
Collaborative Outlier Mining for Intrusion Detection

Goverdhan Singh∗, Florent Masseglia∗, Celine Fiot ∗, Alice Marascu ∗, Pascal Poncelet∗∗

∗INRIA Sophia Antipolis, 2004 route des lucioles - BP 93, 06902 Sophia Antipolis

Prenom.Nom@sophia.inria.fr
∗∗LIRMM UMR CNRS 5506, 161 Rue Ada, 34392 Montpellier Cedex 5, France

poncelet@lirmm.fr

Résumé. Intrusion detection is an important topic dealing with security of in-

formation systems. Most successful Intrusion Detection Systems (IDS) rely on

signature detection and need to update their signature as fast as new attacks are

emerging. On the other hand, anomaly detection may be utilized for this purpose,

but it suffers from a high number of false alarms. Actually, any behaviour which

is significantly different from the usual ones will be considered as dangerous

by an anomaly based IDS. Therefore, isolating true intrusions in a set of alarms

is a very challenging task for anomaly based intrusion detection. In this paper,

we consider to add a new feature to such isolated behaviours before they can be

considered as malicious. This feature is based on their possible repetition from

one information system to another. We propose a new outlier mining principle

and validate it through a set of experiments.

1 Introduction

Protecting a system against new attacks, while keeping an automatic and adaptive frame-

work is an important topic in this domain. One answer to that problem could rely on data

mining. Actually, Data Mining for intrusion detection aims to provide new tools in order to

detect cyber threats (Luo, 1999; Dokas et al., 2002; Bloedorn et al., 2001; Manganaris et al.,

2000; Wu et Zhang, 2003). Among those data mining approaches, anomaly detection tries to

deduce intrusions from atypical records (Lazarevic et al., 2003; Eskin et al., 2002). The overall

principle is generally to build clusters, or classes, of usage and find outliers (i.e. events that do

not belong to any class or group identifying normal usage). Actually, outlier detection aims to

find records that deviate significantly from a well-defined notion of normality. It has a wide

range of applications, such as fraud detection for credit card (Aleskerov et al., 1997), health

care, cyber security (Bloedorn et al., 2001) or safety of critical systems (Fujimaki et al., 2005).

However, the main drawback of detecting intrusions by means of anomaly (outliers) de-

tection is the high rate of false alarms since an alarm can be triggered because of a new kind

of usages that has never been seen before (and is thus considered as abnormal). Considering

the large amount of new usage patterns emerging in the Information Systems, even a weak

percent of false positive will give a very large amount of spurious alarms that would be overw-

helming for the analyst. Therefore, the goal of this paper is to propose an intrusion detection

algorithm that is based on the analysis of usage data coming from multiple partners in order

Collaborative Intrusion Detection

to reduce the number of false alarms. Our main idea is that a new usage is likely to be rela-

ted to the context of the information system on which it occurs (so it should only occur on

this system). On the other hand, when a new security hole has been found on a system, the

hackers will want to use it in as many information systems as possible. Thus a new anomaly

that occurs on two (or more) information systems is probably not a new kind of usage, but

rather an intrusion attempt. Let us consider Ax, an anomaly detected in the usage of web site

S1 corresponding to a php request on the staff directory for a new employee : John Doe, who

works in room 204, floor 2, in the R&D department. The request will have the following form :

staff.php?FName=John\&LName=Doe \&room=204\&floor=2\&Dpt=RD. This

new request, due to the recent recruitment of John Due in this department, should not be consi-

dered as an attack. On the other hand, let us consider Ay , an anomaly that corresponds to a true

intrusion. Ay will be based on a security hole of the system (for instance a php vulnerability)

and might, for instance, look like : staff.php?path=../etc/passwd%00. One can see

in this request that the parameters are not related to the data accessed by the php script, but

rather to a security hole that has been discovered on the staff script. If two or more firms use

the same script (say, a directory resquesting script bought to the same software company) then

the usage of this security hole will certainly be repeated from one system to another and the

request having parameter ../etc/passwd%00 will be the same for all the victims.

In this paper, we propose to provide the end-user with a method that takes only one para-

meter : n, the number of desired alarms. Then, based on the analysis of the usage data coming

from the different partners, our algorithm will detect n common outliers they share. Such com-

mon outliers are likely to be true attacks and will trigger an alarm. In a real-world application

of this technique, privacy preserving will be a major issue in order to protect partners’ data.

In this paper we focus on clustering and outlier detection techniques in a distributed environ-

ment. However, privacy issues in our framework are presented in another paper currently being

submitted.

The paper is organized as follows. In Section 2 we present the motivation of this approach

and our general framework and Section 3 gives an overview of existing works in this domain.

Section 4 presents COD, our method for detecting outliers and triggering true alarms. Even-

tually, our method is tested through a set of experiments in Section 5 and Section 6 gives the

conclusion.

2 Motivation and General Principle

Anomaly-based IDS (Eskin et al., 2002) can be divided into two categories ; semi-supervised

and unsupervised. The semi-supervised methods build a model of “normal” behaviours on the

system. Every behaviour that is not considered as normal is an anomaly and should trigger an

alarm. The unsupervised methods do not use any labelled data. Usually, based on a clustering

algorithm, they try to detect outliers and consider them as anomalies. Obviously, anomaly-

based IDS will suffer from a very high number of false alarms since a new kind of behaviour

will be considered as an anomaly (and an attack). In this paper, we propose to improve the re-

sults of unsupervised IDS by means of a collaborative framework involving different network-

based systems. Section 3 gives an overview of the existing IDS based on the principles pre-

sented above and the existing collaborative IDS. However, to the best of our knowledge, our

proposal is the first unsupervised IDS using the common anomalies of multiple partners in or-

G. Singh et al.

der to detect the true intrusion attempts. The main idea of our proposal is that multiple partners

do not share the same data, but they share the same systems (the Web server can be Apache or

IIS, the data server can run Oracle, the scripts accessing the data can be written with PHP or

CGI, etc). When a security hole has been found for one system (say a php scripts with specific

parameters leading to privileged access to the hard drive), then this weakness will be the same

for all the partners using the same technology. Our goal is to reduce the rate of false alarms

based on this observation, as explained in section 2

In this paper we present COD (Common Outlier Detection) a framework and algorithm

intended to detect the outliers shared by at least two partners in a collaborative IDS. Outliers

are usually small clusters. Some methods used to find them are presented in section 3. Our

goal is to use such outlier lists from different systems (based on a similar clustering, involving

the same similarity measure). If an outlier occurs for at least two systems, then it is considered

as an attack. COD is indeed based on the assumption that an intrusion attempt trying to find a

weakness of a script will look similar for all the victims of this attack. We propose to detect

intrusion attempts among the records of a Web server, such as an Apache access log file. Such

a file keeps record, for each access on the Web site, of the IP, date, requested URL and referrer

(among other informations). For clarity of presentation we present our framework on the col-

laboration of two Web sites, S1 and S2 and we consider the requests that have been received

by the scripts of each site (cgi, php, sql, etc). Our goal is to perform a clustering on the usage

patterns of each site and find the common outliers. However, that would not be enough to meet

the second constraint of our objective : to require only one parameter, n, the number of alarms

to return. Our similarity measure (presented in section 4) will allow normal usage patterns to

be grouped together rather than grouped with intrusion patterns. On the other hand, our simila-

rity measure also has to ensure distinguishing an intrusion pattern from normal usage patterns

and from other intrusion patterns (since different intrusion patterns will be based on a different

security hole and will have very different characteristics). Our algorithm performs successive

clustering steps for each site. At each step we check the potentially matching outliers between

both sites. The clustering algorithm is agglomerative and depends on the maximum dissimila-

rity (MD) that has to be respected between two objects.

This work is intended to explore the solutions for monitoring a network in real time. Then,

the potential alarms will be triggered at each step of the monitoring (for instance with a fre-

quency of one hour). Depending on the number of true or false alarms, the user might want

to adjust n for the next step, until no (or very few) false alarm is returned. Our assumption is

that common outliers, sorted by similarity from one site to another, will give the intrusions at

the beginning of the list. Our challenge, in this paper, is to reply to important questions under-

lying our method ; what is the similarity between two usage patterns ? How to separate clusters

in order to give the list of outliers ? How to detect common outliers ? Our main algorithm,

corresponding to the framework presented in this section, is given in section 4.

3 Related Works

Over time many techniques have been developped to detect outliers, leading to a number

of surveys and review articles (Hodge et Austin, 2004; Chandola et al., 2008). Some of them

more precisely focus on the topic of outlier detection within the context of intrusion detection

in computer networks (Lazarevic et al., 2003; Patcha et Park, 2007). In this paper, we focus

Collaborative Intrusion Detection

on this specific area and we propose an unsupervised anomaly-based detection system. On the

opposite to semi-supervised anomaly detection systems, consisting of describing normal beha-

viours to detect deviating patterns (Marchette, 1999; Wu et Zhang, 2003; Vinueza et Grudic,

2004), unsupervised techniques do not require a preliminary identification of the normal usage

by a human expert. Our application will thus be more usable in a real-world context.

Statistic community has quite extensively studied the concept of outlyingness (Barnett et

T. Lewis, 1994; Schölkopf et al., 2001; Markou et Singh, 2003; Kwitt et Hofmann, 2007). Sta-

tistical approaches construct probability distribution models under which outliers are objects of

low probability (Rousseeuw et Leroy, 1996; Billor et al., 2000; Lee et Xiang, 2001) However,

within the context of intrusion detection, dimensionality of data is high. Therefore, to improve

overall performance and accuracy, it has become necessary to develop data mining algorithms

using the whole data distribution as well as most of data features (Knorr et Ng, 1998; Breunig

et al., 2000; Aggarwal et Yu, 2001).

Most of these approaches are based on clustering-based outlier detection algorithms (Jain

et Dubes, 1988; Ng et Han, 1994; Ester et al., 1996; Portnoy et al., 2001; Tax et Duin, 2001;

Eskin et al., 2002; He et al., 2003; Papadimitriou et al., 2003). Such techniques rely on the

assumption (Chandola et al., 2008) that normal points belong to large and dense clusters while

anomalies (or outliers, atypical instances) either do not belong to any clusters (Knorr et Ng,

1998; Ramaswamy et al., 2000; Duan et al., 2006) or form very small (or very sparse) clusters

(Otey et al., 2003; Chimphlee et al., 2005; Pires et Santos-Pereira, 2005; Fan et al., 2006;

Ceglar et al., 2007). In other words anomaly detection consists in identifying those among the

data that are far from significant clusters – either isolated or in small clusters.

On the contrary, misuse techniques (i.e. approaches that detect elements similar to well-

known malicious usage) will precisely detect attacks but they will miss every intrusion that

differs from these already known attack signatures. Therefore some works proposed collabo-

rative frameworks in order to improve performance and both true and false alarm rates (Valdes

et Skinner, 2001; Yegneswaran et al., 2004). These approaches rely on propagating in a distri-

buted IDS IP blacklist after individual misuse or anomaly detection. Also this communication

can lead to more accurate results, it does not allow the system to uncover totally unknown at-

tacks or to avoid high false alarm rates. For these reasons we propose in this paper an anomaly

detection approach that uses collaboration between systems in order to discriminate attacks

from emerging or novel usage behaviours, thus leading to a reduced number of false alarms.

Depending on the approach, the number of parameters required to run the algorithm can

be high and will lead to different outliers. To avoid this, some works return a ranked list of

potential outliers and limit the number of parameters to be specified (Ramaswamy et al., 2000;

Jin et al., 2001; Fan et al., 2006).

4 COD : Common Outlier Detection

The principle of COD is to perform successive clustering steps on usage patterns of dif-

ferent partners sites, until the number of common outliers meets the number of alarms desired

by the user. We present in this section an algorithm designed for two information systems.

Extending this work to more than two systems would require a central node coordinating the

comparisons and triggering the alarms, or a peer-to-peer communication protocol. This is not

the goal of this paper. Our objects are the parameters given to script files in the requests re-

G. Singh et al.

ceived on a Web site. In other words, the access log file is filtered and we only keep lines

corresponding to requests with parameters to a script. For each such line, we separate the

parameters and for each parameter we create an object. Let us consider, for instance, the fol-

lowing request : staff.php?FName=John&LName=Doe. The corresponding objects are

o1 =John and o2 =Doe. Once the objects are obtained from the usage data of multiple Web

sites, COD is applied and gives their common outliers.

Algorithm Cod

Input : U1 and U2 the usage patterns of sites S1 and S2 and n the number of alarms.

Output : I the set of clusters corresponding to malicious patterns.

1. Build M , the distance matrix between each pattern ;

2. ∀p ∈ M,Neighboursp ← sorted list of neighbours for p (the first usage pattern in the

list of p is the closest to p).

3. DensityList ← sorted list of patterns by density ;

4. MD ← 0 ;

5. MD ← MD + 0.05 ;

6. C1 ← Clustering(U1,MD) ;

C2 ← Clustering(U2,MD) ;

7. O1 ← Outliers(C1) ; O2 ← Outliers(C2) ;

8. I ← CommonOutliers(O1, O2,MD) ;

9. If |I| ≤ n then return I ;

10. If MD = 1 then return I ; // No common outlier

11. Else return to step 5 ;

End algorithm Cod

As explained in section 2, COD algorithm will process the usage patterns of both sites step

by step. For each step, a clustering result is provided and analyzed for intrusion detection. First,

MD is set to obtain very tight and numerous clusters (very short similarity is allowed between

two objects in a cluster). Then, MD is relaxed by an amount of 0.05 step after step in order to

increase the size of resulting clusters, decrease their number and lower the number of alarms.

When the number of alarms desired by the user is reached, then COD ends.

4.1 Clustering

Algorithm Clustering

Input : U , the usage patterns

and MD, the Maximum Dissimilarity.

Output : C, the set of as large clusters as possible,

respecting MD.

1. i ← 0 ; C ← ∅ ;

2. p ← next unclassified pattern in DensityList ;

3. i + + ; ci ← p ;

4. C ← C + ci ;

Collaborative Intrusion Detection

5. q ← next unclassified pattern in Neighboursp ;

6. ∀o ∈ ci

If d(o, q) > MD then return to step 2 ;

7. add q to ci ;

8. Cc ← LCS(Cc, q) ; //Cc is the center of C

9. return to step 5 ;

10. If unclassified patterns remain then return to step 2 ;

11. return C ;

End algorithm Clustering

COD Clustering algorithm is based on an agglomerative principle. The goal is to increase

the volume of clusters by adding candidate objects, until the Maximum Dissimilarity (MD)

is broken (i.e. there is one object oi in the cluster such that the similarity between oi and the

candidate object oc is greater than MD).

Similarity between objects. We consider each object as a sequence of characters. Our simila-

rity is then based on the longest common subsequence (LCS), as described in definition 1.

Definition 1 Let s1 and s2 be two sequences. Let LCS(s1, s2) be the length of the longest

common subsequences between s1 and s2. The dissimilarity d(s1, s2) between s1 and s2 is

defined as follows : d(s1, s2) = 1 − 2×LCS(s1,s2)
|s1|+|s2|

Example 1 Let us consider two parameters p1=intrusion and p2=induction. The LCS

between p1 and p2 is L=inuion. L has length 6 and the similarity between p1 and p2 is d =
1 − 2×L

|p1|+|p2| = 33.33%. Which also means a similarity of 77.77% between both parameters.

Centre of clusters. When an object is inserted into a cluster we maintain the centre of this

cluster, since it will be used in the CommonOutliers algorithm. The centre of a cluster C is the

LCS between all the objects in C. When object oi is added to C, its center Cc is updated. The

new value of Cc is the LCS between the current value of Cc and oi.

4.2 Wavelet-based Outlier Detection

Most previous work in outlier detection require a parameter (Zhong et al., 2007; Portnoy

et al., 2001; Joshua Oldmeadow et al., 2004), such as a percent of small clusters that should

be considered as outliers, or the top-n outliers. Their key idea is generally to sort the clusters

by size and/or tightness. We consider that our clusters will be as tight as possible, according

to our clustering algorithm and we want to extract outliers by sorting the cluster by size. The

problem is to separate “big” and “small” clusters. Our solution is based on an analysis of

cluster distribution, once they are sorted by size. The usual distribution of clusters is illustrated

by Figure 1 (screenshot made with our real data). We propose to use a wavelet transform to cut

down the distribution. In figure 1, the y axis stands for the size of the clusters, whereas their

index in the sorted list is represented on x, and the two plateaux allow separating small and big

clusters.

The wavelet transform is a tool that cuts up data or functions or operators into different

frequency components, and then studies each component with a resolution matched to its scale

G. Singh et al.

FIG. 1 – Detection of outliers by means of Haar Wavelets

(Daubechies, 1992). Mathematically, the continuous wavelet transform is defined by :

Twavf(a, b) = 1√
a

∫ +∞
−∞ f(x)ψ∗(x−b

a
)dx

where z∗ denotes the complex conjugate of z, ψ∗(x) is the analyzing wavelet, a (> 0) is

the scale parameter and b is the translation parameter. We use the Haar wavelets to illustrate our

outlier detection method. Let us consider the following series of values : [1, 1, 1, 2, 7, 10, 11, 12].
Its Haar wavelet transform is illustrated by the following table :

Level Approximations Coefficients

8 1, 1, 1, 2, 7, 10, 11, 12

4 1, 1.5, 8.5, 11.5 0, -0.5, -1.5, -0.5

2 1.25, 10 -0.25, -1.5

1 5.625 -4.375

Then, we keep only the most two significant coefficients and we make the others zero. In

our series of coefficients ([5.625,−4, 375,−0.25,−1.5, 0,−0.5,−1.5,−0.5]) the most two si-

gnificant ones are 5.625 and −4, 375, meaning that the series becomes [5.625, −4, 375, 0, 0,

0, 0, 0, 0]. In the following step, the inverse operation is calculated and we obtain an approxi-

mation of the original data [1.25, 1.25, 1.25, 1.25, 10.0, 10.0, 10.0, 10.0]. This gives us two

plateaux and allows cutting the series after index 4 in order to separate big and small values.

4.3 Comparing Outliers

Since we want our global algorithm to require only one parameter (the number of alarms),

we want to avoid introducing a similarity degree for comparing two lists of outliers. For this

comparison, CommonOutliers algorithm will use the centre of outliers. For each pair of out-

liers, CommonOutliers calculates the similarity between centers of these outliers. If this simi-

larity is below the current MD (C.f. Subsection 4.1), then we consider those outliers as similar

and add them to the alarm list.

Algorithm CommonOutliers

Input : O1 and O2, two lists of outliers and MD, the maximum dissimilarity.

Output : A, the list of alarms (common outliers).

1. A ← ∅

2. ∀i ∈ O1 do

Collaborative Intrusion Detection

3. ∀j ∈ Oj do

4. centrei ← centre(i) ;

5. centrej ← centre(j) ;

6. If d(centrei, centrej) < MD

Then A ← A + i ∪ j ;

7. done ;

8. done ;

9. Return A ;

End algorithm CommonOutliers

5 Experiments

The goal of this section is to analyze our results (i.e. the number of outliers and true in-

trusions and the kind of intrusions we have detected). Our datasets come from two different

research organizations ; (anonymized for submission). We have analyzed their Web access log

files from March 1 to March 31. The first log file represents 1.8 Gb of rough data. In this file,

the total number of objects (parameters given to scripts) is 30,454. The second log file repre-

sents 1.2 Gb of rough data and the total number of objects is 72,381. COD has been written in

Java and C++ on a PC (2.33GHz i686) running Linux with 4Gb of main memory. Parameters

that are automatically generated by the scripts have been removed from the datasets since they

cannot correspond to attacks (for instance “publications.php?Category=Books”).

This can be done by listing all the possible generation of parameters in the scripts of a Web

site.

As described in Section 2, COD proceeds by steps and slowly increases the value of MD,

which stands for a tolerance value when grouping objects during the clustering process. In our

experiments, MD has been increased by steps of 0.05 from 0.05 to 0.5. For each step, we

report our measures in table 1. The meaning of each measure is as follows. O1 (resp. O2) is

the number of outlying objects in site 1 (resp. site 2). %1 (resp %2) is the fraction of outlying

objects on the number of objects in site 1 (resp. site 2). For instance, when MD is set to 0.3, for

site 1 we have 5,607 outlying objects, which represents 18.4% of the total number of objects

(i.e. 30,454) in site 1. COD is the number of common outliers between both sites and %FA is

the percentage of false alarms within the common outliers. For instance, when MD is set to

0.05, we find 101 alarms among which 5 are false (which represents 4.9%). One first obser-

vation is that outliers cannot be directly used to trigger alarms. Obviously, a number as high

as 5,607 alarms to check, even for one month, is not realistic. On the other hand, the results

of COD show its ability to separate malicious behaviour from normal usage. Our false alarms

correspond to normal requests that are common to both sites but rarely occur. For instance, on

the references interrogation script of anonym_lab1, a user might request papers of “John Doe”

and the request will be

publications.php?FName=John\&LName=Doe. If another user requests papers of

“John Rare” on the Web site of anonym_lab2), the request will be

biblio.php?FName=John\&LName=Rare and the parameter “John” will be given as a

common outlier and trigger an alarm. As we can see, %FA is very low (usually we have at most

5 false alarms in our experiments for both Web sites) compared to the thousands of outliers that

G. Singh et al.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O1 13197 10860 8839 7714 6547 5607 5184 4410 3945 3532

%1 43.3% 35.6% 29% 25.3% 21.5% 18.4% 17% 14.4% 12.9% 11.6%

O2 35983 27519 24032 20948 18152 14664 12738 11680 10179 8734

%2 49.6% 37.9% 33.1% 28.9% 25% 20.2% 17.5% 16.1% 14% 12.1%

COD 101 78 74 70 67 71 71 85 89 90

%FA 4.9% 5.12% 4% 2.85% 1.5% 2.8% 2.8% 10.6% 11.2% 16.6%

TAB. 1 – Results on real data

have been filtered by COD. Another lesson from these experiments is that a low MD implies

very small clusters and numerous outliers. These outliers are shared between both sites, among

which some are false alarms due to rare but common normal usage. When MD increases, the

clustering process gets more agglomerative and alarms are grouped together. Then one alarm

can cover several ones of the same kind (e.g. the case of easter eggs explained further). At the

same time, the number of outliers corresponding to normal usage decreases (since they are also

grouped together). Eventually, a too large value of MD implies building clusters that do not

really make sense. In this case, outliers will get larger, and the matching criteria will get too

tolerant, leading to a large number of matching outliers capturing normal usage. In a streaming

environment involving the real data of these experiments, one could decide to keep 70 as the

number of desired alarms and watch the ratio of false alarms. If this ratio decreases, then the

end-user should consider increasing the number of desired alarms.

6 Conclusion

In this paper, we have proposed i) an unsupervised clustering scheme for isolating atypi-

cal behaviours, ii) a parameterless outlier detection method based on wavelets and iii) a new

feature for characterizing intrusions. This new feature is based on the repetition of an intrusion

attempt from one system to another. Actually, our experiments show that atypical behaviours

cannot be directly used to trigger alarms since most of them correspond to normal requests.

On the other hand, this very large number of outliers can be effectively filtered (reducing the

amount of atypical behaviours up to 0.21%) in order to find true intrusion attempts (or at-

tacks) if we consider more than one site. Eventually, our method guarantees a very low ratio

of false alarms, thus making unsupervised clustering for intrusion detection effective, realistic

and feasible.

Références

Aggarwal, C. C. et P. S. Yu (2001). Outlier detection for high dimensional data. SIGMOD

Records 30(2), 37–46.

Aleskerov, E., B. Freisleben, et B. Rao (1997). Cardwatch : A neural network based database

mining system for credit card fraud detection. In IEEE CIFE.

Barnett, V. et T. T. Lewis (1994). Outliers in statistical data. John Wiley & Sons.

Collaborative Intrusion Detection

Billor, N., A. S. Hadi, et P. F. Velleman (2000). BACON : blocked adaptive computationally

efficient outlier nominators. Computational Statistics and Data Analysis 34, 279–298.

Bloedorn, E., A. D. Christiansen, W. Hill, C. Skorupka, et L. M. Talbot (2001). Data mining

for network intrusion detection : How to get started. Technical report, MITRE.

Breunig, M. M., H.-P. Kriegel, R. T. Ng, et J. Sander (2000). Lof : identifying density-based

local outliers. SIGMOD Records 29(2), 93–104.

Ceglar, A., J. F. Roddick, et D. M. W. Powers (2007). Curio : A fast outlier and outlier clus-

ter detection algorithm for large datasets. In 2nd International Workshop on Integrating

Artificial Intelligence and Data Mining, pp. 37–45.

Chandola, V., A. Banerjee, et V. Kumar (2008). Anomaly detection - a survey. ACM Computing

Surveys To appear, To appear.

Chimphlee, W., A. H. Abdullah, M. N. Md Sap, et S. Chimphlee (2005). Unsupervised ano-

maly detection with unlabeled data using clustering. In International conference on infor-

mation and communication technology.

Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia, PA, USA : Society for Industrial

and Applied Mathematics.

Dokas, P., L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, et P. Tan (2002). Data mining for

network intrusion detection. In NSF Workshop on Next Generation Data Mining.

Duan, L., D. Xiong, J. Lee, et F. Guo (2006). A local density based spatial clustering algorithm

with noise. In IEEE International Conference on Systems, Man and Cybernetics.

Eskin, E., A. Arnold, M. Prerau, L. Portnoy, et S. Stolfo (2002). A geometric framework for

unsupervised anomaly detection : Detecting intrusions in unlabeled data. Applications of

Data Mining in Computer Security, 333–342.

Ester, M., H.-P. Kriegel, J. Sander, et X. Xu (1996). A density–based algorithm for discovering

clusters in large spatial databases with noise. In 2nd International Conference on Knowledge

Discovery and Data Mining, pp. 226–231.

Fan, H., O. R. Zaiane, A. Foss, et J. Wu (2006). A nonparametric outlier detection for effecti-

vely discovering top-n outliers from engineering data. In PAKDD.

Fujimaki, R., T. Yairi, et K. Machida (2005). An approach to spacecraft anomaly detection

problem using kernel feature space. In 11th ACM SIGKDD.

He, Z., X. Xu, et S. Deng (2003). Discovering cluster-based local outliers. Pattern Recognition

Letters 24, 1641–1650.

Hodge, V. et J. Austin (2004). A survey of outlier detection methodologies. Artificial Intelli-

gence Review 22, 85–126.

Jain, A. K. et R. C. Dubes (1988). Algorithms for Clustering Data. Prentice-Hall, Inc.

Jin, W., A. K. H. Tung, et J. Han (2001). Mining top-n local outliers in large databases. In

7th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.

293–298.

Joshua Oldmeadow, J., S. Ravinutala, et C. Leckie (2004). Adaptive clustering for network

intrusion detection. In 8th PAKDD.

G. Singh et al.

Knorr, E. M. et R. T. Ng (1998). Algorithms for mining distance-based outliers in large data-

sets. In 24rd International Conference on Very Large Data Bases, pp. 392–403.

Kwitt, R. et U. Hofmann (2007). Unsupervised anomaly detection in network traffic by means

of robust pca. In International Multi-Conference on Computing in the Global Information

Technology.

Lazarevic, A., L. Ertoz, V. Kumar, A. Ozgur, et J. Srivastava (2003). A comparative study of

anomaly detection schemes in network intrusion detection. In 3rd SIAM DM.

Lee, W. et D. Xiang (2001). Information-theoretic measures for anomaly detection. In IEEE

Symposium on Security and Privacy.

Luo, J. (1999). Integrating fuzzy logic with data mining methods for intrusion detection.

Manganaris, S., M. Christensen, D. Zerkle, et K. Hermiz (2000). A data mining analysis of

rtid alarms. Computer Networks 34, 571–577.

Marchette, D. (1999). A statistical method for profiling network traffic. In 1st USENIX Work-

shop on Intrusion Detection and Network Monitoring, pp. 119–128.

Markou, M. et S. Singh (2003). Novelty detection : a review - part 1 : statistical approaches.

Signal Processing 83, 2481–2497.

Ng, R. T. et J. Han (1994). Efficient and effective clustering methods for spatial data mining.

In 20th International Conference on Very Large Data Bases, pp. 144–155.

Otey, M., S. Parthasarathy, A. Ghoting, G. Li, S. Narravula, et D. Panda (2003). Towards nic–

based intrusion detection. In 9th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 723–728.

Papadimitriou, S., H. Kitagawa, P. Gibbons, et C. Faloutsos (2003). LOCI : fast outlier detec-

tion using the local correlation integral. In 19th ICDE.

Patcha, A. et J.-M. Park (2007). An overview of anomaly detection techniques : Existing

solutions and latest technological trends. Comput. Networks 51, 3448–3470.

Pires, A. et C. Santos-Pereira (2005). Using clustering and robust estimators to detect outliers

in multivariate data. In International Conference on Robust Statistics.

Portnoy, L., E. Eskin, et S. Stolfo (2001). Intrusion detection with unlabeled data using cluste-

ring. In ACM CSS Workshop on Data Mining Applied to Security.

Ramaswamy, S., R. Rastogi, et K. Shim (2000). Efficient algorithms for mining outliers from

large data sets. SIGMOD Records 29(2), 427–438.

Rousseeuw, P. et A. M. Leroy (1996). Robust Regression and Outlier Detection. Wiley-IEEE.

Schölkopf, B., J. Platt, J. Shawe-Taylor, A. Smola, et W. R. (2001). Estimating the support of

high-dimensional distribution. Neural Computation 13, 1443–1471.

Tax, D. M. J. et R. P. W. Duin (2001). Combining one–class classifiers. Lecture Notes in

Computer Science 2096, 299–317.

Valdes, A. et K. Skinner (2001). Probabilistic alert correlation. In Recent Advances in Intrusion

Detection, pp. 54–68.

Vinueza, A. et G. Grudic (2004). Unsupervised outlier detection and semi–supervised learning.

Technical Report CU-CS-976-04, Univ. of Colorado at Boulder.

Collaborative Intrusion Detection

Wu, N. et J. Zhang (2003). Factor analysis based anomaly detection. In IEEE Workshop on

Information Assurance.

Yegneswaran, V., P. Barford, et S. Jha (2004). Global intrusion detection in the domino overlay

system. In Network and Distributed Security Symposium.

Zhong, S., T. M. Khoshgoftaar, et N. Seliya (2007). Clustering-based network intrusion detec-

tion. International Journal of Reliability, Quality and Safety Engineering 14, 169–187.

Summary

La détection d’intrusion est un domaine important pour la sécurité des systèmes d’infor-

mation. Les systèmes de détection d’intrusion (IDS) les plus utilisés reposent sur la détection

de signatures et ont besoin de mises à jour fréquentes pour défendre un système contre les

nouvelles attaques. D’un autre côté, la détection d’anomalie peut compenser ce besoin, mais

provoque de nombreuses fausses alarmes. En effet, un comportement qui dévie de manière sig-

nificative des comportements habituels sera considéré comme dangereux par un IDS utilisant

les anomalies. Isoler les véritables intrusions dans un ensemble d’alarmes est donc un défi

important pour tout IDS. Dans cet article, nous considérons une nouvelle caractéristique pour

isoler les comportements malicieux. Cette caractéristique est basée sur leur possible répétition

d’un système d’information à un autre. Nous proposons un nouveau principe de détection des

objets atypiques et le validons par une série d’expérimentations.

