchasing history of the
same set of common customers transacting through e-commerce portals or brick
and mortar stores. However, the bigger challenge of such computations is com-
pliance to stringent privacy requirements laid down by the formulation of laws
such as HIPAA [3]. These regulatory policies are the driving force behind the
growing consciousness towards the protection of privacy of individuals and their
data. Consequently, there has been a paradigm shift towards the creation of a
privacy-aware infrastructure, which entails aspects ranging from data-collection
to analysis [4].
Conventionally, data mining has been applied to the traditional data warehouse
model of a central data repository, and conducting analysis on it. However, pri-
vacy considerations prevents this generic approach and hence privacy preserving
data mining has gained recognition among academia and organizations as an im-
portant and unalienable area, especially for highly sensitive data such as health-
records. Indeed, if data mining is to be performed on these sensitive datasets, due
attention must be given to the privacy requirements. Recently there has been a
spate of work addressing privacy preserving data mining [5, 6]. This wide area
of research includes classification techniques [7], association rule mining [8], and
clustering [9] with privacy constraints. In early work on privacy-preserving data
mining, Lindell and Pinkas [10] propose a solution to privacy-preserving classi-
fication problem using oblivious transfer protocol, a powerful tool developed by
SMC research. The techniques based on SMC for efficiently dealing with large
data sets have been addressed in [11], where a solution to the association rule
mining problem for the case of two parties was proposed. In [12], a novel secure
architecture has been proposed where the security and accuracy of the data min-
ing results are guaranteed with improved efficiency.
Traditionally, Secure Multi-Party Protocols have been used for the secure compu-
tation for generic functions. A Secure Multi-party Computation (SMC) problem
deals with computing any function on any input, in a distributed network where
each participant holds one of the inputs, while ensuring that no more informa-
tion is revealed to a participant in the computation than can be inferred from
that participants input and output. Secure two party computation was first in-
vestigated by Yao [13, 14] and was later generalized to multi-party computation
(e.g. [15–17]). It has been proved that for any polynomial function, there is a
secure multiparty computation solution [16, 17]. The approach used is as follows:
the function f to be computed is firstly represented as a combinatorial circuit,
and then the parties run a short protocol for every gate in the circuit. Every



participant gets corresponding shares of the input wires and the output wires
for every gate. While this approach is appealing in its generality and simplicity,
the protocols it generates depend on the size of the circuit. This size depends
on the size of the input (which might be huge as in a data mining application),
and on the complexity of expressing f as a circuit (for example, a naive multi-
plication circuit is quadratic in the size of its inputs). However, the complexity
of such a secure protocol is prohibitive for complex data mining tasks such as
the discovery of sequential patterns.

In this paper, we present an alternative privacy preserving data mining approach
- PriPSeP, for discovering sequential patterns in the local databases of a large
integrated organization. PriPSeP is useful for mining sequential patterns via
collaboration between disparate parties, employing secure architecture, opera-
tions and underlying protocols. Hence, to counter the communication and band-
width overhead of the Oblivious Transfer required between two-parties in an
SMC, this paper proposes an alternate architecture consisting of ”semi-honest”
and ”non-colluding” sites. This tradeoff between security and efficiency is rea-
sonable as none of the participating sites are privy to the intermediate or the
final results of the calculus. Furthermore, due to the uniform random noise in the
datasets, private information of any individual is also guarded from any possible
leak.

Organization: The remainder of this paper is organized as follows. Section 2
goes deeper into presenting the problem statement and provides an extensive
description of the problem at hand. Section 3 describes our proposed solution
with the description of the architecture and the algorithms for secure multi-party
protocols. Finally, Section 4 concludes the paper with a roadmap for future work
as well as new trends on privacy preseving sequential pattern mining approaches.

2 Problem Statement

In this section we give the formal definition of the problem of privacy preserv-
ing collaborative sequential pattern mining. First, we give a brief overview of
the traditional pattern mining problem by summarizing the formal description
introduced in [18] and extended in [19]. Subsequently, we extend the problem
by considering distributed databases. Finally, we formally define the problem of
privacy preserving sequential pattern mining.

2.1 Mining of Sequential Patterns

Let DB be a database containing a set of customer transactions where each
transaction T consists of a customer-id, a transaction time and a set of items
involved in the transaction.
Let I = {i1, i2...im} be a set of literals called items. An itemset is a non-empty set
of items. A sequence s is a set of itemsets ordered according to their timestamp.



It is denoted by < s1 s2 ...sn >, where sj , j ∈ 1...n, is an itemset. In the rest of
the paper we will consider that itemsets are merely reduced to items. Neverthe-
less all the proposal could be easily extended to deal with itemsets. A k-sequence
is a sequence of k items (or of length k). A sequence S′ =< s′1 s′2 ... s′n > is a
subsequence of another sequence S =< s1 s2 ... sm >, denoted S′ ≺ S, if there
exist integers i1 < i2 < ... ij ... < in such that s′1 ⊆ si1 , s′2 ⊆ si2, ... s′n ⊆ sin.
All transactions from the same customer are grouped together and sorted in in-
creasing order and are called a data sequence. A support value (denoted supp(S))
for a sequence gives its number of actual occurrences in DB. Nevertheless, a se-
quence in a data sequence is taken into account only once to compute the support
even if several occurrences are discovered. In other words, the support of a se-
quence is defined as the fraction of total distinct data sequences that contain
S. A data sequence contains a sequence S if S is a subsequence of the data
sequence. In order to decide whether a sequence is frequent or not, a minimum
support value (denoted minsupp) is specified by the user, and the sequence is
said to be frequent if the condition supp(S) ≥ minsupp holds. Given a database
of customer transactions the problem of sequential pattern mining is to find all
the sequences whose support is greater than a specified threshold (minimum
support). Each of these represents a sequential pattern, also called a frequent
sequence. The anti-monotonic Apriori property [20] holds for sequential patterns
[21].
Since its introduction, more than a decade ago, the sequential pattern mining
problem has received a great deal of attention and numerous algorithms have
been defined to efficiently find such patterns (e.g. GSP [19], PSP [22], PrefixS-
pan [23], SPADE [24], FreeSpan[25], SPAM [26], CLOSPAN [27], PRISM [28],
SAMPLING [29], etc.).

2.2 From Collaborative to Privacy Preserving Sequential Pattern
Mining

Let DB be a database such as DB = DB1
⋃

DB2 ...
⋃

DBD. We consider that
all databases DB1, DB2 ... DBD share the same number of customers (CIDs),
which is N . We also consider that for each customer in the databases, the number
of transaction times (TIDs), K, is the same. Our data representation scheme
considers that all transactions are depicted in the form of vertical bitmaps, which
we denote as vectors for clarity in mathematical formulae.

Definition 1 Let V j
i be a vector where j and i correspond respectively to the ith

item and the jth database. V i
j is defined as follows: V i

j = [Ci,j
1 ...Ci,j

N ] where for

u ∈ {1..N}, Ci,j
u = [T i,j,u

1 , ..., T i,j,u
K ]. T i,j,u

v={1..K} corresponds to the transaction
list of the customer u, from the database DBj and the item i. It is a K length
bit string that has the vth bit as one if the customer has bought the item i from
the database DBj.

Given a set of databases DB1, DB2...DBD containing customer transactions, the
problem of collaborative sequential pattern mining is to find all the sequences



whose support is greater than a specified threshold (minimum support). Further-
more, the problem of privacy-preserving collaborative sequential pattern mining
is to find all the sequential patterns embedded in the set of databases by con-
sidering parties do not want to share their private data sets with each other.
In order to illustrate this further, let us consider the following example.

Example 1 Let us consider an example of three retail franchisees Alice, Bob and
Carol wishing to extract securely the sequential patterns without disclosing the
identities of any individual customers. Each item is provided with its timestamp
(C.f. table 1).

CID Alice Bob Carol

1 (1)1 (3)5 (2)2 (7)4
2 (2)4 (1)3 (3)6
3 (2)6 (3)7 (1)2 (7)3

Table 1. An example of distributed databases

CID Sequences

1 (1)A
1 (2)B

2 (7)C
4 (3)A

5

2 (1)B
3 (2)A

4 (3)C
6

3 (1)C
2 (7)C

3 (2)A
6 (3)A

7

Table 2. The union of all databases

Let us assume that the minimal support value is set to 50%. From the three
distributed databases, we can infer that item (1) is not frequent in any one of
the individual databases. However, by considering the union of all databases (C.f.
table 2 where the superscript depicts the original database where the item is
derived), we obtain the sequence of < (1)(2)(3) >. By considering privacy, this
sequence has to be obtained by considering Alice, Bob and Carol do not want to
share their private data sets with each other.

In, [30], Zhan et al. have proposed a novel approach, which entails the trans-
formation of the databases of each collaborating party, followed by a protocol,
which results in the preservation of privacy, as well as the correct results. The-
oretically, the approach is robust and secure, however, it has serious limitations
relating to the initial constraints considered while developing the protocol. It has
been assumed that each of the collaborating party carries a unique inventory.
For instance, considering our previous example and our problem statement, and
following the previous approach and not taking into account the possibility of
items being shared among the distributed parties, we come up with erroneous



results. An item such as (1) which is not supported by enough customers in
one individual database might not appear in the final results. This assumption
causes serious limitation for different real applications where items sharing be-
tween different databases is imperative and a fundamental requirement as proved
earlier. Moreover, the same customer buying the same item twice from the same
database but on different times is not permissible, employing their new data
representation scheme for sequential data. The other drawback of mapping each
item to a unique code is the additional overhead incurred while sorting the
databases.

3 The PriPSeP approach

In this section, we propose our novel approach for privacy preserving sequential
pattern mining in distributed and collaborative databases. A preliminary version
of this proposal has been published in [31]. Firstly we focus only on collabora-
tive sequential pattern mining in order to clearly explain our methodology. This
approach is extended in the next section in order to consider privacy require-
ments and finally we propose a new algorithm and underlying protocols within
the secure architecture.

3.1 Collaborative sequential pattern mining

An overview As previously seen in Section 2, the main difficulty with collab-
orative mining is that we have to deal with different databases where the order
of items is not known beforehand (e.g. consider the item (7) of the CID 1 in the
Bob’s database is before the item (3) of the Alice’s database).
For brevity, we consider that we are provided with a Data Miner performing
the generating and verifying phases of candidate sequences as Apriori-like algo-
rithms. We assume that the candidate generation is performed in conventionally
by combining the k-1 frequent sequences in order to generate k-candidate se-
quences (e.g. C.f. GSP [19] generation phase). We extend the verification phase
as follows. First, we consider that our data representation scheme has been
extended from the SPAM algorithm [26], wherein for efficient counting, each
customer’s transactions are represented by a vertical bitmap. These bitmap or
vectors are vertically aligned for various computations to calculate the support
value for any sequence. As we have to deal with disparate distributed databases,
we assume that the Miner could request the N original databases in order to

obtain a vector corresponding to the specific item i, i.e. V
[1..D]
i for any candidate

sequence.
Let us consider that we are provided with two databases, namely DB1 and DB2.
These databases contain three customers and each customer has five transaction
times or CIDs. Let us consider that we are in the candidate step counting of an
Apriori-like algorithm. Let us assume that we are currently finding how many
times the sequence < (1)(2) > appears in the set of all customers of the two
databases. First, we extract from DB1, the vector corresponding to the item



V 1
1 V 2

1

C1

T1 0 0
T2 0 1
T3 1 1
T4 0 0
T5 1 0

C2

T1 0 1
T2 1 0
T3 0 0
T4 0 0
T5 1 0

C3

T1 0 0
T2 0 0
T3 1 1
T4 1 0
T5 1 0

Z1 = f(V 1
1 ∨ V 2

1 )
=⇒

S-Step

Z1

0
0
1
1
1

0
1
1
1
1

0
0
0
1
1

∧

Z2 = V 1
2 ∨ V 2

2

0
0
0
0
1

1
1
1
1
1

0
0
0
0
0

g
=⇒

Z3

1

1

0

∑

=⇒
2

Fig. 1. Processing of vectors for collaborative mining

(1), i.e. V 1
1 , and from DB2 the vector V 2

1 (left part of figure 1). From the given
vectors, two key operations have to be performed: (i) merge the two vectors,
and then (ii) transform the result in order to check if they it could followed
by (2). These two vectors are merged together by applying a bitwise operator
(∨): V 1

1 ∨ V 2
1 . For the second operation, similar to the S-Step process of the

SPAM algorithm we consider a function that transforms the vector or bitmap.
For each customer, following the occurrence of the first bit with value one, every
subsequent bit in the vector is flagged as one. However, since we have to deal
with different databases and due to efficiency considerations, we consider that
these two operations are performed through the f function defined below and
thus we obtain a new vector Z1 = f(V 1

1 ∨ V 2
1 ).

Definition 2 Let us consider a vector V j
i for a database j and an item i.

V j
i is defined as follows: V j

i = (Ci,j
1 ...Ci,j

N ) where for u ∈ {1..N}, Ci,j
u =

(T i,j,u
1 , ..., T i,j,u

K ). K stands for the number of TIDs and N corresponds to the
number of CIDs. For brevity, we denote this vector as V . Let f : [0, 1]N×K →
[0, 1]N×K be a function such that: f(V ) = f(C1...CN ) = [fc(C1)fc(C2)...fc(CN )].

For each u ∈ {1..N}, we have: fc(Cu) =

0
T u

1

T u
1 ∨ T u

2

T u
1 ∨ T u

2 ∨ T u
3

...
T u

1 ∨ ... ∨ T u
k−1

where ∨ are bitwise operators. We can notice that Card(V ) = N×K, Card(Cu) =
K, Card(f(V )) = N × K.



Let g : [0, 1]N×K → [0, 1]N be a function such that: g(V ) = g(C1...CN ) =
[gc(C1)gc(C2)...gc(CN )]. For each u ∈ {1..N}, we have: gc(Cu) = 1 if it exists
at least one 1 in the customer transactions, i.e. customer dates, or 0 otherwise.
We can notice that Card(g(V )) = N .

In conjunction to the computation of the function f , the vectors corresponding
to the item (2) are extracted from DB1 and DB2 (V 1

2 and V 2
2 respectively).

Subsequently, similar to the previous step the vector (Z2 = V 1
2 ∨V 2

2 ) is computed.
Following that, the bitwise operator ∧ is used to calculate Z1∧Z2 and the count
for each customer, for the sequence < (1)(2) > has to be calculated. This is
performed by the g function, i.e. Z3 = g(f(V 1

1 ∨ V 2
1 ) ∧ (V 1

2 ∨ V 2
2 )). As the

resulting vector Z3 has a cardinality corresponding to the number of customers,
the last operation to be performed is a summation of the number of 1’s in the
vector Z3. This is performed by the

∑
operation.

The collaborative support counting algorithm The Collaborative Fre-

quency algorithm (see Algorithm 1) has been developed as follows. For each
item i of the candidate sequence to be tested, a new vector Xi is generated by
applying the ∨ bitwise operator on all vectors from the original databases. Then
by considering the result of the previous operation, the f function is applied,
followed by the bitwise operator ∧ for each item. At the end of this iteration, a
new vector Z of cardinality N × K is produced. Subsequently, the g function is
applied to the intermediate result for generating a vector of cardinality N , i.e.
Y . Finally, the number of bits which are 1 in Y are summated to compute the
final value of support.

Algorithm 1: The Collaborative Frequency algorithm

Data: S = < it1 ... itq > a sequence to be tested; DB = DB1

⋃
DB2...

⋃
DBD

a set of databases; N the number of customers shared by all databases;
K the number of date shared by all customers of all databases.

Result: The support of the sequence S in DB.

foreach i ∈ 1..|S| do

Xi ← V 1
iti

∨
...

∨
V D

iti
;

Z ← X1;
foreach i ∈ 2..|S| do

Z ← f(Z)
∧

Xi;

Y ← g(Z);

return

N∑

i=1

Yi;

Complexity: Let Vs = N × K be the size of the vectors which are sent and S
be the candidate sequence to be verified. The main transfers that are performed
by the algorithm are: (Vs × D × S) for

∨
and (Vs × S) for both the f function



and
∧

operation. There are (N(K − 2))
∨

computations performed by f . If
f is already available, i.e. precomputed and stored, we have (N)

∨
operations

otherwise (N(K − 1))
∨

operations are performed by g.

3.2 From collaborative to privacy-preserving sequential pattern
mining

A brief overview of the architecture In this section we describe an architec-
ture where secure multi-party techniques developed in the cryptographic domain
can be easily extended for data mining purposes.
Previous work [16] has described that Secure Multi-Party protocols can be used
directly to solve with total security, any generic data mining task. However, the
tradeoff is the complexity of the protocol and the requirements that all parties
need to be online during the entire duration of the lengthy process. Hence, it is
potentially unviable for complex data mining tasks, particularly for cases with a
large number of participants. The communication complexity prohibits efficient
scalability and for situations that all parties cannot remain online for the entire
process, the SMC protocols are rendered useless.
Evidently traditional approaches do not fulfill the requirements of a complex
sequential mining algorithm. Hence, as proposed in [12], we deploy a safe ar-
chitecture for performing the data mining task without leaking any useful or
sensitive information to any of the intermediate parties. These independent sites
collect, store and evaluate information securely. PriPSeP requires three non
colluding and semi honest [16] sites which follow the protocol correctly but are
free to utilize the information collected by them. They are also referred to as
honest but curious sites.
The detailed functions of each of these sites are described:

– Data Miner Site DM : The Data Miner is a randomly chosen collaborator
between original databases. Its purpose is to interact with NC1 and NC2,
and it receives the final result of the computation from the PS.

– Non Colluding Sites NC1 and NC2: These symmetric sites collect the
noisy data from each database including the Data Miner and perform secure
operations without inferring any intermediate or final result.

– Processing Site PS: This site is utilized by both NC1 and NC2 sites for
computing securely the various functions and operations underlying PriPSeP.
Similar to NC1 and NC2, PS learns no actual results.

Let us consider Figure 2 illustrating the sites. The operations are described as
follows. Initially the following preprocessing steps are performed on the databases
individually:

1. Each database DB1, DB2...DBD adds ε customers with fake transactions
and employ a non-secure counting strategy (this count could be performed
by any conventional algorithm since this step is independent of the privacy)
to note the number of customers, ε′, that have to be pruned from the final
result.



DB1 DBD

...

DBi

Data Miner

4

3

4

2 3

1

1 1

2

Non−Colluding Site Non−Colluding Site
NC1 NC

...

Processing Site
PS

2

Fig. 2. PriPSep Architecture

2. Let ϕ be a random number. Each database permutes individually their vector
of transactions (V j

i ) according to the value of ϕ .
3. One of the collaborating parties is randomly elected to perform the data

mining steps. This party is termed as the Data Miner (DM).

At the end of the preprocessing we are provided with databases having fake
customer transactions and permuted list of vertically aligned vectors. Subse-
quently, the Data Miner can apply an Apriori-like algorithm as previously men-
tioned in Section 3.1. This step is immediately followed by the counting phase.
For simplicity, let us consider that we are counting the value of support for
the two length sequence < (1)(2) >. Now, each database DBj sends its V j

1
vector to NC1 and NC2 (dashed arrows numbered 1 in figure 2). In order
to minimize the risk of network transfers, we propose a hypothetical function
SendS × DBd(it) which securely transmits the item vector Vit from database
DBd to NC1 and NC2. Furthermore, in order to make sure that NC1 and
NC2 receive minimal information, for each database DBi, we calculate a vec-
tor: ZDBi

= Vit

⊕
RDBi

and send either ZDBi
to NC1 and RDBi

to NC2 or
vice versa. It has been proved in [6], that any data mining task (h) defined
on a vector X = [x1, x2, ...xn], it suffices to evaluate h(X

⊕
R) = h(X) since

R = [r1, r2, ...rn] and X
⊕

R = [x1 ⊕ r1, x2 ⊕ r2, ...xn ⊕ rn]. In this case, for
NC1 and NC2 sites we have some RDBi

vectors and since the other vectors are
XOR-ed

⊕
with a random vector, they are indistinguishable from a uniform

random distribution.
Similar to Algorithm 3.1, the bitwise operator (∨) has to be applied between
every vector. As these vectors are shared by NC1 and NC2, we consider a new



protocol
∨S (arrows numbered 2 in Figure 2) aiming at computing a bitwise OR

between the different vectors. This is performed by sending XOR-ed randomized
values from NC1 and NC2 to PS. Then PS also garbles the resulting vectors
in order to divide the result between NC1 and NC2. The calculation continues
by computing the f and g functions (subsequently referred to as fS and gS) in
a similar way and results are also stored between NC1 and NC2 (arrows num-
bered 3 in Figure 2). Finally, in order to compute the number of bits which are

in 1 (
∑

function, now termed as
∑S), NC1 and NC2 collaborate to append

their resultant vector with randomized values and then reorder the new vector.
PS then calculates the summation of the number of bits and returns part of the
result to NC1 and NC2. NC1 removes the initial random noise and then return
this final result to the Data Miner (arrows numbered 4 in Figure 2). At this step,
DM only has to combine the result from NC1 and NC2 and then remove the ε′

value corresponding to random customers added in the preprocessing phase.

In the following sections, we will explain in detail the various protocols, functions
and algorithms necessary for PriPSeP. Firstly, we introduce some notations
that are used for describing the algorithms. As our functions employ bitwise
operators, we first present new protocols for securely performing bitwise opera-
tions. Continuing, we will show how the functions f , g and

∑
are extended to

fS , gS and
∑S respectively to incorporate security aspects. Finally, we present

the Secure Collaborative Frequency algorithm. As the main goal of our
approach is to preserve privacy of the individual users and do not divulge any
information about the final result to any of the sites, we will show that at the
end of the process, NC1, NC2 and PS will only learn a upper bound on the
support count of sequences and will not have any information about the private
inputs of any of the individual customers.

Notations In the next subsections, we will consider the following notations. Let

(
+

X |
−

X) ← hS(
+

Y1 ...
+

Yn |
−

Y1 ...
−

Yn) be a tripartite calculation of any function hS

between NC1, NC2 and PS where NC1 owns half of the input
+

Y1 ...
+

Yn and gets

half of the result
+

X, and similarly NC2 owns half of the inputs
−

Y1 ...
−

Yn and gets

half the result
−

X at the end of the process. The final result is the logical bitwise

XOR (
⊕

) of the
+

X and
−

X. However, this does not imply that NC1 directly sends
+

Y1 ...
+

Yn to PS and receives the result
+

X from PS. Initially, NC1 transforms its

inputs
+

Y1 ...
+

Yn to
+

Y ′

1 ...
+

Y ′

n via the addition of uniform random noise and securely
sends these transformed Y ′ to PS. Symmetrically, NC2 also sends its garbled
inputs to PS. At the end of the computation both the sites receive their share

of the noisy result
+

X′ and
−

X′ from PS. Henceforth, this intermediate result can
be used as the inputs for further computations.



Algorithm 2: The algorithm
∧

S

Data: (
+

X,
+

Y |
−

X,
−

Y ) bits are such as
+

X and
+

Y owned by NC1,
−

X and
−

Y owned
by NC2

Result: (AR|BR) are such that AR ⊕ BR = (
+

X ⊕
−

X)
∧

(
+

Y ⊕
−

Y )

1. NC1 and NC2 mutually generate and exchange four random bits R1, R2, S1 and

S2 such that: X1 =
+

X ⊕ R1, Y1 =
+

Y ⊕ S1, X2 =
−

X ⊕ R2, Y2 =
−

Y ⊕ S2,
R = R1 ⊕ R2 and S = S1 ⊕ S2.

2. NC1 sends X1 and Y1 to PS.
3. NC2 sends X2 and Y2 to PS.
4. PS calculates C = (X1 ⊕ X2)

∧
(Y1 ⊕ Y2) and a random bit RPS .

5. PS sends APS = C ⊕ RPS to NC1 and BPS = RPS to NC2 (or vice versa).

6. NC1 calculates AR = APS ⊕ (
+

X
∧

S) ⊕ (
+

Y
∧

R) ⊕ (R
∧

S)

7. NC2 calculates BR = BPS ⊕ (
−

X
∧

S) ⊕ (
−

Y
∧

R)

The
∧S

and
∨S

protocols In this section, we define two basic algorithms∧S (see Algorithm 2) and ¬S (see Algorithm 3) providing the protocol which is

used to compute securely the bitwise operators from two bits. The
∨S is obtained

from the logical equation A
∨

B = ¬(¬A
∧

¬B) calculated by using the secure

operators
∧S and ¬S . The fundamental principle that the algorithms operate

upon is the addition of uniform random noise to the data which can be removed
from the result by the data-owners. The protocol initiates with both NC1 and
NC2 perturbing their data by XOR-ing it with random values. Subsequently,

the randomized data is sent (e.g. for NC2, X2 =
−

X ⊕R2 and Y2 =
−

Y ⊕S2) to
PS, which can calculate the

∧
securely. It actually operates on the randomized

inputs and calculates C = (X1 ⊕ X2)
∧

(Y1 ⊕ Y2). It then also adds random
noise to the intermediate results in order to avoid NC1 or NC2 having the
complete result. At the end of the protocol, non colluding sites can then calculate
the final result for their own part by removing the initial noise. For instance,

for NC1, the following operation: AR = APS ⊕ (
+

X
∧

S) ⊕(
+

Y
∧

R) ⊕(R
∧

S)

could be done securely since it knows its own inputs (
+

X,
+

Y , R1 and S1) and
random numbers from NC2 (R2 and S2). Hence, the final results AR ⊕ BR

= APS ⊕ (
+

X
∧

S) ⊕(
+

Y
∧

R) ⊕(R
∧

S) ⊕BPS ⊕(
−

X
∧

S) ⊕(
−

Y
∧

R). Substituting
the value of APS and BPS , the initial and intermediate random numbers are
removed due to the boolean property RPS ⊕ RPS = 0. The desired result is
+

X
∧ +

Y ⊕
+

X
∧ −

Y ⊕
−

X
∧ +

Y ⊕
−

X
∧ −

Y . Although, this operation is never
performed, the symmetrically divided result lies with both NC1 and NC1. More
importantly, the Processing Site receives no information regarding to the private
inputs of any individual. Due to the randomization performed during the initial



step, it just sees a stream of uniformly distributed values, and cannot distinguish
between a genuine and a random value.

Algorithm 3: The ¬S protocol

Data: (
+

X |
−

X) bits are such as
+

X owned by NC1,
−

X owned by NC2

Result: (AR|BR) are such that AR ⊕ BR = ¬(
−

X ⊕
+

X)).

1. NC1 calculates AR = ¬
+

X

2. NC2 calculates BR =
−

X

Remark: roles of NC1 and NC2 may be exchanged.

Theorem 1 The operand
∧S prohibits NC1 from learning NC2’s private data

and vice versa. Moreover, the third party PS learns none of their private inputs.

Proof : From the protocol, BPS is all that NC2 learns related to the private data
of NC1. Due to the randomness and secrecy of RPS , NC2 cannot find out the

values of
+

X or
+

Y . As the roles of NC1 and NC2 are interchangeable, the same

argument holds for NC1 not learning the private inputs
−

X or
−

Y of NC2. How-
ever, one key security aspect of not leaking any information to PS is achieved
by randomizing the inputs before transmitting them to the Processing Site.

Remark: The privacy theorem is obvious for the ¬S operator as no data is
exchanged.

Complexity: For the
∧S operator, nine computations have to be performed (6

⊗

and 3
∧

). As, two more ¬S operations are needed by the
∨S protocol, we have

in total, eleven computations. For each
∧

, NC1 and NC2 exchange 2 × 2 bits
among each other. From NC1 or NC2, 2 × 1 bits are sent to PS and one bit
returned. Furthermore, both NC1 and NC2 calculate 2 random bits while 1
random bit is generated by PS.

The fS, gS and
∑S

functions In this section, we extend the f and g func-
tions in order incorporate security (see Algorithm 4). As previously mentioned,
the SPAM algorithm’s S-step Process requires that the vectors corresponding to
every customer contain all 1’s after the date of the first transaction for that cus-
tomer. Hence, the fS function recursively employs the

∨S function to securely
compute the resultant vector. The inputs of the function are the randomly dis-
torted customer data and the secure

∨S is used to find the boolean OR between
the successive bits residing at the two sites NC1 and NC2. Similar to the previ-
ous algorithms, the final result of the operation is split into two parts with the



Algorithm 4: The fS function

Data: Vectors of bits (
+

X |
−

X).
+

X is coming from NC1 and
−

X is coming from
NC2. K the number of dates shared by each customers of all databases.

Result: Vectors (
+

Y |
−

Y ) such as
+

Y is the share of NC1 and
−

Y the share of NC2.

foreach c ∈ 0..(|
+

X |/K) − 1 do

// For each client c

(
+

YK×c+1 |
−

YK×c+1) ← (0|0);
foreach i ∈ 2..K do

(
+

YK×c+1 |
−

YK×c+1) ←
∨S(

+

YK×c+i−1,
+

XK×c+i−1 |
−

YK×c+i−1,
−

XK×c+i−1);

return (
+

Y |
−

Y );

Algorithm 5: The gS function

Data: Vectors of bits (
+

X |
−

X).
+

X is coming from NC1 and
−

X is coming from
NC2. K the number of dates shared by all customers of all databases.

Result: Vectors (
+

Y |
−

Y ) such as
+

Y will be send to NC1 and
−

Y will be send to
NC2.

foreach c ∈ 0..(|
+

X |/K) − 1 do

// For each client c

(
+

Yc |
−

Yc) ← (
+

XK×c+1 |
−

XK×c+1);
foreach i ∈ 2..K do

(
+

Yc |
−

Yc) ←
∨S(

+

Yc,
+

XK×c+i |
−

Yc,
−

XK×c+i);

return (
+

Y |
−

Y );



Processing Site oblivious of the correct answer.
Similarly, the gS function (see Algorithm 5) securely computes the existence of
at least ’1’ in the vector of each customer transaction. It replaces the customer
vector to either a ’0’ or a ’1’ depending on whether the sequence is supported at
least once. This function is useful in calculating the support value at the penul-
timate step of the Algorithm 7.

Remarks : In fact, calculating gS(
+

X,
−

X) → (
+

Y ,
−

Y ) can be returned while calcu-

lating fS(
+

X,
−

X) → (
+

Z,
−

Z) because
+

Yi,
−

Yi can easily be obtained from (
+

Zi×K+K

,
−

Zi×K+K) by using the following relation: (
+

Yi |
−

Yi) =
∨S(

+

Zi×K+K ,
+

Xi×K+K |
−

Zi×K+K

,
−

Xi×K+K).

Algorithm 6: The
∑S protocol

Data: Vectors of bits (X1|X2). X1 is coming from NC1 and X2 is coming from
NC2.

Result: A number which is shared in two parts: (NB1|NB2) corresponding to
the number of bits at 1 in vectors (X1

⊕
X2).

1. NC1 and NC2 generate and exchange two random vectors R1 and R2 of same
cardinality such as (Card(R1) = Card(R2) ≥ 2N). They both calculate R1

⊕
R2

and calculate the number of 1s to be deleted, NR, at the end of the computation
from PS.

2. NC1 and NC2 reorder respectively the vector (X1, R1) and (X2, R2) using a
permutation value ϕ and get respectively Y1 and Y2.

3. NC1 sends Y1 to PS and NC2 sends Y2 to PS.
4. PS calculates Y1

⊕
Y 2 and count the number of bits at 1 and gets NB.

5. PS gets a random number RPS and returns N1 = NB + RPS to NC1 and
N2 = NB − RPS to NC2.

6. NC1 computes NB1 = N1 − NR, NC2 keeps only NB2 = N2.

Complexity: In Algorithm 6, the number of bits is increased by a value ≥ 2N for
security reasons. Let us consider that we set this value as follows t =∈ [2..K].
For NC1 and NC2, (2N(2t + 1)) operations are performed while (2N(t + 1))
operations on PS. Furthermore we have N(t + 1) operations for randomizing.
The number of transfers between NC1 and NC2 is (2tN). The N(t+1) number
of permutations could be neglected if NC1 and NC2 have their own generators.
Finally between NC1/NC2 and PS, N(t + 1) bits are transferred.

The Secure Collaborative Frequency algorithm The Secure Col-

laborative Frequency algorithm (see Algorithm 7) extends the Algorithm 1
in order to perform all operations securely. It is applied after the preprocessing
step and thus considers the original database having fake transactions. For each



Algorithm 7: The Secure Collaborative Frequency algorithm

Data: S =< it1...itq > a sequence to be tested; DB = DB1

⋃
DB2...

⋃
DBD

a set of databases; N the number of customers shared by all databases;
K the number of dates shared by all customers of all databases.

Result: The support of the sequence S in DB with random noise.

foreach i ∈ 1..|S| do

(
+

Xi |
−

Xi) ← SendS × DB1(i);
foreach j ∈ 2..D do

(
+

V |
−

V ) ← SendS × DBj(iti);

(
+

Xi |
−

Xi) ←
∨S(

+

Ci,
+

V |
−

Ci,
−

V );

(
+

Z |
−

Z) ← (
+

X1 |
−

X1);
foreach i ∈ 2..|S| do

(
+

T |
−

T) ← fS(
+

Z |
−

Z);

(
+

Z |
−

Z) ←
∧S(

+

T ,
+

Xi |
−

T ,
−

Xi);

(
+

Y |
−

Y ) ← gS(
+

Z |
−

Z);

(
+

R |
−

R) ←
∑S

(
+

Y |
−

Y );

return (
+

R |
−

R);

item i of the sequence to be tested, all noisy vectors are sent by SendS to NC1

and NC2 in order to securely apply an OR between each vector (
∨S). The fS

function followed by the bitwise operator
∧S is performed. At the end of this

loop we are thus provided with a new vector (
+

Z |
−

Z) where part of results are
shared between NC1 and NC2. Then we apply the gS function for generating

(
+

Y |
−

Y ). Finally, we count the number of bits which are 1 in (
+

Y |
−

Y ) through the

function
∑S . At the end of the process,

+

R and
−

R are sent respectively by NC1

and NC2 to the Data Miner party. To get the real and final result, the miner

has just to calculate
+

R +
−

R (integer summation) and has to remove the initial
random noise, i.e. ε′, they have added at the beginning of the process.

Theorem 2 The randomization, performed at each level (original databases,
NC1, NC2 and PS), does not affect the accuracy of the result.

Proof : The first randomization is performed by the original databases while
inserting fake transactions, i.e. ε, and permuting the list customers according to
the value of ϕ. As, DM is elected from the original databases, this information
about the noise is available to DM and hence can easily be removed. The second
randomization is performed by NC1 and NC2 while sending the transaction
vectors to PS for the secure computation of

∨S ,
∧S , fS and gS. This added

noise is removed at the end of each computation from NC1 and NC2 when



they receive results from PS by performing an XOR operation with the initial
random values. Moreover, we have also proved that no private information about
any individual could be learnt by any of the sites (C.f. Theorem 1). Finally, for
the computation of the

∑S function, NC1 and NC2 add random noise in their
data, i.e. NR, and also permutate their vector according to a ϕ value. PS also
randomizes its integer value and this noise is removed by sending opposite parts
to NC1 and NC2. The NR value is removed by NC1 and NC2 when returning
the result to DM . Finally, when combining results from NC1 and NC2, the only
operation to be performed by DM to know the real result is to remove the ε′

previously inserted.
Complexity: In the secure protocol, each database has to send 2NK data bits
instead of NK. Subsequently, each DB has to calculate NK random bits and
perform (NK)

⊕
operations. According to the previous results on the number of

operations performed by the secure operators, the time complexity is O(12NK)
for binary operations and O(7N) for randomizing operations. Hence, it could be
bounded by O(20N). Let us now consider the communication complexity of the
protocol. Let p = D×S×N ×K. If the number of operations is at most O(12p),
then the number of transfers required is at most O(4p) and for random values
it is O(3p). Hence, the whole algorithm has to send at most O(20p).
Remarks : The secure architecture could be further redefined in order to improve
the communication cost between NC1, NC2 and PS. Furthermore, all the func-
tions except fS(it operates on individual customers), could be parallelized. The
total overhead incurred by our secure protocol could be easily reduced by a fac-
tor of two. We notice, that by considering SMC protocols, no such optimizations
are possible, and hence for scalability issues, our alternative approach could be
beneficial.

Security of the protocol For analyzing the security, let us examine the infor-
mation divulged to each site participating in the protocol. Note that during the
entire process, the random numbers are securely generated and the communica-
tion infrastructure is robust and intrusion free.

– NC1 and NC2 View: During the execution of the protocol, both sites only
see a stream of random values with a uniform distribution. By the proposed
protocol, they only receive noisy data and noisy shared results. Also NC1

and NC2 cannot share information as per the definition of semi-honest non-
colluding sites. The value received from the DBs are Xored with random
numbers from a uniform distribution and indistinguishable from real values.

– PS View: It performs the computation of secure operations (
∧S ,

∨S , fS ,
gS ,

∑S) and provides the results to NC1 and NC2. As discussed earlier all
of these operations reveal no private data of any individual customer from
any of the collaborating DBs. Even a succession or sequence of the secure
operations remains secure.

– Overall Security: During the entire algorithm, no site obtains any ad-
ditional information beyond of what they are already authorized to learn.



Hence security and privacy of every customer is maintained during the com-
putation of support in the architecture. The addition of fake transactions
during the preprocessing steps and permutation of the lists enable that each
site is ignorant of the correct intermediate results as well as the final result.

3.3 Improving the robustness of the system

As described in the previous algorithms, all the data are stored in the two non
colluding sites NC1 and NC2. If a malicious party gains access to both sites,
it will be trivial to obtain all the information and hence violate the tenets of
privacy. Thus, in order to improve the robustness of the system, it would be
interesting to have more than 2 NCi (in fact an arbitrary number w) such that
the knowledge of the data may only be obtained if one gains access to all the
w NCi and otherwise get no more than random numbers. Furthermore in order
to be useful, the complexity must stay linear with w In this section, we describe
the secure operators generalized to w non colluding sites NCi and we focus on
the most important protocols: SENDS ,

∧S , ¬S and
∑S .

Sending data to the w NCi: SENDS In the original case, for sending a
data D to NC1, NC2, sites must generate a random number R and send D⊕R
to NC1 and R to NC2 (or vice versa). This method could be generalized to w
sites NCi by generating w − 1 random numbers, by calculating V1 = D ⊕ R1,
V2 = R1 ⊕ R2, ... Vi = Ri−1 ⊕ Ri, ... Vw = Rw and then by sending one V1 to
each site NCj in any order.
As in the original case, each NCj obtains only random numbers such as D =
V1 ⊕ ... ⊕ Vw. The only way to obtain information on D is by gaining access to
all the NCj . If one has access to all but one, it is analogous to the NC1 and
NC2 scenario, which has already been proven to be secure.

The ¬
S operation With w sites NCi, this operation is still analogous and

simple as the one when w = 2. In order to implement it, it is sufficient that an
odd number of the sites (for example only one : NC1) negates their part of the
value, and the other ones does nothing. There is still nothing exchanged and
hence still no issues pertaining to privacy.

The
∧S

operation Similar to the case w = 2 each site garbles its own part
of the data (Xi and Yi such that the real data is X = X1 ⊕ ... ⊕ Xw and
Y = Y1 ⊕ ... ⊕ Yw) before sending it to PS. To do that they generate two
random numbers Ri to encode Xi and Si to encode Yi and gets X ′

i = Xi ⊕ Ri

and Y ′
i = Yi ⊕ Ri which are sent to PS. They also exchange the value R =

R1 ⊕ ... ⊕ Rw and S = R1 ⊕ ... ⊕ Sw between all NCi. Then PS will calculate
P = (X ′

1⊕ ...⊕X ′
w)

∧
(Y ′

1 ⊕ ...⊕y′
w) which could be written as (X⊕R)

∧
(Y ⊕S).

PS sends its result P to all NCi by using the SENDS protocol. Now all NCi

get a value Pi and they only need to remove garbled terms (X ∧S), (Y ∧R) and



(R ∧ S). To do that, it is sufficient that an odd number of NCi (for example :
NC1) perform Zi = Pi⊕ (Xi∧S)⊕ (Yi∧R)⊕ (S∧R) and all other ones perform
Zi = Pi ⊕ (Xi ∧ S) ⊕ (Yi ∧ R). We then obtain the expected results such that
Z = Z1 ⊕ ... ⊕ Zw = X ∧ Y .
The number of operation performed by each site (real operations / random
numbers generation / data sending and receiving) will increase linearly with
the number of NCi (w) and thus the full secure processing still remains linear
compared to the unsecured one.

The
∑S

operation The generalization of the SumS algorithm is described in
Algorithm 8. Its complexity increases linearly with the number w of NCi and
remains linear compared to the same unsecured process.

Algorithm 8: The
∑S protocol

Data: Vectors of bits (X1|...|Xw). Xi are coming from NCi such that X =
X1 ⊕ ... ⊕ Xw

Result: A number which is shared in w parts: (NB1|...|NBw) such that NB =
NB1 + ...+NBw corresponds to the number of bits at 1 in vectors X.

let N = card(X) = card(Xi) be the number of bits in vector X.

1a One of the sites (for example NC1) will generate w random vectors of bits
(R1...Rn) of same size such that card(Ri) ≥ 2 ∗ N .

1b It calculates R = R1 ⊕ ... ⊕ Rw and Nr the number of bits equal to 1 in R.
1c R and Nr are sent to all NCi.
1. A permutation ϕ is chosen to permute card(R) + card(X) bits.
2. Each NCi reorder its vector (Xi, Ri) using the permutation ϕ and gets Yi.
3. Each NCi sends its Yi to PS.
4. PS calculates Y = Y1 ⊕ ... ⊕ Yw and counts the number of bits at 1 and gets NB.
5. PS generates w − 1 random numbers RPi and calculates N1 = NB + RP1,

N2 = NB + RP2 − RP1 ... Nw−1 = NB + RPw−1 − RPw−2 and
Nw = NB − RPw−1.

6. PS sends one of the Ni to each NCj in any order.
7. NC1 computes NB1 = N1 − NR, all other NCi keeps only NBi = Ni.

Remark: all additions and substraction are done modulo
card(Y ) = card(R) + card(X).

4 Conclusion

In this paper we have addressed the problem of privacy preserving sequential
pattern mining in the context of distributed databases. We have presented a
novel secure extension of the SPAM algorithm for mining patterns. We also
prove, that under reasonable assumptions, our algorithm and the underlying
operations, protocols and architecture for multiparty computation is secure.



There are various avenues for future work. Firstly, in this paper we have only
focused on the S-step process of the SPAM algorithm, i.e. we only considered the
problem of discovering sequences reduced to a list of items. The proposed secure
functions can also be extended to the I-step process, i.e. a list of itemsets instead
of items. Furthermore, in the current version of PriPSep, results are directly
returned to the DM party. In order to improve the whole process, we plan to
extend the role of DM wherein, it could store the lexicographic tree and could
expand each node in the tree by considering that intermediate results could be
stored in shared arrays between NC1 and NC2. Hence, incremental mining could
be possible and unlike our current approach, previous results do not have to be
recomputed. The storage of results would also be made secure by ensuring that
each site has only noisy data or random values.
In addition, as the volume of data increases to a deluge, it becomes increasingly
expensive (sometimes impossible) to store all available data before processing
them and hence it is necessary to process it ”on the fly” as streams of data.
Several new applications directly generate streams of data produced by a large
number of sensors (e.g., supermarket transactions, medical data). In order to
address this increase of available data, for which the privacy issue could also be
very important, new research work is being done to apply data mining meth-
ods such as sequential patterns mining directly on the streams without storing
them [32].Lastly, as network traffic data becomes more relevant in the context
of detection of Internet worms and intrusions by discovering abnormal traffic
patterns, recent research is trying to solve the problem whilst preserving privacy
of customers [33].
In sum, research in privacy preserving data mining, especially sequential patterns
is at an exciting stage, with new papers laying shaping the future for the field.
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