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ABSTRACT 
 
High repetitivity remote sensing could substantially improve 
natural habitats monitoring and mapping in the next years. 
However, dense time series of satellite images require new 
processing methodologies. In this paper we proposed an 
approach which combines Object Based Image Analysis 
(OBIA) and k-partite graphs for detecting spatiotemporal 
evolutions in a Mediterranean protected site composed of 
several types of natural and semi-natural habitats. The 
method was applied over a recent dataset (SPOT4 Take-5) 
specially conceived to simulate the acquisition frequency of 
the future Sentinel-2 satellites. The results indicate our 
method is capable to synthesize complex spatiotemporal 
evolutions in a semi-automatic way, therefore offering a new 
tool to analyze high repetitivity satellite time series. 
 

Index Terms - Natural habitats monitoring, remote 
sensing time series, OBIA, graph representation, SPOT4 
Take-5. 
 

1. INTRODUCTION 
 
Enhancing the frequency of satellite acquisitions represents a 
key issue for Earth Observation community nowadays. The 
upcoming Sentinel-2 satellites, with a 5-day revisit time, will 
lead time series analysis of high resolution optical images 
into a new level of complexity. This kind of high revisit 
capacity will open new possibilities for several applications 
such as mapping and monitoring natural habitats. However, 
close temporal acquisition requires new methodologies for 
time series analyses as advertised by the scientific 
community [1, 2]. Recent reviews about the integration of 
remote sensing for conservation monitoring [3] and Natura 
2000 habitat monitoring [4] pointed out remote sensing as a 
strong, but still underexploited, tool. In this paper we 
describe a new framework combining Object Based Image 
Analysis (OBIA) and k-partite graphs for studying 
spatiotemporal evolutions of natural and semi-natural 

habitats in a Mediterranean protected site. Our results were 
obtained from the analysis of a recent high repetitivity time 
series dataset provided by the SPOT4 Take-5 experience, 
carried out by the CNES during the first semester of 2013 
with the purpose of simulating Sentinel-2 time series. 
 

2. METHODS 
 
Our study was performed within the Lower Aude Valley 
Natura 2000 site, located in south of France (43°14'22.85" N 
3°11'52.24" E). Contiguous to the Mediterranean Sea, the 
site spreads over 4,842 ha and is mainly dominated (56.3 %) 
by Natural Habitat types of Community interest (NHCI). In 
total, 19 NHCI are part of the site, including 5 priority 
habitat types. The most widespread habitats are: 
Mediterranean salt meadows, Coastal lagoons and 
Mediterranean halophilous scrubs. From February to June 
2013, the SPOT4 satellite acquired 29 images over the study 
site (one image every 5 days) in the context of the Take-5 
experience. Only 8 images were completely cloudy free over 
the whole site. To avoid excessive irregular sampling we 
kept only the 5 dates presented in table 1. The images were 
provided at level-2A (ortho-rectified and corrected from 
atmospheric, environmental and slope effects) by the THEIA 
Land Data Centre. 
 

Table 1. Acquisition date of the five selected SPOT4 Take-5 
images over the Lower Aude Valley Natura 2000 site. 

Timestamp Acquisition date 
T0 27 February 2013 
T1 03 April 2013 
T2 18 April 2013 
T3 13 May 2013 
T4 02 June 213 

 
From our time series, we aimed to extract a set of k-partite 
graphs describing the evolution of the natural areas within 
the site. More in detail, each graph depicts a single area that 



evolves during the time. The general process we developed 
can be divided in 4 main steps as shown in figure 1. 
After some preprocessing and data standardization (step 1) 
which includes spatial subset and spectral indices 
computation, we segment the images individually (step 2). 
Six raster layers are used for image segmentation, four of 
them correspond to the SPOT4 spectral bands and the other 
two are the Normalized Difference Vegetation Index 
(NDVI) [5] and the Normalized Difference Water Index 
(NDWI) [6]. Image segmentation was performed in 
eCognition Developer 8.8.1 (multiresolution segmentation 
algorithm) throughout a hierarchical rule-set resulting in 
a set of objects per timestamp (around 800-1000). The next 
main step (step 3) involves the selection of particular zones 
(Bounding Boxes) to monitor during the time. The set of 
Bounding Boxes is chosen among all the objects obtained 
over all the timestamps. We select the Bounding Boxes 
following three criteria: a) obtain a good coverage of all the 
study area, b) reduce the overlapping among Bounding 
Boxes and c) constrain the process to select big objects. The 
coverage requirement lies on the hypothesis that we would 
extract as much information as possible from the time series 
images and for this reason we will cover the entire study 
area. The second requirement helps the process to reduce 
redundancy and avoid following the same zone more than 
once. The last criterion specifies the following hypothesis: 
big objects are assumed to delimitate the maximum extent of 
a particular phenomenon. For this reason we need to detect 
such particular spatial configuration in order to follow a 
phenomenon throughout time. 

Once the set of Bounding Boxes is filtered out, an evolution 
graph is created for each of them (step 4). Given a Bounding 
Box BB, we project BB over each timestamp of the time 
series and we select the objects overlapping with BB. The 
graph is built linking the objects of timestamp i with the 
objects of timestamp i+1. The weight of the link represents 
the degree of overlap between two objects. In this way we 
obtain graphs that have as many layers as the number of 
images in the time series. Another intrinsic characteristic of 
an evolution graph is that for a certain layer it will contain 
only one object (corresponding to the Bounding Box that 
constrains the graph spatial extent). Logically objects 
belonging to the same timestamp are not connected; this is 
the same for objects not belonging to two successive 
timestamps. 

3. RESULTS 
 
In total, 551 evolution graphs were generated for the entire 
Lower Aude Valley site. Each of the resulting graphs 
synthesizes the temporal behaviour of a specific area which 
can be guided by particular changes and evolutions, like 
phenological cycles or environmental events (i.e. flooding, 
fire, etc.). For the natural part of the site (non-agricultural), 
each graph represents a complex of natural habitats. Figure 2 
presents two examples of evolution graphs obtained over 
areas characterized by distinct natural habitats and 
environmental factors. 
The first example (A) presents a quite simple evolution 
graph as the boundaries of the objects remain very similar 
from one time stamp to the next one. This area is dominated 
mainly by halo-psammophile meadows, coastal-saltmarsh 

Figure 1. Main steps of the time series processing for evolution graphs extraction. 



grass swards and Mediterranean saltmarsh scrubs. From T0 
up to T2 the graph contains only a single object per layer, 
afterwards two small peripheral objects appear. By 
analyzing the objects spectral content (bands and vegetation 
indices), we notice gradual and smoothed changes (figure 3). 
The NDVI in the end of February (T0) is around 0.33 and 
grows gradually up to 0.45 (without considering the 
peripheral objects). This increase, from the winter up to end 
of the spring, corresponds to the expected changes with 
regard to the phenology of those habitats. The peripheral 
objects pointed to some interesting local variations. The first 
one appears at T3 and corresponds to the area closer to the 
coastal dunes. The vegetation is sparser and the soil 

response contributes to keeping the values NDVI lower than 
0.35. The second peripheral object appears in the last 
timestamp and is contiguous to a small coastal pond. The 
wetness of this area should contribute to a better vegetation 
development as the NDVI attains 0.52. NDWI values, which 
informs about vegetation liquid water content, are low 
(from 0.0 up to 0.18). Nevertheless, the temporal behavior is 
similar to those described for the NDVI. 
The graph structure of the second example (B) is much more 
complex and encloses several objects in most of the layers. 
We can observe some drastic radiometric changes 
throughout the time series. Graph B represents the evolution 
of a temporary pond. Flooded during the winter (T0) and the 

Figure 2. Examples of evolution graphs for (A) coastal meadows and scrubs and (B) temporary pond. 

Figure 3. NDVI temporal profiles of the evolution graphs A and B (showed in fig.2).  Dots correspond to the mean 
NDVI value calculated for each object of the evolution graphs. 



beginning of spring (T1), the pond dries up progressively 
starting from T2. The water is gradually replaced by some 
pioneer terrestrial vegetation, i.e. Salicornia patula and 
annual Suaeda sp. Habitat spatial differentiation will depend 
mainly on the local variations of soil salinity and submersion 
time. Southern and Southeastern parts of the former pond 
will present more exuberant vegetation and denser covering 
of the soil. Such developments can be observed since T2 and 
subsist up to last timestamp (objects presenting the higher 
NDVI values on figure 3 – graph B). Flooded areas as well 
as non-vegetated surfaces can follow during time and are 
also easily detectable in the NDVI profiles (negative and 
near zero values). NDWI evolutions are also informative to 
follow the annuals colonization or the emergence of bare 
soils but should not be used detect flooding events. 
 

4. CONCLUSIONS 
 
The approach described here allows connecting objects all 
along the time series even if they were originally obtained 
from independent segmentations. The combination of OBIA 
and k-partite graphs offers a new tool to analyze in-deep the 
spatiotemporal evolutions of a particular area. Natural and 
semi-natural habitats are characterized by phenological 
cycles and are sometimes associated to seasonal controlling 
factors, like flooding in our case. High repetitivity satellite 
time series provide relevant information to characterize such 
evolutions but the manual analysis of is a very hard task 
even for a skilled image analyst or an ecology field expert. 
In a more automatic way, the graphs generated by our 
approach synthesize complex spatiotemporal evolutions and 
can be useful for this kind of time-consuming task. Actually, 
graph structure associated to spectral content of the objects 
provides complementary and spatially pertinent information 
allowing prompt analysis of dense time series. As future 
improvements we plan to develop ranking and clustering 
algorithms for the evolution graphs. This higher level 
information should help the expert to post-process the 
results as the graphs will be already organized in groups 
with similar temporal behavior. Also, ranking methods can 
be useful to highlight the most dynamic areas and the 
timestamps when the most important changes arise. In our 
study case, only the most frequent and ecologically coherent 
associations (complex of habitats) were analyzed as the 
spatial resolution of SPOT-4 images (20m) is not enough to 
individualize most of the Lower Aude Valley natural 
habitats. Another data limitation is related the time length of 
the Take-5 experience, which concerned only the first 
semester of 2013 and avoided the observation of complete 
phenological cycles. To a certain extent, the upcoming 
Sentinel-2 time series should overcome these difficulties 
(spatial resolution of 10 m for visible-NIR bands and 
continuous acquisition expected for about 7 years). Lastly, 
the combination of punctual very high spatial resolution 
imagery (i.e. less than 2 m) should be considered as a 

potential option to improve the delimitation of natural 
habitats. 
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