
Fuzzy Tree Mining: Go soft on your nodes

Federico Del Razo Lopez1, Anne Laurent1, Pascal Poncelet2, and Maguelonne
Teisseire1

1 LIRMM-CNRS UMR5506, Université Montpellier 2, 161 rue Ada, 34392
Montpellier, France {delrazo,laurent,teisseire}@lirmm.fr

2 LGI2P - EMA pascal.poncelet@ema.fr

Abstract. Tree mining consists in discovering the frequent subtrees
from a forest of trees. This problem has many application areas. For
instance, a huge volume of data available from the Internet is now de-
scribed by trees (e.g. XML). Still, for several documents dealing with the
same topic, this description is not always the same. It is thus necessary
to mine a common structure in order to query these documents. Biology
is another field where data may be described by means of trees. The
problem of mining trees has now been addressed for several years, lead-
ing to well-known algorithms. However, these algorithms can hardly deal
with real data in a soft manner. Indeed, they consider a subtree as fully
included in the super-tree. This means that all the nodes must appear.
In this paper, we extend this definition to fuzzy inclusion based on the
idea that a tree is included to a certain degree within another one, this
fuzzy degree being correlated to the number of matching nodes.

1 Introduction

Tree mining is a subfield of data mining aiming at discovering automatically
all the subtrees that appear frequently in a database of trees. This research
area has several applications, including the discovery of mediator schemas. The
background in this research is mainly constituted by the work by Asai et al.
and Zaki et al.[1,9,12,16,17]. This work addresses the problem of tree mining
considering several ways to define when a tree S is included within another one
T . Inclusion is then decided depending on the way ancestry and brotherhood are
considered. In this respect, the authors distinguish between approaches where
(i) either all the pair of connex nodes in the tree S must be found in T with
no intermediate node, (ii) or some intermediate nodes are accepted. Figure 1
illustrates this difference.

The work from the litterature is then twofolded, considering both:

– the representation of the trees,
– the extraction of frequent subtrees.

It should be noted that designing efficient algorithms to tackle the problem
of extracting frequent subtrees is highly correlated to the representation of the
trees, as this representation may help scanning the trees. The process of ex-
tracting frequent subtrees is based on the Apriori process, which is a recursive

A

C E

F

A

D C E D

S T

(a) with connex nodes

A

C E

A

D C E B

D

S T

(b) with intermediate
nodes

Fig. 1. Traditional tree inclusion

process. It can be divided into the two following steps: for each size of trees
(i) generation of candidates and (ii) validation of candidates. A candidate is a
tree that is considered as being potentially frequent. The candidates of size k

are built based on the frequent subtrees of size k − 1. This family of methods
is well-known and has been applied for tree mining. However, all the existing
methods consider that a tree is or is not included within another one, which is
too restrictive to be efficient and relevant. We first propose the concept of fuzzy
tree mining, which has been introduced in [10]. This concept has been detailed
in [11], where we have defined fuzzy ancestor-descendant relation (fuzzy vertical
path). In this paper, we consider another way for softenizing the tree inclusion
definition by considering that some nodes may be discarded (partial inclusion).
In classical approaches, all the nodes of a subtree S must be included in a tree
T if S is included in T . For instance, Figure 2 shows a tree S that will not be
considered as being included in T . However, we argue that this is too restrictive
when mining data from the real world when imperfections are often present. For
instance, in Figure 2 S has 75% of its nodes included in T .

A

C E

F

B

A

D C E

S T

Fig. 2. Partial Inclusion

The challenging part of our work is that we want to remain efficient, in
the framework of fuzzy data mining. The paper is organized as follows: Section
refsec:back recalls the related work on tree mining and our previous work on
dealing with fuzzy tree mining. Section 3 introduces the necessary definitions for
dealing with partial inclusion. Section 4 introduces the algorithms we design for

extracting frequent subtrees from a tree database in a soft manner by considering
partial inclusion. Finally, Section 5 concludes this work and presents our future
working directions.

2 Background

In this section, we recall from the literature and from previous work the basic
definitions of tree mining and the ways trees can be represented.

2.1 Tree Mining

A tree is a connected graph containing no cycle. A tree is composed by nodes,
which are linked by edges such that their exists a particular node called root and
such that all the nodes but the root are composed by sub-trees. A tree is said
to be an ordered tree if the children from a node are ordered. A tree is said to
be an unordered tree otherwise.

Let L = {a, b, c, ...} be a set of labels. A labeled ordered tree is a tree T =
(r, N, B, L,�) where: r is the root, N is the set of nodes, B is the set of edges
such that B ⊆ V 2, (L : N → L) is a mapping from the set of labels L to the set
of nodes N , and � is an ordered relation between brother nodes.

Tree Mining refers to the process of extracting all the subtrees that appear
frequently in a database D of trees. The frequency is computed using the notion
of support: Given a database D, the support of a tree S is the proportion of trees
from the database where S is embedded:

Support(S) =
of trees where S is embedded

of trees in D

S is said to be frequent if Support(S) ≥ σ where σ is a user-defined minimal
support threshold.

Several kinds of tree inclusion can be defined [2], depending on the way
ancestors and siblings are considered. For instance, [17] defines the inclusion as
follows:

Definition 1 A tree S is embedded into a tree T if there exists an injective and

total function φ : NS → NT such as for all n, m ∈ NS:

– φ keeps the labels: LS(n) = LT (φ(n));

– φ keeps the relations ancestor-descendant: (n, m) ⇐⇒ (φ(n), φ(m));

– φ keeps order relations: (n �S m) ⇐⇒ (φ(n) �T φ(m)).

As highlighted in [10], fuzzy data mining can help when mining frequent
subtrees from a tree database. Four ways to soften classical approaches has been
proposed:

– ancestor-descendant degree: in classical approaches, a node is or is not an
ancestor of another one. In our approach, we propose to indicate by a degree
between 0 and 1 to which extent a node is an ancestor of another one,
meaning that if there are too many nodes between them, then this degree
will decrease

– sibling ordering degree: in classical approaches, nodes are or are not searched
in the initial order. In our approach, we propose to indicate by a degree the
sibling disorder.

– partial inclusion: in classical approaches, all the nodes from the candidate
must be in the tree. In our approach, we propose to soften this rule by
considering the degree to which the nodes are embedded in the tree.

– Node similarity: in classical methods, a node label is or is not the same as
another one. In our approach, we propose to soften this by indicating by a
degree to which extent two nodes are similar (e.g. based on a taxonomy).

The ancestor-descendant degree has been studied in [11]. In the rest of this
paper, we focus on the partial inclusion.

Algorithms Several algorithms have been designed to address the problem of
tree mining: TreeMiner in [17], FreqT in [1], Chopper [13], FreeT reeMiner

[4] and CMTreeMiner [3]. All of them is based on a levelwise process consisting
of the following two recursive steps: generation of candidates and validation of
candidates. This process is recursive as it starts from the candidates that contain
only one node, to discover the frequent 1-node subtrees, which are used to build
the 2-node candidates, and so on.

These two steps have been studied. The generation of candidates is either
based on methods that build trees containing n nodes by considering one tree
containing n-1 nodes and adding another node, or is based on methods that mix
two subtrees containing n nodes and sharing n-1 nodes to build a new candidate
subtree containing n+1 nodes.

The validation aims at checking whether a tree is embedded within another
one. Several approaches have been proposed. In our previous work, we have
defined some algorithms that are based on the idea of anchoring: we try to
anchor the root of the subtree until we find a node that matches. Then the
following nodes are tested until (i) it is no more possible to find some remaining
nodes for matching, or (ii) an incompability has been detected or (iii) the subtree
fully matches.

2.2 Tree Representation

Several ways of representing trees have been proposed to support the algorithms
cited above. The representation impacts the two steps discussed above (genera-
tion and validation of candidates). However, it may be the case that the repre-
sentation is too rich and requires too much memory. We have thus proposed in
previous work a low-memory representation of trees: RSF. This representation
is defined below.

When representing a tree T , we keep in mind the following property: all the
nodes but the root have one and only one predecessor. We propose thus to use two
vectors to represent a tree, as proposed in [14]. The first vector is denoted by st.
It stores the position of each node predecessor. Nodes are numbered considering a
depth-first traversal. The root is numbered as being at position 0, with st[0] = −1
since it has no predecessor. The values st[i], i = 1, 2, ..., k − 1 correspond to all
other predecessor positions, as shown on Figure 3.

(−1)

st

lb b a c aa

−1

2 3 410

0 1 2 0
a

b a

c

a
0

1

2

3

4

T

root most right−

leaf

Fig. 3. Representation of a Tree

This representation provides a constant-time method to retrieve the prede-
cessor of a node. Moreover, it allows us to find directly the most right leaf when
considering an index k. Finally, when visiting the tree, it is possible to build all
direct links from predecessors to descendants.

The second vector is denoted by lb. It is used to store all the tree labels.
lb[i], i = 0, 1, ..., k − 1 are the labels of each node ni ∈ T .

The data structure we have chosen needs very low memory since it is re-
duced to the size of 2|T |. Moreover, it has good properties when mining frequent
subtrees.

As presented in [11], in order to manage trees as efficiently as possible, each
tree T is transformed into a binary representation denoted by TB where each
node cannot have more than two children [8]. For this purpose, we propose the
following transformation: the first child of a node is put as the left-hand child
while the other childs are put in the right-hand path, as illustrated in Fig. 2.2
b).

Encoding Binary Trees Once the tree has been transformed into a binary
tree, nodes must be encoded in order to be retrieved. The encoding is then used
first in order to identify each node and second in order to determine whether a
node is a child or a brother. In order to do so, we consider the Huffman algorithm
[7] which we slightly modify in order to fit our needs. The root has address 1. The

other node addresses are computed by concatenating the father address with: 1
if it is a child (left-hand path) and 0 otherwise (right-hand path), as shown on
Fig. 2.2 c).

F

A

B C D

E

B

A

C

F

E
D

B

A

C

F

E
D

11

1

110

1100

1101

11010

a) b) c)

T a tree in D TB: binary transformation TBC : tree encoding

Fig. 4. Example of a Binary Tree Transformation and Node Addressing

3 FTMnodes: Definitions

In this paper, we formally extend the definition of tree inclusion to partial inclu-
sion based on the number of nodes that are matched. Partial inclusion is defined
as follows:

Definition 2 A tree S is partially embedded into a tree T with a degree δ(S, T)
if there exists an injective and total function φ : NS → NT ∪ ⊥ such as for all

n, m ∈ N :

– φ keeps the labels: LS(n) = LT (φ(n)) or φ(n)) = ⊥ ;

– φ keeps the relations ancestor-descendant: (n, m) ⇐⇒ (φ(n), φ(m)) or

(φ(n), φ(m)) = ⊥;

– φ keeps the order relations:

(n �S m) ⇐⇒ (φ(n) �T φ(m)) or (φ(n) �T φ(m)) = ⊥;

– δ(S, T) = |{s∈S : φ(n)) 6=⊥}|
of nodes in T

.

From this definition, it is possible to define the support of a subtree, as follows:

Definition 3 Given a database D and a tree S, the support of S in D is given

by:

Support(S) = AggT∈D(δ(S, T))

where Agg is a function of aggregation.
For instance, we may use Ordered Weighted Aggregators (also known as

OWA) [15]. An OWA operator of dimension n is a mapping

F : Rn → R

that has an associated n vector W = (w1, w2, . . . , wn)T such that wi ∈ [0, 1]
and

∑n

i=1 wi = 1. We have F (a1, a2, . . . , an) =
∑n

j=1 wj · bj where bj is the jth

largest value of the ai.
For instance, the average may be applied:

Support(S) =

∑

T∈D d(S, T)

of trees in D

In fact, we consider a thresholded Σ-count so that

– a tree cannot be considered as being embedded within another one if the
number of embedded nodes is too low,

– the degree to which a tree is embedded within another one is taken into
account.

We thus have:

Definition 4 Given a database D, a threshold τ and a tree S, the support of S

in D is given by:

Support(S) =
∑

T∈D

(ατ (δ(S, T)))

where

ατ (x) =

{

0 if x > τ

x otherwise

4 FTMnodes: Algorithms

Note that in the classical case, mining totally included trees allows to cut in
the database scan since whenever a node cannot be matched, there is no need
looking for the other ones. In our approach, outliers are accepted, which may be
considered as a drawback considering scalability. However, it is still possible to
cut off the search when the proportion has been overpassed.

As defined previously, we consider that a tree cannot be considered as being
embedded within another one if the number of matching nodes is not greater
than a user-defined threshold τ . This definition not only guarantees the qual-
ity of the research from a semantic point of view, but it also guarantees the
scalability of our approach. Indeed, it is then possible to draw the property of
anti-monotonicity which is the basis of levelwise algorithms. We have the follow-
ing properties:

Considering that the first n nodes of tree S matched to nodes from T , and

that π% of the nodes of S have been matched, then the first n + 1 nodes of S

cannot be embedded in T to a proportion greater than π.

This property comes from the fact that if it has not been possible to match ν

nodes among the first n nodes of S, then the number of nodes being not matched
when going ahead in the process to the first n + 1 nodes will either be equal or
will be greater (equal to ν + 1).

As a consequence, whenever the threshold τ is overpassed, the process can be
stopped for this path as it will never be considered in the thresolded

∑

-count.
Note that it may be the case that a subtree is included within another one

in different manners, as illustrated by Figure 5. In this case, the best degree of
inclusion will be considered and it is found by maintaining all the possible ways
of inclusion until all the solutions have been considered as studied in [6] when
considering fuzzy sequential patterns.

A

D C E A E

B

DC

B

EA

C

B

D

D C EEC

D

A

C

D

S T1 T2 T3

Fig. 5. Several ways of including S in {T1, T2, T3} with τ = 0.75 (at least 3 nodes out
of 4)

The following process is thus considered in our approach (algorithm 1 and 2):

– anchoring
– for each possible anchor, for each node n in S to be matched

• scan the nodes of T untill n is matched, start another way to find the
other possible matches,

• if no match is possible then go to the next node in n and increment the
number of mismatched nodes

• if the number of mismatched nodes is greater than the threshold τ or if
T has been fully scanned, then discard this anchor

– compute the best inclusion from non discarded anchoring paths

Note that our approach is consistant, meaning that if τ = 1 (i.e. all the nodes
must be mapped), then our algorithms are exactly the same as the ones defined
in the crisp case [5].

5 Conclusion

In this paper, we have detailed our previous work on fuzzy tree mining by giving
the necessary definitions and algorithms in order to address the partial inclu-
sion. Partial inclusion is a big deal in tree mining as it is not possible to consider
full matches in real applications. However, it is necessary to remain scalable as
the volumes of data being considered in real databases is huge. We thus design
solutions based on levelwise algorithms, which consider anti-monotonic proper-
ties that guarantee the scalability. The algorithms presented here are currently

Data: S //subtree to validate,
T //tree from database

Result: true //if S is embedded within T

M // mapping set of S within T ;
foreach node m ∈ NT do

n← root(S);
if L(n) = L(m) then

PartialInclusionDegree(S, T, n, m, M);
M←

S

M ;

return the best inclusion {M ∈M|MIN{M.mismatchedNodes}};

Algorithm 1: Anchoring

Data: S //subtree to validate, T //tree from database,
n, m //anchoring point, n ∈ S to m ∈ T ,
M //occurrence of S

M [n]← m;
n← n + 1;
if n <= |S| then

P ← {w : w ∈ T such as ancestor(w) = M [ancestor(n)] and L(w) =
L(n)};
if P = ∅ then

foreach node w ∈ P do

PartialInclusionDegree(S, T, n, w, M);

else

M.mismatchedNodes←M.mismatchedNodes + 1;
if M.mismatchedNodes >= τ then

exit;

else

exit;

Algorithm 2: PartialInclusionDegree

implemented, and it is possible to conclude that this approach allows the ex-
traction of more frequent subtrees (as fuzziness is introduced) while remaining
scalable. Future work includes the comparison of the results depending on the
choices of the aggregation function. This comparison will be lead both on the
quality of frequent subtrees and on runtime, as some aggregation functions are
easier to compute than other ones.

References

1. T. Asai, K. Abe, S. Kawasoe, H. Arimura, and H. Sakamoto. Efficient substructure
discovery from large semi-structure data. In 2nd Annual SIAM Symposium on Data
Mining, SDM2002, Arlington, VA, USA, 2002. Springer-Verlag.

2. Y. Chi, R. R.Muntz, S. Nijssen, and J. N. Kok. Frequent subtree mining - an
overview. Fundamenta Informaticae XXI, pages 1001–1038, 2005.

3. Y. Chi, Y. Yang, and R. Muntz. Cmtreeminer: Mining both closed and maximal
frequent subtrees. In The Eighth Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD’04), 2004.

4. Y. Chi, Y. Yang, and R. R. Muntz. Indexing and mining free trees. In International
Conference on Data Mining 2003 (ICDM2003), 2003.

5. F. Del Razo, A. Laurent, P. Poncelet, and M. Teisseire. Rsf - a new tree mining
approach with an efficient data structure. In Proceedings of the joint Conference:
4th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT
2005), pages 1088–1093, 2005.

6. C. Fiot, A. Laurent, and M. Teisseire. From crispness to fuzziness: Three algo-
rithms for soft sequential pattern mining. IEEE Transactions on Fuzzy Systems.
(to appear), 2007.

7. D. Huffman. A method for the construction of minimum-redundancy codes. In
Proceedings of the Institute of Radio Engineers, 1952.

8. D. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms. Addison-Wesley, 1973.

9. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In IEEE Interna-
tional Conference on Data Mining (ICDM), 2001.

10. A. Laurent, M. Teisseire, and P. Poncelet. Fuzzy Data Mining for the Semantic
Web: Building XML Mediator Schemas, chapter 12. Elsevier, E. Sanchez(ed.), To
appear, 2006.

11. S. Sanchez, A. Laurent, P. Poncelet, and M. Teisseire. Fuzbt: a binary approach
for fuzzy tree mining. In Proceedings of the 11th IPMU International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU 2006), 2006.

12. A. Termier, M.-C. Rousset, and M. Sebag. Treefinder, a first step towards XML
data mining. In IEEE Conference on Data Mining (ICDM), pages 450–457, 2002.

13. C. Wang, Q. Yuan, H. Zhou, W. Wang, and B. Shi. Chopper: An efficient algorithm
for tree mining. Journal of Computer Science and Technology, 19:309–319, May
2004.

14. M. A. Weiss. Data Structures And Algorithm Analysis In C. Addison Wesley, 1998.
15. R. Yager. Families of owa operators. Fuzzy Sets and Systems, 57(3):125 – 148,

1993.
16. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In IEEE

Conference on Data Mining (ICDM), 2002.

17. M. J. Zaki. Efficiently Mining Frequent Trees in a Forest. In In KDD’02, Edmon-
ton, Alberta, Canada, 2002. ACM.

