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ABSTRACT
Many recent real-world applications, such as network traf-
fic monitoring, intrusion detection systems, sensor network
data analysis, click stream mining and dynamic tracing of
financial transactions, call for studying a new kind of data.
Called stream data, this model is, in fact, a continuous, po-
tentially infinite flow of information as opposed to finite,
statically stored data sets extensively studied by researchers
of the data mining community. An important application
is to mine data streams for interesting patterns or anoma-
lies as they happen. For data stream applications, the vol-
ume of data is usually too huge to be stored on permanent
devices, main memory or to be scanned thoroughly more
than once. We thus need to introduce approximations when
executing queries and performing mining tasks over rapid
data streams. In this paper we propose a new approach,
called Speed (Sequential Patterns Efficient Extraction in
Data streams), to identify frequent maximal sequential pat-
terns in a data stream. To the best of our knowledge this is
the first approach defined for mining sequential patterns in
streaming data. The main originality of our mining method
is that we use a novel data structure to maintain frequent
sequential patterns coupled with a fast pruning strategy. At
any time, users can issue requests for frequent maximal se-
quences over an arbitrary time interval. Furthermore, our
approach produces an approximate support answer with an
assurance that it will not bypass a user-defined frequency
error threshold. Finally the proposed method is analyzed
by a series of experiments on different datasets.

1. INTRODUCTION
Recently, the data mining community has focused on a new
challenging model where data arrives sequentially in the
form of continuous rapid streams. It is often referred to as
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data streams or streaming data. Since data streams are con-
tinuous, high-speed and unbounded, it is impossible to mine
association rules by using algorithms that require multiple
scans. As a consequence new approaches were proposed to
maintain itemsets [7, 4, 3, 6, 13]. Nevertheless, according to
the definition of itemsets, they consider that there is no lim-
itation on items order. In this paper we consider that items
are really ordered into the streams, therefore we are inter-
ested in mining sequences rather than itemsets. We propose
a new approach, called Speed (Sequential Patterns Efficient
Extraction in Data streams), to mine sequential patterns in
a data stream. The main originality of our approach is that
we use a novel data structure to incrementally maintain fre-
quent sequential patterns (with the help of tilted-time win-
dows) coupled with a fast pruning strategy. At any time,
users can issue requests for frequent sequences over an arbi-
trary time interval. Furthermore, our approach produces an
approximate support answer with an assurance that it will
not bypass a user-defined frequency thresholds.

The remainder of the paper is organized as follows. Section
2 goes deeper into presenting the problem statement. In
Section 3 we propose a brief overview of related work.The
Speed approach is presented in Section 4. Section 5 reports
the result of our experiments. In Section 6, we conclude the
paper.

2. PROBLEM STATEMENT
The traditional sequence mining problem was firstly intro-
duced in [12] and extended in [11] as follows. Let DB be a
set of customer transactions where each transaction T con-
sists of customer-id, transaction time and a set of items in-
volved in the transaction. Let I = {i1, i2...im} be a set
of literals called items. An itemset is a non-empty set of
items. A sequence s is a set of itemsets ordered according
to their timestamp. It is denoted by < s1 s2 ...sn >, where
sj , j ∈ 1...n, is an itemset. A k-sequence is a sequence of k
items (or of length k). A sequence S′ =< s′1 s′2 ... s′n > is
a subsequence of another sequence S =< s1 s2 ... sm >, de-
noted S′ ≺ S, if there exist integers i1 < i2 < ... ij ... < in
such that s′1 ⊆ si1 , s′2 ⊆ si2, ... s′n ⊆ sin .
All transactions from the same customer are grouped to-
gether and sorted in increasing order and are called a data
sequence. A support value (denoted support(S)) for a se-
quence gives its number of actual occurrences in DB. Never-
theless, a sequence in a data sequence is taken into account
only once to compute the support even if several occurrences
are discovered. A data sequence contains a sequence S if S



is a subsequence of the data sequence. In order to decide
whether a sequence is frequent or not, a minimum support
value, denoted σ, is specified by the user, and the sequence
is said to be frequent if the condition :

support(S) ≥ σ holds.

The anti-monotonic Apriori property [1] holds for sequential
patterns [10].
Given a database of customer transactions the problem of
sequential pattern mining is to find all the sequences whose
support is greater than a specified threshold (minimum sup-
port). Each of these represents a sequential pattern, also
called a frequent sequence. The task of discovering all the
frequent sequences is quite challenging since the search space
is extremely large: let < s1 s2 ...sm > be a provided se-
quence and ni = |sj | cardinality of an itemset. Then the
search space, i.e. the set of all potentially frequent sequences
is 2n1+n2+...nm .

Let us now examine the problem when considering stream-

ing data. Let data stream DS = Bbi
ai

, B
bi+1
ai+1

, ..., Bbn

an
be an

infinite sequence of batches, where each batch is associated
with a time period [ak,bk], i.e. Bbk

ak
with bk > ak, and let

Bbn

an
be the most recent batch. Each batch B

bk
ak

consists of

a set of customer data sequences; that is, Bbk
ak

= [S1, S2,

S3, ..., Sj ]. For each data sequence S in B
bk
ak

we are thus
provided with its list of itemsets. In the rest of the paper we
will consider, without loss of generality, that an itemset is
merely reduced to one item. We also assume that batches do
not have necessarily the same size. Hence, the length (L) of

the data stream is defined as L = |Bbi
ai
|+|B

bi+1
ai+1
|+. . .+|Bbn

an
|

where |Bbk
ak
| stands for the cardinality of the set Bbk

ak
. In this

B1
0

Sa (1) (2) (3) (4) (5)
Sb (8) (9)

B2
1 Sc (1) (2)

B3
2

Sd (1) (2) (3)
Se (1) (2) (8) (9)
Sf (2) (1)

Figure 1: The set of batches B1
0 , B2

1 and B3
2

context, we define the support of a sequential pattern as fol-
lows: the support of a sequence S at a specific time interval
[ai, bi] is denoted by the ratio of the number of customers
having sequence S in the current time window to the total
number of customers. Therefore, given a user-defined min-
imum support, the problem of sequential patterns in data
streams is to find all frequent patterns Sk over an arbitrary
time period [ai, bi], i.e. verifying :

bi
X

t=ai

supportt(Sk) ≥ σ × |Bbi
ai
|

of the streaming data using as little main memory as possi-
ble.

Example 1. In the rest of the paper we will use this toy
example as an illustration, while assuming that the first batch
B1

0 is merely reduced to two customer data sequences. Figure
1 illustrates the set of all batches. Let us now consider the
following batch, B2

1 , which only contains one customer data
sequence. Finally we will also assume that three customer
data sequences are embedded in B3

2 . Let us now assume that
the minimum support value is set to 50%. If we look at
B1

0 , we obtain the two following maximal frequent patterns:
< (1)(2)(3)(4)(5) > and < (8)(9) >. If we now consider the
time interval [0 − 2], i.e. batches B1

0 and B2
1 , maximal fre-

quent patterns are: < (1)(2) >. Finally when processing all
batches, i.e. a [0 − 3] time interval, we obtain the following
set of frequent patterns: < (1)(2) >, < (1) > and < (2) >.
According to this example, one can notice that the support of
the sequences can vary greatly depending on the time periods
and so it is highly needed to have a framework that enables
us to store these time-sensitive supports.

3. RELATED WORK
In the recent years, data streams mining approaches mainly
focused on maintaining frequent itemsets over the entire his-
tory of a streaming data. The first approach was proposed
by Rajeev and Motwani [7] where they study the landmark
model where patterns support is calculated from the start
of the data stream. The authors also define the first single-
pass algorithm for data streams based on the anti-monotonic
property. Li et al. [6] use an extended prefix-tree-based
representation and a top-down frequent itemset discovery
scheme. Chi et al. [3] consider closed frequent itemsets and
propose the closed enumeration tree (CET) to maintain a
dynamically selected set of itemsets.

In [4], authors consider a FP-tree-based algorithm [5] to
mine frequent itemsets at multiple time granularities by a
novel logarithmic tilted-time windows tables technique. Fig-
ure 2 shows a natural tilted-time windows table: the most
recent 4 quarters of an hour, then, in another level of granu-
larity, the last 24 hours, and 31 days. Based on this model,
one can store and compute data in the last hour with the
precision of quarter of an hour, the last day with the pre-
cision of hour, and so on. By matching for each sequence
of a batch a tilted-time window, we have the flexibility to
mine a variety of frequent patterns depending on differ-
ent time intervals. In [4], the authors propose to extend
natural tilted-time windows table to logarithmic tilted-time
windows table by simply using a logarithmic time scale as
shown in Figure 3. The main advantage is that with one
year of data and a finest precision of quarter, this model
needs only 17 units of time instead of 35,136 units for the
natural model. In order to maintain these tables, the loga-
rithmic tilted-time windows frame will be constructed using
different levels of granularity each of them containing a user-
defined number of windows. Let B2

1 , B3
2 , . . . , Bn

n−1 be an in-
finite sequence of batches where B2

1 is the oldest batch. For
i ≥ j, and for a given sequence S, let Supportj

i (S) denote

the support of S in Bj
i where Bj

i =
Sj

k=i
Bk. By using a loga-

rithmic tilted-time windows table, the following supports of
S are kept: Supportn

n−1(S);Supportn−1
n−2(S);Supportn−2

n−4(S);

Supportn−4
n−6(S) . . .. This table is updated as follows. Given

a new batch B, we first replace Supportn
n−1(S), the fre-

quency at the finest level of time granularity (level 0), with
Support(B) and shift back to the next finest level of time



granularity (level 1 ). Supportn
n−1(S) replaces Supportn−1

n−2(S)

at level 1. Before shifting Supportn−1
n−2(S) back to level 2,

we check if the intermediate window for level 1 is full (in
this example the maximum windows for each level is 2). If
yes, then Supportn−1

n−2(S)+Supportn
n−1(S) is shifted back to

level 2. Otherwise it is placed in the intermediate window
and the algorithm stops. The process continues until shift-
ing stops. If we received N batches from the stream, the
logarithmic tilted-time windows table size will be bounded
by 2×dlog2(N)e+2 which makes this windows schema very
space-efficient.

31 days 24 hours 4 qtrs

t

. .

Figure 2: Natural Tilted-Time Windows Table

tt2t2t4t

Time 

Figure 3: Logarithmic Tilted-Time Windows Table

According to our problem, all presented approaches consider
inter-transaction associations, i.e. there is no limitation on
order of events while we consider sequences, which implies a
strict order of events. By considering such an order, we are
thus provided with a challenging problem since the search
space is significantly larger. In [2], authors also address
sequential patterns mining however they focus on patterns
across multiple data streams. They consider as input a set
of streams, i.e. time series composed of categorial values as
in [9], while we are interested in patterns occurring in an
unique and continuous data stream.

4. THE SPEED APPROACH
In this section we propose the Speed approach for mining
sequential patterns in streaming data.

4.1 An overview
Our main goal is to mine all maximal sequential patterns
over an arbitrary time interval of the stream. The algorithm
runs in 2 steps:

1. The insertion of each sequence of the studied batch in
the data structure Latticereg using the region princi-
ple.

2. The extraction of the maximal subsequences.

We will now focus on how each new batch is processed then
we will have a closer look on the pruning of unfrequent se-
quences.

From the batches from Example 1, our algorithm performs
as follows: we process the first sequence Sa in B1

0 by first

1 32

a b c d e

Regions

Sequential Patterns Lattice
             (LatticeReg)

Items

<(a)(c)(e)> <(e)(a)>
<(d)(b)>

Figure 4: The data structures used in SPEED algo-

rithm

Items Tilted-T W (Regions, RootReg)

1 {[t0 = 1]} {(1, Sa)}
2 {[t0 = 1]} {(1, Sa)}
3 {[t0 = 1]} {(1, Sa)}
4 {[t0 = 1]} {(1, Sa)}
5 {[t0 = 1]} {(1, Sa)}

Figure 5: Updated items and there support after

the sequence Sa

storing Sa into our lattice (Latticereg). This lattice has
the following characteristics: each path in Latticereg is pro-
vided with a region and sequences in a path are ordered
according to the inclusion property. By construction, all
subsequences of a sequence are in the same region. This
lattice is used in order to reduce the search space when
comparing and pruning sequences. Furthermore, only max-
imal sequences are stored into Latticereg. These sequences
are either sequences directly extracted from batches or their
maximal subsequences which are constructed from items of
a sequence such as all these items are in the same region.
Such a merging operation has to respect item order in the se-
quence, i.e. this order is expressed through their timestamp.
By storing only maximal subsequences we aim at storing a
minimal number of sequences such that we are able to an-
swer a user query. When the processing of Sa completes, we
are provided with a set of items (1..5), one sequence (Sa)
and Latticereg updated. Items are stored as illustrated in
Figure 5. The ”Tilted-T W ” attribute is the number of

Sequences Size Tilted-Time Windows

Sa 5 {[t0 = 1]}
Sb 2 {[t0 = 1]}

Figure 6: Updated sequences after the sequence Sb



Root

Sa

1

(First Batch − Sa)

Sa

1

Root

Sb

2

(First Batch − Sa, Sb)

Figure 7: The region lattice after the first batch

occurrences of the corresponding item in the batch. The
”Rootreg” attribute stands for the root of the correspond-
ing region in Latticereg. Of course, for one region we only
have one RootReg and we also can have several regions for
one item. For sequences (C.f. Figure 6), we store both the
size of the sequence and the associated tilted-time window.
This information will be useful during the pruning phase.
The left part of the Figure 7 illustrates how the Latticereg

lattice is updated when considering Sa.

Let us now process the second sequence of B1
0 . Since Sb is

not a subsequence of Sa, it is inserted in Latticereg in a new
valuation (C.f. subtree Sb in Figure 7).

Items Tilted-T W (Regions, RootReg)

1 {[t0 = 1], [t1 = 1]} {(1, Sa)}
2 {[t0 = 1], [t1 = 1]} {(1, Sa)}
... ... ... ...
8 {[t0 = 1]} {(2, Sb)}
9 {[t0 = 1]} {(2, Sb)}

Figure 8: Updated items after B2
1

Sequences Size Tilted-Time Windows

Sa 5 {[t0 = 1]}
Sc 2 {[t0 = 1], [t1 = 1], [t2 = 1]}
Sd 3 {[t0 = 1], [t2 = 1]}
... ... ...

Figure 9: Updated sequences after Sd of B3
2

Let us now consider the batch B2
1 merely reduced to Sc.

Since items 1 and 2 already exist in the set of sequences,
their tilted-time windows must be updated (C.f. Figure 8).
Furthermore, items 1 and 2 are in the same region: 1 and
the longest subsequence for these items is < (1) (2) >, i.e.
Sc which is included in Sa. We thus have to insert Sc in
Latticereg in the region 1. Nevertheless as Sc is a subse-
quence of Sa that means that when Sa occurs in previous
batch it also occurs for Sc. So the tilted-time window of Sc

has to be also updated.

The sequence Sd is considered in the same way as Sc (C.f.
Figure 10 and Figure 12). Let us now have a closer look on
the sequence Se. We can notice that items 1 and 2 are in
region 1 while items 8 and 9 are in region 2. We can believe
that we are provided with a new region. Nevertheless, we
can notice that in fact the sequence < (8)(9) > already
exist in Latticereg and is a subsequence of Se. The longest
subsequence of Se in the region 1 is < (1)(2) >. In the

Sa

Sd

Sc

Se Sf

Root

Sb

21 3

(Third Batch − Se)

Figure 10: The region lattice after batches process-

ing

Items Tilted-T W (Regions, RootReg)

1 {[t0 = 1], [t1 = 1] {(1, Sa)}
, [t2,2]} {(2, Se)}

{(3, Sf )}
2 {[t0 = 1], [t1 = 1] {(1, Sa)}

, [t2,2]} {(2, Se)}
{(3, Sf )}

... ... ...

Figure 11: Updated items after the sequence Sf

same way, the longest subsequence of Se for region 2 is <
(8)(9) >. As we are provided with two different regions
and < (8)(9) > is the root of region 2, we do not create a
new region but we insert Se as a root of region for 2 and
we insert the subsequence < (1)(2) > both on lattice for
region 1 and 2. Of course, tilted-time windows tables are
updated. Finally we proceed to the last sequence Sf . We
can notice that the order between itemsets is different from
previous sequences. When parsing the set of items, we can
conclude that they occur in the same region 1. Nevertheless
the longest subsequences are reduced to < (1) > and <
(2) >, i.e. neither Sf ≺ Sc or Sc ≺ Sf holds, then we have
to consider a new region.

To only store frequent maximal subsequences, let us now dis-
cuss how unfrequent sequences are pruned. While pruning
in [4] is done in 2 distinct operations, SPEED prunes unfre-
quent patterns in a single operation which is in fact a drop-
ping of the tail sequences of tilted-time windows Supportk+1

k (S),

Supportk+2
k+1(S), . . . , Supportn

n−1(S) when the following con-

dition holds: ∀i, k ≤ i ≤ n, supportbi
ai

(S) < εf |B
bi
ai
|.

By navigating into Latticereg, and by using the regions in-

Sequences Size Tilted-Time Windows

Sa 5 {[t0 = 1]}
Sb 2 {[t0 = 1], [t2 = 1]}
Sc 2 {[t0 = 1], [t1 = 1], [t2 = 2]}
Sd 3 {[t0 = 1], [t2 = 1]}
Se 4 {[t2 = 1]}
Sf 2 {[t2 = 1]}

Figure 12: Updated sequences after Sf of B3
2



dex, we can directly and rapidly prune irrelevant sequences
without further computations. This process is repeated af-
ter each new batch in order to use as little main memory
as possible. During the pruning phase, titled-windows are
merged in the same way as in [4].

4.2 The Speed algorithm
Algorithm 1: The Speed algorithm

Data: an infinite set of batches B=B1
0 , B2

1 , ... Bm
n ...; a

minsupp user-defined threshold; an error rate ε.

Result: A set of frequent items and sequences

Latticereg ← ∅; ITEMS ← ∅; SEQS ← ∅; region← 1;
while batches are available do

foreach Bj
i ∈ B do

Update(Bj
i , Latticereg, ITEMS, SEQS,

minsupp, ε);
Prune(Latticereg, ITEMS, SEQS, minsupp, ε);

We describe in more detail the Speed algorithm (C.f. Al-
gorithm 1). While batches are available, we consider se-
quences embedded in batches in order to update our struc-
tures (Update). Then we prune unfrequent sequences in
order to maintain our structures in main memory (Prune-
Tree). In the following, we consider that we are provided
with the three next structures. Each value of ITEMS is a
tuple (labelitem, {time, occ}, {(regions, RootReg)}) where
labelitem stands for the considered item, {time, occ} is used
in order to store the number of occurrences of the item for
different time of batches and for each region in {regions}
we store its associated sequences (RootReg in the Latticereg

structure. According to the following property, the number
of regions is limited w.r.t the number of items in DS.

Property 1. Let Φ be the number of items in DS. The
maximal number of regions is bounded by Φ2 + 1.

Proof: Let Φ be the number of items. We can generate
Φ2 maximal sequences of size 2 and one maximal sequence.
Each of them stands for a region. Whatever the added se-
quence, it will be a subsequence and will be included in one
of the already existing Φ2 + 1 regions.
In other words, in the worst case, our algorithm has to check,
for each sequence embedded in a batch Φ2 + 1 regions.
The SEQS structure is used to store sequences. Each value
of SEQS is a tuple (s, size(s),{time, occ}) where size(s)
stands for the number of items embedded in s. Finally, the
Latticereg structure is a lattice where each node is a se-
quence stored in SEQS and where vertices correspond to
the associated region (according to the previous overview)�

Let us now examine the Update algorithm (C.f. Algorithm
2) which is the main core of our approach. We consider
each sequence embedded in the batch. From a sequence S,
we first get regions of all its items (GetRegions). If items
were not already considered we only have to insert S in a new
region. Otherwise, we extract all different regions associated
on items of S. For each region the GetFirstSeqOfVal
function returns a new subsequence Sx constructed by merg-
ing items sharing same region with their associated RootReg .
We then compute the longest common subsequences of Sx

in RootV al by applying the LCSP Longest Common Sequen-
tial Patterns function. This function returns an empty set

Algorithm 2: The Update algorithm

Data: a batch Bj
i = [S1, S2, S3, ..., Sk]; a minsupp user-

defined threshold; an error rate ε.

Result: Latticereg, ITEMS, SEQS updated.

foreach sequence Seq ∈ Bj
i do

LatticeMerge← ∅; DelayedInsert← ∅;
Candidates← getRegions(Seq);
if Candidates = ∅ then

insert(Seq,NewV al + +);

else
foreach region V al ∈ Candidates do

// Get the maximal sequence from region V al
F irstSeq← getFirstSeqOfVal(V al);
// Compute all the longest common
// subsequences
NewSeq ← LCSP(Seq,FirstSeq);
if |NewSeq| = 1 then

// There is a direct inclusion
// between the two tested sequences
if (NewSeq[0] == Seq)||(NewSeq[0] ==
FirstSeq) then

LatticeMerge← V al;

else
// Found a new subsequence
// to be added
insert(NewSeq[0], V al);
updateTTW(NewSeq[0]);
DelayedInsert← NewSeq;

else
DelayedInsert← Seq;
foreach sequence S ∈ NewSeq do

insert(S, V al); updateTTW(S);
DelayedInsert← S;

// Create a new region
if |LatticeMerge| = 0 then

insert(Seq,NewV al + +); updateTTW(Seq);

else
if |LatticeMerge| = 1 then

insert(Seq,LatticeMerge[0]);
updateTTW(Seq);

else
Merge(LatticeMerge,Seq);

insertAndUpdateAll(DelayedInsert,
LatticeMerge[0]);



both when there are no subsequences or if subsequences are
merely reduced to one item1.

Property 2. Let u, v be two sequences and |u|, |v| the
associated size. Let r be the size of the maximal subsequence
between u and v. Let Λ be the number of maximal subse-
quences. We have: Λ ≤

`

w=min(|u|,|v|)
r

´

.

Proof: Let u and v be two sequences. We can obtain re-
spectively 2|u| and 2|v| subsequences. The set of maxi-
mal subsequences having size r is then: min(

`

|u|
r

´

,
`

|v|
r

´

) ≡
`

w=min(|u|,|v|)
r

´

�

If there is only one subsequence, i.e. cardinality of NewSeq
is 1, we know that the subsequence is either a root of region
or Sx itself. We thus store it in a temporary array (Lattice-
Merge). This array will be used in order to avoid to create a
new region if it already exists a root of region included in S.
Otherwise we know that we are provided with a subsequence
and then we insert it into Latticereg (Insert) and propagate
the tilted-time window (UpdateTTW). Sequences are also
stored in a temporary array (DelayedInsert). If there exist
more than one subsequence, then we insert all these sub-
sequences on the corresponding region and also store with
S on DelayedInsert them in order to delay their insertion
for a new region. If LatticeMerge is empty we know that it
does not exist any subsequence of S included on sequences of
Latticereg and then we can directly insert S in a new region.
Otherwise, we insert the subsequence in Latticereg for the
region of LatticeMerge. If the cardinality of LatticeMerge
is greater than 1, we are provided with a sequence which will
be a new root of region and then we insert it. For the both
last case, we insert all the set of subsequences embedded
and we update their tilted-time windows (InsertAndUp-
dateAll).

Property 3. Let Latticereg be the structure at the end
of the process. Let S and S′ be two sequences such as S′ � S,
then: 1. If S′ does not exist in Latticereg then S also does
not exist in Latticereg. 2. If S′ exists in Latticereg, let
Sup′

0,. . .,Sup′
n (resp. Sup0, . . ., Supm for S) be the supports

of S′2 in all of its tilted-time windows then: n ≥ m and
Sup′

i ≥ Supi , ∀i such as 0 ≤ i ≤ m

Proof: The first part is proved by induction on N, i.e. the
number of batches. For N = 0 (the oldest batch), if S ∈
Latticereg then Support0(S) ≥ εf |B

1
0 |. Let us consider that

S′ /∈ Latticereg, as S′ 6⊆ S we have Support0(S) ≤ εf |B
1
0 |.

So we have S /∈ Latticereg. For N > 0, let us consider

S′ /∈ Latticereg after processing the N th batch. We have to
consider the two following cases: (i) S′ /∈ Latticereg after
the processing of the (N − 1)th batch then by induction we
also have S /∈ Latticereg by extending in the same way the
case N = 0. (ii) S′ ∈ Latticereg after the (N − 1)th batch
and the sequence was pruned when processing the batch
N . As S′ 6⊆ S, it exists S1, . . . , Sp such as S1 = S′ and
Sp = S, where Si is the subsequence of Si+1 for 1 ≤ i ≤ p.
With the pruning condition, we know that S1, . . . , Sp were
already pruned during the processing of the batch N thus

1LCSP is an extension of the NKY algorithm [8] of time
complexity O(n(m - r )) where n and m are the sizes of
sequences and r the size of the longest maximal sequence.
2where Sup′

0 is the support in the most recent window.

S /∈ Latticereg.
As S′ ≤ S, we have S1, . . . , Sp (cf previous part). By us-
ing the pruning condition, we know that the table of tilted-
time windows of Si has much more windows than Si+1 with
1 ≤ i ≤ p, thus S′ has much more windows that S (m ≥ n).
By definition, we know that Support0, . . ., Supportn−1 and
Support′0, . . ., Support′n−1 are the support of S and S′ for
each batch. These windows have the same structure, we can
thus apply the anti-monotonic property: Supporti(S

′) ≥
Supporti(S) for 1 ≤ i ≤ n − 1. Let us assume Ws (resp.
Ws′), the set of sequences having incremented S (resp. S′)
for the batch N , i.e Suppportn(S) = |Ws|. We thus have
Ws ⊆Ws′ and by the antimonotonic property: Supportq(S

′) =
|Ws′ | ≥ Supportq(S) = |Ws|.�

Maintaining all the data streams in the main memory re-
quires too much space. So we have to store only relevant
sequences and drop sequences when the tail-dropping condi-
tion holds. When all the tilted-time windows of the sequence
are dropped the entire sequence is dropped from Latticereg.
As a result of the tail-dropping we no longer have an exact
support over L, rather an approximate support. Now let us
denote SupportL(S) the frequency of the sequence S in all

batches and ˜SupportL(S) the approximate frequency. With
ε� minsupp this approximation is assured to be less than
the actual frequency according to the following inequality
[4]:

SupportL(S)− ε|L| ≤ ˜SupportL(S) ≤ SupportL(S).

Due to lack of space we do not present the entire Prune
algorithm we rather explain how it performs. First all se-
quences verifying the pruning constraint are stored in a tem-
porary set (ToPrune). We then consider items in ITEMS
data structure. If an item is unfrequent, then we navigate
through Latticereg in order:

1. to prune this item in sequences

2. to prune sequences in Latticereg also appearing in ToPrune

This function takes advantage of the anti-monotonic prop-
erty as well as the order of stored sequences. It performs as
follows, nodes in Latticereg, i.e. sequences, are pruned until
a node occurring in the path and having siblings is found.
Otherwise, each sequence is updated by pruning the unfre-
quent item. When an item remains frequent, we only have to
prune sequences in ToPrune by navigating into Latticereg.

5. EXPERIMENTS
In this section, we report our experiments results. The
stream data was generated by the IBM synthetic market-
basket data generator3. In all the experiments we used 1K
distinct items and generated 1M of transactions. Further-
more, we have fixed minsupp at 10%. We conducted two
sets of experiments, in the first, we set the frequency error
threshold at 0.1 with an average sequence length of 3 or 5

3http://www.almaden.ibm.com/cs/quest.



itemsets and in the second we set the frequency error thresh-
old at 0.2 with the same sequence lengths. The stream was
broken in batches of 20 seconds for the 3-sequences and 90
seconds for the 5-sequences. Furthermore, all the transac-
tions can be fed to our program through standard input.
Finally, our algorithm was written in C++ and compiled
using gcc without any optimizations flags. All the experi-
ments were performed on an AMD Athlon XP-2200 running
Linux with 512 MB of RAM.
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sequences

At each processing of a batch the following informations
were collected: the size of the SPEED data structure at
the end of each batch in bytes, the total number of sec-
onds required per batch, the total number of maximal se-
quences generated for this batch and the number of valua-
tions present on the data stream sequences. The x axis rep-
resents the batch number. Figure 13 show time results for
3 and 5-sequences. Every two batches the algorithm needs
more time to process sequences, this is in fact due to the
merge operation of the tilted-time windows which is done
in our experiments every 2 batches on the finest granularity
level. The jump in the algorithm is thus the result of extra
computation cycles needed to merge the tilted-time windows
values for all the nodes in the Latticereg structure. The
time requirements of the algorithm tend to grow very slowly
as the stream progresses and do not excess the 20 or the
90 seconds computation time limit for every batch. Figure
14 show memory needs for the processing of our sequences.
Space requirements is bounded for 3-sequences by 35M and

78M for the 5-sequences, this requirement is however ac-
ceptable as this can easily fit in main memory. Experiments
show that the SPEED algorithm can handle sequences in
data streams without falling behind the stream as long as
we choose correct batch duration values.
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6. CONCLUSION
In this paper we addressed the problem of mining sequential
patterns in streaming data and proposed the first approach,
called Speed, for mining such patterns. Speed is based on a
new efficient structure and on strict valuation of edges. Such
a valuation is very useful either when considering the prun-
ing phase or when comparing sequences since we only have to
consider sequences embedded into the lattice sharing same
valuations. Thanks to the anti-monotonic property and the
order of stored sequences in our structure, the pruning phase
is also improved. Conducted experiments have shown that
our approach is efficient for mining sequential patterns in
data stream. Furthermore, with Speed, users can, at any
time, issue requests for frequent sequences over an arbitrary
time interval.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
database. In Proceedings of the International
Conference on Management of Data (ACM SIGMOD
93), pages 207–216, 1993.



[2] G. Chen, X. Wu, and X. Zhu. Mining sequential
patterns accross data streams. Technical Report
CS-05-04, University of Vermont, march 2005.

[3] Y. Chi, H. Wang, P.S. Yu, and R.R. Muntz. Moment:
Maintaining closed frequent itemsets over a stream
sliding window. In Proceedings of the 4th IEEE
International Conference on Data Mining (ICDM 04),
pages 59–66, Brighton, UK, 2004.

[4] G. Giannella, J. Han, J. Pei, X. Yan, and P. Yu.
Mining frequent patterns in data streams at multiple
time granularities. In In H. Kargupta, A. Joshi, K.
Sivakumar and Y. Yesha (Eds.), Next Generation
Data Mining, MIT Press, 2003.

[5] J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, U. Dayal,
and M. Hsu. Freespan: Frequent pattern-projected
sequential pattern mining. In Proceedings of the 6th
International Conference on Knowledge Discovery and
Data Mining (KDD 00), pages 355–359, Boston, USA,
2000.

[6] H.-F. Li, S.Y. Lee, and M.-K. Shan. An efficient
algorithm for mining frequent itemsets over the entire
history of data streams. In Proceedings of the 1st
International Workshop on Knowledge Discovery in
Data Streams, Pisa, Italy, 2004.

[7] G. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proceedings of the 28th
International Conference on Very Large Data Bases
(VLDB 02), pages 346–357, Hong Kong, China, 2002.

[8] Yajima Shuzo Nakatsu Narao, Kambayashi Yahiko. A
longest common subsequence suitable for similar text
strings. Acta Informatica, 18(1):171–179, 1982.

[9] T. Oates and P. Cohen. Searching for structure in
multiple streams of data. In Proceedings of the 13th
International Conference on Machine Learning (ICML
96), pages 346–354, Bari, Italy, 1996.

[10] J. Pei, J. Han, and W. Wang. Mining sequential
patterns with constraints in large databases. In
Proceedings of the 10th International Conference on
Information and Knowledge Management (CIKM 02),
pages 18–25, MCLean, USA, 2002.

[11] R. Srikant and R. Agrawal. Mining sequential
patterns: Generalizations and performance
improvements. In Proceedings of the 5th International
Conference on Extending Database Technology (EDBT
96), pages 3–17, Avignon, France, 1996.

[12] R. Agrawal R. Srikant. Mining sequential patterns. In
Proceedings of the 11th International Conference on
Data Engineering (ICDE 95), pages 3–14, Tapei,
Taiwan, 1995.

[13] W.-G. Teng, M.-S. Chen, and P.S. Yu. A
regression-based temporal patterns mining schema for
data streams. In Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB 03),
pages 93–104, Berlin, Germany, 2003.


