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Abstract. Mining trajectories (or moving object patterns) from spatio-temporal
data is an active research field. Most of the researches are devoted to extract
trajectories that differ in their structure and characteristic in order to capture dif-
ferent object behaviors. The first issue is constituted from the fact that all these
methods extract thousand of patterns resulting in a huge amount of redundant
knowledge that poses limit in their usefulness. The second issue is supplied from
the nature of spatio-temporal database from which different types of patterns
could be extracted. This means that using only a single type of patterns is not
sufficient to supply an insightful picture of the whole database.
Motivating by these issues, we develop a Minimum Description Length (MDL)-
based approach that is able to compress spatio-temporal data combining different
kinds of moving object patterns. The proposed method results in a rank of the pat-
terns involved in the summarization of the dataset. In order to validate the quality
of our approach, we conduct an empirical study on real data to compare the pro-
posed algorithms in terms of effectiveness, running time and compressibility.

Keywords: MDL, moving objects, spatio-temporal data, top-k, compressibility.

1 Introduction
Nowadays, the use of many electronic devices in real world applications has led to an
increasingly large amount of data containing moving object information. One of the
objectives of spatio-temporal data mining [5] [10] [6] is to analyze such datasets for
interesting moving object clusters. A moving object cluster can be defined as a group
of moving objects that are physically closed to each other for at least some number of
timestamps. In this context, many recent studies have been defined such as flocks [5],
convoy queries [7], closed swarms [10], group patterns [15], gradual trajectory patterns
[6], traveling companions [13], gathering patterns [16], etc...

Nevertheless, after the extraction, the end user can be overwhelmed by a huge num-
ber of movement patterns although only a few of them are useful. However, relatively
few researchers have addressed the problem of reducing movement pattern redundancy.
In another context, i.e. frequent itemsets, the Krimp algorithm [14], using the minimum
description length (MDL) principle [4], proposes to reduce the amount of itemsets by
using an efficient encoding and then provide the end-user only with a set of informative
patterns.

In this paper, we adapt the MDL principle for mining representative movement pat-
terns. However, one of the key challenges in designing an MDL-based algorithm for
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Fig. 1. An example of moving object
database. Shapes are movement patterns,
oi, ci respectively are objects and clusters.

Fig. 2. An example of pattern overlapping,
between closed swarm (dashed line rectan-
gle) and rGpattern≥ (step shape), over-
lapping clusters are c5, c6 and c7.

moving object data is that the encoding scheme needs to deal with different pattern
structures which can cover different parts of the data. If we only consider different
kinds of patterns individually then it is difficult to obtain an optimal set of compression
patterns.

For instance, see Figure 1, we can notice that there are three different patterns, with
different structures, that cover different parts of the moving object data. If we only keep
patterns having a rectangular shape then we lose the other two patterns and viceversa.

Furthermore, although patterns express different kinds of knowledge, they can over-
lap each other as well. Thus, enforcing non-overlapping patterns may result in los-
ing interesting patterns. For instance, see Figure 2, there are two overlapping patterns.
Krimp algorithm does not allow overlapping patterns then it has to select one and ob-
viously loses the other one. However, they express very different knowledge and thus,
by removing some of them, we cannot fully understand the object movement behavior.
Therefore, the proposed encoding scheme must to appropriately deal with the pattern
overlapping issue.

Motivated by these challenges, we propose an overlapping allowed multi-pattern
structure encoding scheme which is able to compress the data with different kinds of
patterns. Additionally, the encoding scheme also allows overlapping between different
kinds of patterns. To extract compression patterns, a naive greedy approach, named
NAIVECOMPO, is proposed. To speed up the process, we also propose the SMART-
COMPO algorithm which takes into account several useful properties to avoid useless
computation. Experimental results on real-life datasets demonstrate the effectiveness
and efficiency of the proposed approaches by comparing different sets of patterns.

2 Preliminaries and Problem Statement
2.1 Object Movement Patterns
Object movement patterns are designed to group similar trajectories or objects which
tend to move together during a time interval. In the following, we briefly present the
definitions of different kinds of movement patterns.

Database of clusters. Let us consider a set objects occurring at different times-
tamps. A database of clusters, CDB = {Ct1 , Ct2 , . . . , Ctm}, is a collection of snap-
shots of the moving object clusters at timestamps {t1, t2, . . . , tm}. Given a cluster
c ∈ Ct′(∈ CDB), t(c) and o(c) are respectively used to denote the timestamp that c
is involved in and the set of objects included in c. For brevity sake, we take clustering
as a preprocessing step.
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Fig. 3. An example of closed swarm.
Fig. 4. An example of rGpattern.

After generating CDB , the moving object database (ODB , TDB) is defined such as
each object o ∈ ODB contains a list of clusters (i.e. o = c1c2 . . . cm) and TDB stands
for the associated timestamp. For instance, Figure 1 presents the database ODB and
object o1 can be represented as o1 = c1c4c6c7c8.

From this set different patterns can be extracted. In an informal way, a closed swarm
is a list of clusters cs = c1 . . . cn such that they share at least ε common objects, cs con-
tains at least mint clusters and cs cannot be enlarged in terms of objects and clusters.
Note that there are no pairs of clusters which are in the same timestamps involved in cs.
Then a closed swarm can be formally defined as follows:

Definition 1 ClosedSwarm[10]. A list of clusters cs = c1 . . . cn is a closed swarm if:
(1) : |O(cs)| = |

⋂n
i=1 ci| ≥ ε.

(2) : |cs| ≥ mint.
(3) : @i, j ∈ {1, . . . , n}, i 6= j, t(ci) = t(cj).
(4) : @cs′ : cs ⊂ cs′, cs′ satisfies the conditions (1), (2) and (3).

(1)

For instance, see Figure 3, cs = c1c3c4 is a closed swarm with mint = 2, ε = 2.
Similarly, in Figure 1, we also have cs = c2c5c7c9 is a closed swarm. A convoy is
a group of objects such that these objects are closed each other during at least mint
consecutive time points. Another pattern is group pattern which essentially is a set of
disjointed convoys which are generated by the same group of objects in different time
intervals. In this paper, we only consider closed swarm instead of convoy and group
pattern since closed swarm is more general [10].

A gradual trajectory pattern [6], denoted rGpattern, is designed to capture the grad-
ual object moving trend. More precisely, a rGpattern is a maximal list of moving object
clusters which satisfy the graduality constraint and integrity condition during at least
mint timestamps. The graduality constraint can be the increase or decrease of the num-
ber of objects and the integrity condition can be that all the objects should remain in the
next cluster. A rGpattern can be defined as follows:

Definition 2 rGpattern [6]. Given a list of clusters C∗ = c1 . . . cn. C∗ is a gradual
trajectory pattern if:

C∗ = C≥


(1) : |C∗| ≥ mint.
∀i ∈ {1, . . . , n− 1},
(2) : o(ci) ⊆ o(ci+1).
(3) : |cn| > |c1|.
(4) : @cm : C∗ ∪ cm is a C≥.

C∗ = C≤


(1) : |C∗| ≥ mint.
∀i ∈ {1, . . . , n− 1},
(2) : o(ci) ⊇ o(ci+1).
(3) : |cn| < |c1|.
(4) : @cm : C∗ ∪ cm is a C≥.

Essentially, we have two kinds of rGpatterns, rGpattern≥ and rGpattern≤. For
instance, see Figure 1, rGpattern≥ = c1c4c6 and rGpattern≤ = c7c8.
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2.2 Problem Statement
Eliminating the number of uninteresting patterns is an emerging task in many real world
cases. One of the proposed solutions is the MDL principle [4]. Let us start explaining
this principle in the following definition:

Definition 3 (Hypothesis). A hypothesis P is a set of patterns P = {p1, p2, . . . , ph}.

Given a scheme S, let LS(P ) be the description length of hypothesis P and
LS(ODB |P ) be the description length of data ODB when encoded with the help of
the hypothesis and an encoding scheme S. Informally, the MDL principle proposes
that the best hypothesis always compresses the data most. Therefore, the principle
suggests that we should look for hypothesis P and the encoding scheme S such that
LS(ODB) = LS(P) + LS(ODB |P) is minimized. For clarity sake, we will omit S
when the encoding scheme is clear from the context. Additionally, the description length
of ODB given P is denoted as LP(ODB) = L(P) + L(ODB |P).

In this paper, the hypothesis is considered as a dictionary of movement patterns P .
Furthermore, as in [9], we assume that any number or character in data has a fixed length
bit representation which requires a unit memory cell. In our context, the description
length of a dictionary P can be calculated as the total lengths of the patterns and the
number of patterns (i.e. L(P) =

∑
p∈P |p| + |P|). Furthermore, the length of the data

ODB when encoded with the help of dictionary P can be calculated as L(ODB |P) =∑
o∈ODB

|o|.
The problem of finding compressing patterns can be formulated as follows:

Definition 4 (Compressing Pattern Problem). Given a moving object database ODB ,
a set of pattern candidates F = {p1, p2, . . . , pm}. Discover an optimal dictionary P∗
which contains at most K movement patterns so that:

P∗ = arg min
P

(
L∗P(ODB)

)
= arg min

P

(
L∗(P) + L∗(ODB |P)

)
,P∗ ⊆ F (2)

A key issue in designing an MDL-based algorithm is: how can we encode data given
a dictionary? The fact is that if we consider closed swarms individually, Krimp algo-
rithm can be easily adapted to extract compression patterns. However, the issue here is
that we have different patterns (i.e. closed swarms and rGpatterns) and Krimp algorithm
has not been designed to deal with rGpatterns. It does not supply multi-pattern types in
the dictionary that may lead to losing interesting ones. Furthermore, as mentioned be-
fore, we also have to address the pattern overlapping issue. In this work, we propose a
novel overlapping allowed multi-pattern structures encoding scheme for moving object
data.

3 Encoding Scheme
3.1 Movement Pattern Dictionary-based Encoding
Before discussing our encoding for moving object data, we revisit the encoding scheme
used in the Krimp algorithm [14]. An itemset I is encoded with the help of itemset
patterns by replacing every non-overlapping instance of a pattern occurring in I with
a pointer to the pattern in a code table (dictionary). In this way, an itemset can be
encoded to a more compact representation and decoded back to the original itemset.
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Table 1. An illustrative example of database and dictionary in Fig-
ure 1. 0̄, 1̄ and 2̄ respectively are pattern types: closed swarm,
rGpattern≥ and rGpattern≤.

ODB Encoded ODB Dictionary P
o1 = c1c4c6c7c8 o1 = [p1, 0][p3, 1]
o2 = c3c4c6c7c10 o2 = c3[p1, 1][p3, 0]c10 p1 = c1c4c6, 1̄

o3 = c6 o3 = [p1, 2] p2 = c2c5c7c9, 0̄
o4 = c2c5c7c9 o4 = p2 p3 = c7c8, 2̄
o5 = c2c5c7c9 o5 = p2

In this paper we use
a similar dictionary-
based encoding scheme
for moving object
database. Given a
dictionary consisting
of movement patterns
P = {p1, . . . , pm},
an object o ∈ ODB

containing a list of
clusters is encoded by replacing instances of any pattern pi in o with pointers to the
dictionary. An important difference between itemset data and moving object data is
that there are different kinds of movement patterns which have their own characteristic.
The fact is that if a closed swarm cs occurs in an object o then all the clusters in cs are
involved in o. While an object can involve in only a part of a rGpattern and viceversa.

For instance, see Figure 1, we can consider that o2 joins the rGpattern≥ = c1c4c6
at c4c6. While, the closed swarm cs = c2c5c7c9 occurs in o4 and o5 entirely.
Property 1. (Encoding Properties). Given an object o which contains a list of clusters
and a pattern p = c1 . . . cn. p occurs in o or o contributes to p if: (1) : p is a rGpattern≥,∃i ∈ [1, n]

∣∣∀j ≥ i, cj ∈ o.
(2) : p is a rGpattern≤,∃i ∈ [1, n]

∣∣∀j ≤ i, cj ∈ o.
(3) : p is a closed swarm,∀j ∈ [1, n], cj ∈ o.

(3)

Proof. Case (1): after construction we have o(ci) ⊆ o(ci+1) ⊆ . . . ⊆ o(cn). Addition-
ally, o ∈ o(ci). Consequently, o ∈ o(ci+1), . . . , o(cn) and therefore ∀j ≥ i, cj ∈ o.
Furthermore, in Case (2): we have o(c1) ⊇ o(c2) ⊇ . . . ⊇ o(ci−1). Additionally,
o ∈ o(ci−1). Consequently, o ∈ o(c1), . . . , o(ci−1) and therefore ∀j ≤ i, cj ∈ o. In
Case (3), we have o ∈ O(cs) =

⋂n
i=1 ci and therefore ∀j ∈ [1, n], cj ∈ o.

For instance, see Table 1, we can see that for each pattern, we need to store an extra
bit to indicate the pattern type. Regarding to closed swarm, by applying Property 1, in
the object owe only need to replace all the clusters, which are included in closed swarm,
by a pointer to the closed swarm in the dictionary. However, in gradual trajectories (i.e.
rGpattern≥, rGpattern≤), we need to store with the pointer an additional index to
indicate the cluster ci. Essentially, ci plays the role of a starting involving point (resp.
ending involving point) of the object o in a rGpattern≥ (resp. rGpattern≤).

As an example, consider dictionary P in Table 1. Using P , o1 can be encoded as
o1 = [p1, 0][p3, 1] where 0 (in [p1, 0]) indicates the cluster at index 0 in p1, (i.e. c1) and
1 (in [p3, 1]) indicates the cluster at index 1 in p3, i.e. c8. While, o4 can be encoded as
o4 = p2, i.e. p2 is a closed swarm.

3.2 Overlapping Movement Pattern Encoding
Until now, we have already presented the encoding function for different patterns when
encoding an object o given a pattern p. In this section, the encoding scheme will be
completed by addressing the pattern overlapping problem so that overlapped patterns
can exist in the dictionary P .
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Fig. 5. An example of the approach.

See Figure 5, a selected pattern p ∈ P
and a candidate p′ ∈ F overlap each other
at c1c2c3 on object o. Assume that o is
encoded given p then o = pc4c5. As in
Krimp algorithm, p′ is still remained as ori-
gin and then p′ cannot be used to encode
o despite of p′ occurs in o. This is because
they are mismatched (i.e. o = pc4c5, p

′ =
c1c2c3c4). To solve the problem, we pro-
pose to encode p′ given p so that o and p′

will contain the same pointer to p (i.e. p′ =
pc4). Now, the regular encoding scheme can
be applied to encode o given p′ (i.e. o =

p′c5). We can consider that p and p′ are overlapping but both of them can be included
in the dictionary P . Note: in our context, overlapped clusters are counted only once.

Main idea. Given a dictionary P and a chosen pattern p (i.e. will be added into
P), a set of pattern candidates F . The main idea is that we first encode the database
ODB given pattern p. Secondarily, we propose to encode all candidates p′ ∈ F given
p in order to indicate the overlapping clusters between p and p′. After that, there are
two kinds of pattern candidates which are encoded candidates and non-encoded can-
didates. Next, the best candidate in F will be put into P and used to encode ODB

and F . The process will be repeat until obtaining top-K patterns in the dictionary P .

Table 2. Correlations between pattern p and pattern
p′ in F .O,∆ andX respectively mean ”overlapping
allowed, regular encoding”, ”overlapping allowed,
no encoding” and ”overlapping not allowed”.

p
cs rGpattern≥ rGpattern≤

p′
cs X O O

rGpattern≥ ∆ X O
rGpattern≤ ∆ O X

Let us consider the correlations
between a pattern p ∈ P and a can-
didate p′ ∈ F to identify whenever
encoding p′ given p is needed. The
correlation between p and p′ is illus-
trated in Table 2. First of all, we do
not allow overlap between two pat-
terns of the same kind since they rep-
resent the same knowledge that may
lead to extracting redundant infor-
mation.

Next, if p is a closed swarm then p′ do not need to be encoded given p. This is be-
cause there are objects which contribute to gradual trajectories p′ but not closed swarm.
These objects cannot be encoded using p and therefore p′ needs to be remained the
same and the regular encoding scheme can be applied. Otherwise, p′ will never be cho-
sen later since there are no objects in ODB which match p′. For instance, see Figure
2, the objects o1 and o4 do not contribute to the closed swarm p. Thus, if the gradual
trajectory p′ is encoded given p to indicate the overlapping clusters c5c6c7 then that
leads to a mismatched statement between o1, o4 and the gradual trajectory p′.

Until now, we already have two kinds of candidates p′ ∈ F (i.e. non-encoded and
encoded candidates). Next, some candidates will be used to encode the database ODB .
To encode an object o ∈ ODB given a non-encoded candidate p′, the regular encoding
scheme mentioned in Section 3.1 can be applied. However, given an encoded candidate
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p′, we need to perform an additional step before so that the encoding scheme can be
applied regularly. This is because the two pointers referring to the same pattern p ∈ P
from o (e.g. [p, k]) and from p′ (e.g. [p, l]) can be different (i.e. k 6= l) despite the fact
that p′ is essentially included in o. That leads to a mismatched statement between o and
p′ and thus o cannot be encoded given p′.

For instance, see Figure 2, given a gradual trajectory pattern rGpattern≥ p =
c3c4c5c6c7, a closed swarm p′ = c1c2c5c6c7c9c10, the object o3 = c1c2c4c5c6c7c9c10.
We first encodes o3 given p such that o3 = c1c2[p, 1]c9c10. Then, p′ is encoded given
p, i.e. p′ = c1c2[p, 2]c9c10. We can consider that the two pointers referring to p from
o (i.e. [p, 1]) and from p′ (i.e. [p, 2]) are different and thus o3 and p′ are mismatched.
Therefore, o cannot be encoded given p′ despite the fact that p′ essentially occurs in o.

To deal with this issue, we simply recover uncommon clusters between the two
pointers. For instance, to encode o3 by using p′, we first recover uncommon cluster
such that o3 = c1c2c4[p, 2]c9c10. Note that [p, 1] = c4[p, 2]. Since p′ = c1c2[p, 2]c9c10,
o3 is encoded given p′ such that o3 = p′c4.

Definition 5 (Uncommon Clusters for rGpattern≥). Given a rGpattern≥, p =
c1 . . . cn and two pointers refer to p, [p, k] and [p, l] with k ≤ l. uncom(p, k, l) =
ckck+1 . . . cl−1 is called an uncommon list of clusters between [p, k] and [p, l]. Note
that [p, k] = ckck+1 . . . cl−1[p, l].

Similarly, we also have uncom(p, k, l) in the case p is a rGpattern≤. Until now, we
are able to recover uncommon clusters between two pointers which refer to a pattern.
Now, we start proving that given an object o ∈ ODB and a candidate p′ ∈ F , if p′

occurs in o then o can be encoded using p′ even though they contain many pointers to
other patterns. First, let us consider if p is a rGpattern≥ and p′ is a closed swarm.

Lemma 1. Given a rGpattern≥, p = c1 . . . cn, an object o and a closed swarm p′ ∈
F . In general, if o and p′ refer to p then o = xo[p, k]yo and p′ = xp′ [p, l]yp′ . Note that
xo, yo, xp′ and yp′ are lists of clusters. If o contributes to p′ then:

k ≤ l ∧ o = xo uncom(p, k, l)[p, l] yo (4)

Proof. After construction if k > l then ∃ci ∈ {cl, . . . , ck}(⊆ p) s.t. ci ∈ p′ ∧ ci 6∈ o.
Therefore, o does not contribute to p′ (Property 1). That suffers the assumption and thus
we have k ≤ l. Deal to the Definition 5, [p, k] = uncom(p, k, l)[p, l]. Consequently, we
have o = xo uncom(p, k, l)[p, l] yo.

By applying Lemma 1, we have o = xo uncom(p, k, l)[p, l] yo and p′ = xp′ [p, l]yp′ .
Then we can apply the regular encoding scheme to encode o given p′. let us as-
sume that each object o ∈ Op′ has a common list of pointers to other patterns as
−−−→
(p′, o) =

{(
[p1, l1], [p1, k1]

)
, . . . ,

(
[pn, ln], [pn, kn]

)}
where ∀i ∈ [1, n], [pi, li] is the

pointer from p′ to pi and [pi, ki] is the pointer from o to pi. If we respectively apply
Lemma 1 on each pointer in

−−−→
(p′, o) then o can be encoded given p′. Similarly, we also

have the other lemmas for other pattern types.
Data description length computation. Until now, we have defined an encoding

scheme for movement patterns. The description length of the dictionary in Table 1 is
calculated as L(P) = |p1|+1+|p2|+1+|p3|+1+|P| = 3+1+4+1+2+1+2 = 14.
Similarly, description length of o2 is L(o2|P) = 1 + |[p1, 1]|+ |[p3, 0]|+ 1 = 6.
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Note: for each pattern, we need to consider an extra memory cell of pattern type.
Additionally, for any given dictionary P and the data ODB , the cost of storing the
timestamp for each cluster is always constant regardless the size of the dictionary.

4 Mining Compression Object Movement Patterns
In this section we will present the two greedy algorithms which have been designed to
extract a set of top-K movement patterns that compress the data best.

4.1 Naive Greedy Approach

Algorithm 1: NaiveCompo
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P

1 begin
2 P ←− ∅;
3 while |P| < K do
4 foreach p ∈ F do
5 Od

DB ←− ODB ;

6 L∗(Od
DB |p)←−

CompressionSize(Od
DB , p);

7 p∗ ←− argminp L∗(Od
DB |p);

8 P ←− p∗; F ←− F \ {p∗};
9 Replace all instances of p∗ in ODB by its pointers;

10 Replace all instances of p∗ in F by its pointers;
11 output P ;
12 CompressionSize(Od

DB , p)
13 begin
14 size←− 0;
15 foreach o ∈ ODB do
16 if p.involved(o) = true then
17 Replace instance of p in o by its pointers;
18 foreach o ∈ ODB do
19 size←− size + |o|;
20 size←− size + |p|+ 1;
21 output size;

The greedy approach takes as in-
put a database ODB , a candidate
set F and a parameter K. The
result is the optimal dictionary
which encodes ODB best. Now,
at each iteration of NaiveCompo,
we select candidate p′ which com-
presses the database best. Next, p′

will be added into the dictionary
P and then the database ODB and
F will be encoded given p′. The
process is repeated until we obtain
K patterns in the dictionary.

To select the best candidate,
we generate a duplication of the
database Od

DB and for each can-
didate p′ ∈ F , we compress
Od

DB . The candidate p′ which re-
turns the smallest data description
length will be considered as the
best candidate. Note that p′ =

argminp∗∈F
(
Lp∗(ODB)

)
. The NAIVECOMPO is presented in Algorithm 1.

4.2 Smart Greedy Approach
The disadvantage of naive greedy algorithm is that we need to compress the duplicated
database Od

DB for each pattern candidate at each iteration. However, we can avoid this
computation by considering some useful properties as follows.

Given a pattern p′, Op′ and Op′ respectively are the set of objects that do not con-
tribute to p′ and the set of objects involving in p′. The compression gain which is the
number of memory cells we earned when adding p′ into dictionary can be defined as
gain(p′,P) = LP(ODB)− LP∪p′(ODB).

The fact is that we can compute the compression gain by scanning objects o ∈ Op′

with p′. Each pattern type has its own compression gain computation function. Let us
start presenting the process by proposing the property for a closed swarm p′.

Property 2. Given a dictionary P , a closed swarm p′ ∈ F . gain(p′,P) is computed as:

gain(p′,P) = |Op′ | × |p′| −
( Op′∑

o

−−−→
(p′, o)∑

i

|li − ki|+ |p′|+ |Op′ |+ 2
)

(5)
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Proof. After construction we have LP∪p′(ODB) = L(P ∪ p′) + L(ODB |P ∪ p′) =
(L(P) + |p′|+ 2) +L(Op′ |P) +L(Op′ |P ∪p′). Note that L(Op′ |P) = L(Op′ |P ∪p′).

Furthermore, ∀o ∈ Op′ : L(o|P ∪ p′) = L(o|P)− |p′|+ 1 +
∑−−−→(p′, o)

i |li − ki|. Thus,

L(Op′ |P∪p′) =
∑

o∈Op′
L(o|P ∪p′) = L(Op′ |P)−|Op′ |×|p′|+

∑Op′
o

∑−−−→(p′, o)
i |li−

ki|+|Op′ |. Therefore, we haveLP∪p′(ODB) = L(P)+L(Op′ |P)+L(Op′ |P)−|Op′ |×

|p′|+
(∑Op′

o

∑−−−→(p′, o)
i |li−ki|+ |p′|+ |Op′ |+2

)
. Note that L(ODB |P) = L(Op′ |P)+

L(Op′ |P). Consequently, we have gain(p′,P) = |Op′ | × |p′| −
(∑Op′

o

∑−−−→(p′, o)
i |li −

ki|+ |p′|+ |Op′ |+ 2
)
.

By applying Property 2, we can compute the compression gain when adding a new
closed swarm p′ into the dictionary P . In the Equation 5, the compression gain(p′,P)
depends on the size of p′,O(p′) and the number of uncommon clusters that can be com-
puted by scanning p′ with objects o ∈ O(p′) without encoding ODB . Due to the space
limitation, we will not describe properties and proofs for the other pattern types (i.e.
rGpattern≥, rGpattern≤) but they can be easily derived in a same way as Property 2.

To select the best candidate at each iteration, we need to chose the candidate which
returns the best compression gain. SMARTCOMPO is presented in the Algorithm 2.

5 Experimental Results

Algorithm 2: SmartCompo
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P

1 begin
2 P ←− ∅;
3 while |P| < K do
4 foreach p ∈ F do
5 L∗(ODB |p)←− Benefit(ODB , p);
6 p∗ ←− argminp L∗(ODB |p);
7 P ←− p∗; F ←− F \ {p∗};
8 Replace all instances of p∗ in ODB by its pointers;
9 Replace all instances of p∗ in F by its pointers;

10 output P ;
11 Benefit(Od

DB , p)
12 begin
13 b←− 0;
14 foreach o ∈ ODB do
15 if p.involved(o) = true then
16 b←− b + benefit(o, p);

17 b←− b + |p|+ 1;
18 output b;

A comprehensive performance
study has been conducted on real-
life datasets. All the algorithms
are implemented in C++, and all
the experiments are carried out on
a 2.8GHz Intel Core i7 system
with 4GB Memory. The system
runs Ubuntu 11.10 and g++ 4.6.1.

As in [10] [6], the two fol-
lowing datasets3 have been used
during experiments: Swainsoni
dataset includes 43 objects evolv-
ing over 764 different timestamps.
The dataset was generated from
July 1995 to June 1998. Buf-
falo dataset concerns 165 buf-

faloes and the tracking time from year 2000 to year 2006. The original data has 26610
reported locations and 3001 timestamps. Similarly to [7] [10], we first use linear in-
terpolation to fill in the missing data. Furthermore, DBScan [2] (MinPts = 2;Eps =
0.001) is applied to generate clusters at each timestamp. In the comparison, we compare
the set of patterns produced by SmartCompo with the set of closed swarms extracted by
ObjectGrowth [10] and the set of gradual trajectories extracted by ClusterGrowth [6].

3 http://www.movebank.org
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(a) rGpattern ≥ (b) Closed swarm (c) rGpattern≤

Fig. 6. Top-3 typical compression patterns.

Effectiveness. We compare the top-5 highest support closed swarms, the top-5 high-
est covered area gradual trajectory patterns and the top-5 compression patterns from
Swainsoni dataset. Each color represents a Swainsoni trajectory involved in the pattern.

Top-5 closed swarms are very redundant since they only express that Swainsonies
move together from North America to Argentina. Similarly, top-5 rGpatterns are also
redundant. They express the same knowledge that is ”from 1996-10-01 to 1996-10-25,
the more time passes, the more objects are following the trajectory {Oregon〉Nevada〉
Utah〉 Arizona〉Mexico〉 Colombia}”.

Figure 6 illustrates 3 patterns among 5 extracted ones by using SmartCompo. The
rGpattern≥ expresses the same knowledge with the mentioned rGpattern in the top
highest covered area. The closed swarm expresses new information that is ”after ar-
riving South America, the Swainsonies tend to move together to Argentina even some
of them can leave their group”. Next, the rGpattern≤ shows that ”the Swainsonies
return back together to North America from Argentina (i.e. 25 objects at Argentina)
and they will step by step leave their group after arriving Guatemala (i.e. 20 objects at
Guatemala) since they are only 2 objects at the last stop, i.e. Oregon State”.

Compressibility. We measure the compressibility of the algorithms by using their
top-K patterns as dictionaries for encoding the data. Since NaiveCompo and Smart-
Compo provides the same results, we only show the compression gain of SmartCompo.

Regarding to SmartCompo, the compression gain could be calculated as the sum
of the compression gain returned after each greedy step with all kinds of patterns
in F . For each individual pattern type, compression gain is calculated according to
the greedy encoding scheme used for SmartCompo. They are respectively denoted as
SmartCompo CS (i.e. for closed swarms), SmartCompo rGi (i.e. for rGpattern≥)
and SmartCompo rGd (i.e. for rGpattern≤). Additionally, to illustrate the difference
between MDL-based approaches and standard support-based approaches, we also em-
ploy the set of top-K highest support closed swarms and top-K highest covered area
gradual trajectories patterns.

Figure 7 shows the compression gain of different algorithms. We can consider that
top-K highest support or covered area patterns cannot provide good compression gain
since they are very redundant. Furthermore, if we only consider one pattern type, we
cannot compress the data best since the compression gains of SmartCompo CS, Smart-
Compo rGi and SmartCompo rGd are always lower than SmartCompo. This is because
the pattern distribution in the data is complex and different patterns can cover different
parts of the data. Thus, considering one kind of patterns results in losing interesting pat-
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(a) Swainsoni dataset (b) Buffalo dataset
Fig. 7. Compressibility (higher is better) of different algorithms.

terns and not good compression gain. By proposing overlapping allowed multi-pattern
structure encoding scheme, we are able to extract more informative patterns.

(a) Swainsoni dataset

(b) Buffalo dataset
Fig. 8. Running time.

One of the most interesting phenomena is that
the Swainsonies and Buffaloes have quite differ-
ent movement behavior. See Figure 7a, we can
consider that rGpattern≥ is the most represen-
tative movement behavior of Swainsonies since
they compress the data better than the two other
ones. While closed swarm is not as representative
as the other patterns. This is because it is very easy
for Swainsonies which are birds to leave the group
and congregate again at later timestamps. How-
ever, this movement behavior is not really true for
Buffaloes. See Figure 7b, it clear that the com-
pression gains of closed swarms, rGpattern≥

and rGpattern≤ have changed. The three kinds
of patterns have more similar compression gain
than the ones in Swainsonies. It means that Buf-
faloes are more closed to each other and they
move in a dense group. Thus closed swarm is
more representative compare to itself in Swain-

soni dataset. Furthermore, the number of Buffaloes is very difficult to increase in a
group and thus SmartCompo rGi is lower than the two other ones.

Running Time. In our best knowledge, there are no previous work which address
mining compression movement pattern issue. Thus, we only compare the two proposed
approaches in order to highlight the differences between them. Running time of each
algorithm is measured by repeating the experiment in compression gain experiment.

As expected, SmartCompo is much faster than NaiveCompo (i.e. Figure 8). By ex-
ploiting the properties, we can directly select the best candidate at each iteration. Con-
sequently, the process efficiency is speed up.

6 Related Work
Mining informative patterns can be classified into 3 main lines: MDL-based approaches,
statistical approaches based on hypothesis tests and information theoretic approaches.

The idea of using data compression for data mining was first proposed by R. Cili-
brasi et al. [1] for data clustering problem. This idea was also explored by Keogh et
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al. [8], who propose to use compressibility as a measure of distance between two se-
quences. In the second research line, the significance of patterns is tested by using a
standard statistical hypothesis assuming that the data follows the null hypothesis. If a
pattern pass the test it is considered significant and interesting. For instance, A. Gionis
et al. [3] use swap randomization to generate random transactional data from the orig-
inal data. A similar method is proposed for graph data by R. Milo et al. [11]. Another
research direction looks for interesting sets of patterns that compress the given data
most (i.e. MDL principle). Examples of this direction include the Krimp algorithm [14]
and Slim algorithm [12] for itemset data and the algorithms for sequence data [9].

7 Conclusion
We have explored an MDL-based strategy to compress moving object data in order to:
1) select informative patterns, 2) combine different kinds of movement patterns with
overlapping allowed. We supplied two algorithms NaiveCompo and SmartCompo. The
latter one exploits smart properties to speed up the whole process obtaining the same
results to the naive one. Evaluations on real-life datasets show that the proposed ap-
proaches are able to compress data better than considering just one kind of patterns.
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