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Sequential pattern mining is the method that has received much attention in sequence
data mining research and applications, however, a drawback is that it does not profit
from prior knowledge of domains. In our previous work, we proposed a belief-driven
method with fuzzy set theory for discovering the unexpected sequences that contradict
existing knowledge of data, including occurrence constraints and semantic contradictions.
In this paper, we present a new approach that discovers unexpected sequences with
determining semantic contradictions by using concept hierarchies associated with the
data. We evaluate the effectiveness of our approach with experiments on Web usage
analysis.
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1. Introduction

With the development of data management and analysis techniques, more and

more real-world applications store and process the data in sequence format, in-

cluding Web usage analysis, telecommunication network monitoring, finance and

marketing investigations, science experiments, bioinformatics, and so on. Sequence

data mining15,10 has therefore received much attention, where mining sequential

patterns2 is the method most of the research has been concentrated on, which finds

frequent correlations between the elements contained in sequence data.
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Up to now, many efficient algorithms have been developed for mining sequential

patterns around reducing execution time and memory usage3,26,28,30,39,40,42. How-

ever, as of most statistical frequency based data mining methods, a drawback is

that the sequential pattern mining process does not profit from prior knowledge of

data, and often extracts an extremely large number of sequences many of which are

obvious or irrelevant with respect to the domain knowledge. To address those is-

sues, the measurement of “interestingness” for data mining has been systematically

studied during the past years, which can be found in the survey of McGarry27. In

the approaches to interestingness measures, a well-focused one is that the discov-

ered patterns or sequences are interesting because they are unexpected to existing

knowledge4,9,18,22,23,31,32,33,29,37,38. In order to find the unexpectedness in sequence

data, we proposed a belief-driven approach in our previous paper22, where the un-

expected sequence discovery depends on the belief consisting of a sequence rule, an

occurrence constraint, and a semantic contradiction.

For instance, if the prior knowledge of customer purchase behaviors indicates

that in general the customers purchase a pop music CD within the next 5 purchases

after a purchase of an action movie DVD, then a sequence rule can be defineda as

“action movie → pop music”, with an occurrence constraint that “the intervals be-

tween action movie and pop music should be no more than 5”; if we further consider

that the classical music semantically contradicts the pop music, then a semantic

contradiction relation that “a purchase of pop music CD contradicts the purchase of

classical music CD” can be applied. We can therefore state the unexpectedness by

that: “after purchasing an action movie DVD, a customer purchases a pop music CD

out of the next 5 purchases, or purchases a classical music CD within the next

5 purchases.” This work is extended with our recent approach23, where the fuzzy

set theory41 is applied to the occurrence constraint for describing more relevant

unexpected sequences.

However, a limit of our previous approaches is that although the beliefs can be

specified by domain experts, the enumeration of the complete sets of sequence rules

and semantic contradictions based on items22,23,24 is obviously a hard work. For

example, as shown in the above instance, if there exist 10 individual products in

each category of pop music CD, classical music CD, and action movie DVD, we have

to build 103 distinct beliefs to cover all possible combinations of items. Moreover, al-

though the classical music can be naturally viewed as contradicting the pop music,

nevertheless there exist many other genres of music, like the blues, country, jazz,

or rock that can not be simply considered as contradicting or not to contradict the

pop music. Another example about this difficulty can be addressed in our work on

Web usage mining24. In that problem, domain expertise is also required for spec-

ifying the semantic contradictions, where the determination of the contradictions

between different categories of Web contents is quite subjective. For example, the

aAccording to our proposition of building beliefs, a sequence rule required by a belief can be either
extracted from frequent sequences, or defined by domain experts.
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contradiction between politics news and technology news strongly depends on the

experiences of users. The detection of the semantic relatedness between concepts in

a taxonomy is many discussed in data mining literatures14,19,35,36.

In the proposed approach, we improve our previous work by using fuzzy concept

hierarchies in belief construction with the advantages that the semantic contradic-

tions are no longer obligated to build beliefs and the generalized sequence rules can

be handled. Hence, in this paper, we use the semantic relatedness between sequences,

which is a fuzzy degree determined by the semantic distance (the path-length in a

concept hierarchy) and the semantic similarityb between concepts.

index.html

Purchase

Music Movie

RockClassicalJazzPop Action Sci−Fi

CD3CD1 DVD2DVD1CD2

/

News Entertainment

Politics Science Technologies Music Movies Stars

112.html 113.html 116.html 114.html111.html 118.html117.html115.html

(a) (b)

Fig. 1. Semantic hierarchies.

According to the hierarchy shown in Figure 1-a, in the previous example about

customer purchases, the rule “action movie → pop music” requires a purchase of

a pop music CD after a purchase of an action movie DVD. Assume that a customer

has purchased DVD1 (under Action of Movie), then a purchase of CD1 (under Pop

of Music) is expected. According to the semantic relatedness between the con-

cepts “Pop”, “Jazz” and “Classical”, a purchase of CD2 (under Jazz of Music)

or CD3 (under Classical of Music) can be unexpected with respect to the occur-

rence constraints. Figure 1-b shows an example on Web usage analysis, where

the hierarchy corresponds to the Web site structure. The semantic similarity be-

tween concepts is not specified, thus the fuzzy degree of relatedness can be com-

puted from the path-length between concepts. For instance, if users are expected

to access politics news after the access of index page /index.html, then the ac-

cess of other pages like /Entertainment/Music/111.html, /News/Science/112.html or

/News/Technologies/113.html have different fuzzy degree of relatedness. In this case,

the access of 112.html or 113.html can be considered as, for example, “strong unex-

pected” and the access of 111.html can be considered as “weak unexpected” according

to their path-length to any politics news.

The rest of this paper is organized as follows. The related work is introduced in

Section 2. In Section 3, we propose the formalizations of fuzzy unexpected sequences

bFor instance, defined by domain experts or calculated by lexical database analyzing tools, like
the Java WordNet Similarity Library (http://grid.deis.unical.it/similarity/) or the Word-

Net::Similarity (http://www.d.umn.edu/˜tpederse/similarity.html).
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with the soft beliefs built from sequence rules and concept hierarchies. In Section 4,

we present our proposed approach FUSE (Fuzzy Unexpected Sequence Extraction)

for mining fuzzy unexpected sequences with concept hierarchies. In Section 5, we

show and discuss the experimental results, and finally we conclude in Section 6.

2. Related Work

Fuzzy set theory has been many applied to discover more relevant association rules

and sequential patterns. Indeed, fuzzy sets on quantitative attributes are more usu-

ally employed to change the domain of the attributes, employing granules defined

by fuzzy sets instead of precise values.

For example, an association rule1 X ⇒ Y depicts the correlation “if X then

Y ” between patterns X an Y . With fuzzy sets, there is a very extended way of

considering fuzzy association rules as “if X is A then Y is B” in considering of

various information of attributes, such as the type “if beer is lot then potato chips

is lot” or “if age is old then salary is high”5,8,11,16,20,21. In the same manner, the

notion of fuzzy sequential patterns6,17,7,12,13 considers the sequential patterns2 on

quantitative attributes like “60% of young people purchase a lot of beers, then pur-

chase many action movies later, then purchase few PC games”, where the sequence

represents “people is young, then beer is lot, then action movie is many, and then

PC game is few”. Different than many approaches that consider that fuzzy associ-

ation rules as rules or fuzzy sequential patterns as sequences obtained from fuzzy

transactions, i.e., fuzzy subsets of items containing like “age is old” and “salary is

high”, we proposed the notion of fuzzy recurrence rules25 depicting the relation like

“if DVD is often then CD is often” in sequence format.

In this paper, we consider the binary-valued attributes in databases as other crisp

data mining approaches, however we use fuzzy sets for describing the occurrence and

semantics of the unexpectedness. In comparison with association rule and sequential

pattern mining, we present a subjective measure for sequence mining.

McGarry27 systematically investigated the interestingness measures for data

mining, which are classified into two categories: the objective measures based on

the statistical frequency or properties of discovered patterns, and the subjective

measures based on the domain knowledge or the class of users. Silberschatz and

Tuzhilin29 studied the subjective measures, in particular the unexpectedness and

actionability.

The term unexpectedness stands for the newly discovered patterns or sequences

that are surprising to users. For example, if most of the customers who purchase

action movies purchase pop music, then the customers who purchase action movies

but purchase classical music are unexpected. Silberschatz and Tuzhilin29 further

introduced two types of beliefs, hard belief and soft belief, for addressing unexpect-

edness. According to their proposition, the hard belief is a belief that cannot be

changed by new evidences in data, and any contradiction of such a belief implies

data error. For example, in the Web access log analysis, the error “404 Not Found”
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can be considered as a contradiction of a head belief: “the resources visited by users

must be available”; however, the soft belief corresponds to the constraints on data

that are measured by a degree, which can be modified with new evidences in data

that contradict such a belief and interestingness of new evidences is measured by

the change of the degree. For example, when more and more users visit the Web

site at night, the degree of the belief “users access the Web site at day time” will be

changed. The computation of the degree can be handled by various methods, such

as the Bayesian approach and the conditional probability.

With the unexpectedness measure, Padmanabhan and Tuzhilin31,32,33 propose

a belief-driven approach for finding unexpected association rules. In that approach,

a belief is given from association rule, and the unexpectedness is stated by the

semantic contradiction between patterns. Given a belief X ⇒ Y , an association

rule A ⇒ B is unexpected if: (1) the patterns B and Y semantically contradict

each other; (2) the support and confidence of the rule A∪X ⇒ B hold in the data;

(3) the support and confidence of the rule A ∪X ⇒ Y do not hold in the data.

Spiliopoulou37 proposed an approach for mining unexpectedness with sequence

rules transformed from frequent sequences. The sequence rule is built by dividing a

sequence into two adjacent parts, which are determined by the support, confidence

and improvement. A belief on sequences is constrained by the frequency of the two

parts of a rule, so that if a sequence respects a sequence rule but the frequency con-

straints are broken, then this sequence is unexpected. Although that work considers

the unexpected sequences and rules, it is however very different to our problem in

the measure and the notion of unexpectedness contained in data.

3. Preliminary Definitions

3.1. Data Model

Based on the context of sequential pattern data mining2, we consider the following

definitions of the data model.

Given a set of binary-valued attributes, an item is an attribute. An itemset is

an unordered collection of items sorted by lexical order, denoted as (i1i2 . . . im). A

sequence is an ordered list of itemsets, denoted as 〈I1I2 . . . Ik〉. A sequence database

is generally a large set of sequences. Given two sequences s = 〈I1I2 . . . Im〉 and

s′ = 〈I ′1I ′2 . . . I ′n〉, if there exist integers 1 ≤ i1 < i2 < . . . < im ≤ n such that

I1 ⊆ I ′i1 , I2 ⊆ I ′i2 , . . . , Im ⊆ I ′im
, then s is a subsequence of s′, and s′ is a super-

sequence of s, denoted as s ⊑ s′; further, if im − i1 = m− 1, then we say that s is

a consecutive subsequence of s′, denoted as s ⊑c s
′. Denote by I ∈ s an itemset I

contained in a sequence s. For two sequences s and s′, if s ⊑ s′, then we say that

s is included in s′, or s′ supports s. In particular, we denote the first itemset in a

sequence s as s⊤ and the last itemset as s⊥. Thus, given two sequences s and s′, we

note s ⊑⊤ s′ if s⊤ ⊑ s′
⊤

, s ⊑⊥ s
′ if s⊥ ⊑ s′⊥, and s ⊑⊤

⊥
s′ if s⊤ ⊑ s′

⊤

and s⊥ ⊑ s′⊥.

The support of a sequence s in a sequence database D, denoted as σ(s,D), is the

fraction of the total number of sequences in D that support s. Given a minimum



March 21, 2009 11:36 WSPC/INSTRUCTION FILE article

6 Li, Laurent, and Poncelet

frequency threshold minimum support, denoted as σmin, a sequence s is frequent if

σ(s,D) ≥ σmin. In a sequence database D, if a sequence s is not a subsequence of

any other sequence s′ ∈ D, then the sequence s is maximal.

The length of a sequence s is the number of itemsets contained in this sequence,

denoted as |s|. The size of a sequence s is the total number of items contained

in this sequence, denoted as ‖s‖. An empty sequence is denoted as ∅, we have

s = ∅ ⇐⇒ |s| = 0. The concatenation of sequences is denoted as the form s1 · s2,

we have |s1 · s2| = |s1|+ |s2| and ‖s1 · s2‖ = ‖s1‖+‖s2‖. For example, let sequences

s1 = 〈(a)(b)(c)〉 and s2 = 〈(ab)(a)〉, we have |s1| = 3, ‖s1‖ = 3, |s2| = 2, ‖s2‖ = 3,

s1 · s2 = 〈(a)(b)(c)(ab)(a)〉, |s1 · s2| = 5, and ‖s1 · s2‖ = 6.

3.2. Belief System on Sequence Data

In order to find unexpectedness in sequence data, we proposed a belief system on

sequences in our previous work22,23.

A belief on sequences consists of a sequence rule, an occurrence constraint and a

semantic contradiction. The rule is defined in the form sα → sβ, which depicts that

given a sequence s, the presence of sα ⊑ s implies sα · sβ ⊑ s. If the implication

is satisfied, then we say that the sequence s supports the rule sα → sβ , denoted as

s |= (sα → sβ).

Let τ = [min..max] (min,max ∈ N and min ≤ max) be a constraint on the

length of a sequence, that is, given a sequence s, if min ≤ |s| ≤ max, then s satisfies

the constraint, denoted as |s| |= τ . Given a sequence s = s1 ·s′ ·s2, where the length

of s′ satisfies a constraint τ , that is, |s′| |= τ , then the constraint τ also constrains

the occurrences of s1 and s2 in the sequence s. Hence, we call the constraint τ the

occurrence constraint on sequences. With the occurrence constraint, we extend the

rule sα → sβ to sα →τ sβ , which represents the following relation:

(sα →τ sβ) ⇒ (sα · s′ · sβ ⊑c s) ∧ (|s′| |= τ).

We call such a rule with occurrence constraint an occurrence rule. Notice that

given an occurrence constraint τ = [min..max], when max is not specified (i.e.,

any integer k such that k ≥ min), we note τ = [min..∗]. In particular cases, for

min = max = 0, we note τ = 0 and the rule sα →0 sβ ; for min = 0 and max = ∗,

we note τ = ∗ and the rule sα →∗ sβ .

Given two sequences s1 and s2, the semantic contradiction is denoted as s1 6≃sem

s2, which depicts that the sequences s1 and s2 semantically contradict each other. A

semantic contradiction can be applied onto an occurrence rule for stating that the

occurrence of the sequence sβ should not be replace by the occurrence of a sequence

sγ that semantically contradicts sβ . Since the rule sα → sβ can be interpreted as

the implication (sα ⊑ s) ⇒ (sα · sβ ⊑ s), according to sβ 6≃sem sγ we have the

implication (sα ⊑ s) 6⇒ (sα · sγ 6⊑ s). Therefore, considering the occurrence rule

with a semantic contradiction, we have the following relation:

{sα →τ sβ} ∧ {sβ 6≃sem sγ} ⇒ (sα · s′ · sβ ⊑c s) ∧ (sα · s′ · sγ 6⊑c s) ∧ (|s′| |= τ),
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which drives to the definition of belief on sequences.

Definition 1. A belief on sequences consists of an occurrence rule sα →τ sβ and

a semantic contradiction sβ 6≃sem sγ , where τ = [min..max] (min,max ∈ N

and min ≤ max) and sβ semantically contradicts sγ , denoted as {sα →τ sβ} ∧

{sβ 6≃sem sγ}. If a sequence s satisfies a belief b, denoted as s |= b, then we have

that sα ⊑ s implies sα · s′ · sβ ⊑c s and sα · s′ · sγ 6⊑c s, where |s′| |= τ .

The task of mining unexpected sequences is to find all the sequences that violate

a given set of beliefs in databases.

4. Fuzzy Occurrence of Unexpected Sequences

An unexpected sequence is a sequence that violates a belief. In our previous work,

the unexpectedness is stated by the violation of the occurrence rule or the semantic

contradiction contained in a belief. According to the structure of an occurrence rule,

three forms of unexpected sequences can be defined as follows.

Definition 2. Given a belief b = {sα →τ sβ} ∧ {sβ 6≃sem sγ} and a sequence s

where sα ⊑ s:

(1) if τ = ∗ and there does not exist sβ ⊑ s such that sα · sβ ⊑ s, then s is an

α-unexpected sequence, denoted as s 3α b;

(2) if τ 6= ∗ and there exists sβ ⊑ s such that sα · sβ ⊑ s, and there does not exist

s′ ⊑ s such that |s′| |= τ and sα · s′ · sβ ⊑c s, then s is a β-unexpected sequence,

denoted as s 3β b;

(3) if there exists sγ ⊑ s such that sα · sγ ⊑ s and there exists s′ ⊑ s such that

|s′| |= τ and sα · s′ · sγ ⊑c s, then s is a γ-unexpected sequence, denoted as

s 3γ b.

An unexpected sequence is named by the primary factor that causes unexpected-

ness: according to an belief {sα →τ sβ}∧{sβ 6≃sem sγ}, an α-unexpected sequence is

unexpected because the occurrence of sβ is missing when τ = ∗, where sα is the only

factor; a β-unexpected sequence is unexpected because the occurrence of sβ violates

the constraint τ , thus, sβ is the primary factor of unexpectedness; a γ-unexpected

sequence is unexpected because the occurrence of sγ violates the semantic contradic-

tion sβ 6≃sem sγ , in this case, sγ is the primary factor of unexpectedness. The three

forms of unexpectedness is respectively called α-unexpectedness, β-unexpectedness,

and γ-unexpectedness.

Example 1. Let us consider a belief on event sequences, where the numbers

11, 12, . . . , 21, 22, . . . , 31, 32, . . . stand for unique event IDs:

b = {〈(11)〉 →[0..2] 〈(21)〉} ∧ {〈(21)〉 6≃sem 〈(31)〉}.
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This belief b requires the occurrence of event 11 followed by an occurrence of event

21, but not of event 31, within no more than two intervals. Thus, the event se-

quence s = 〈(12)(22)(12)(11)(12)(11)(12)(21)(31)(12)〉 is β-unexpected to belief b.

The structure of unexpected sequence s are shown in Figure 2.

(12)(22)(12)(11)(12)(11)(12)(21)(31)(12)

s

sa u sc

Fig. 2. Structure of an unexpected sequence.

Let u denote the unexpected part of an unexpected sequence s, then the β-

unexpectedness and γ-unexpectedness can be represented as the forms u = sα ·sd ·sβ

and u = sα · sd · sγ . The satisfiability of the constraint τ between sα, sβ or sγ

within s can therefore be determined by examining the length of the sequence sd.

In order to handle the fuzzy unexpectedness on the occurrence constraint τ of a

belief b = {sα →τ sβ}∧{sβ 6≃sem sγ} in a sequence s, we partition the satisfiability

of τ between sα, sβ or sγ within s into various fuzzy sets, and the best membership

degree of the β-unexpectedness and γ-unexpectedness can be determined by a fuzzy

membership function µτ (|sd| , τ,F), where F is a set of fuzzy partitions. We call

µτ the fuzzy occurrence degree. For instance, Figure 3 shows an example about the

fuzzy partitions for the β-unexpectedness when τ = [0..5]. Clearly, according to

Definition 2, there does not exist any fuzziness in the α-unexpectedness.

1 3 4 5 82 6 7

0.5

1
medium strongweak

µ
τ = [0..5]

Fig. 3. Fuzzy partitions for the β-unexpectedness with τ = [0..5].

Example 2. We consider a belief on Web site log files, where home, login, and

logout stand for the URL resources visited in a user session:

b = {〈(home)〉 →[0..5] 〈(login)〉} ∧ {〈(login)〉 6≃sem 〈(logout)〉}.

We consider three fuzzy sets for the each unexpectedness, they are “weak unex-

pected” (Fw), “medium unexpected” (Fm) and “strong unexpected” (Fs). In a se-

quence s = 〈(home)(ad1)(ad2)(ad3)(ad4)(login)〉, we have |(ad1)(ad2)(ad3)(ad4)| = 4.
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Let F = {Fw, Fm, Fs} According to the fuzzy membership functions shown in Figure

3, we have that µτ (4, τ,F) = 0.67:Fw, µτ (4, τ,F) = 1:Fm and µτ (4, τ,F) = 0.5:Fs,

so that the best description of the sequence s is “medium unexpected”.

1

0 0

1 1

0 0

1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) (b) (c) (d)

µµµµ

τ = [0..3] τ = [3..3] τ = [3..5] τ = [3..∗]

β ββββ β

1

0 0

1 1

0 0

1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) (b) (c) (d)

µµµµ

τ = [0..3] τ = [3..3] τ = [3..5] τ = [3..∗]

γγγγ

Fig. 4. Fuzzy measure of the “strong unexpected” for the β-unexpectedness and γ-unexpectedness.

For more details of the fuzziness on the occurrence constraint τ , Figure 4 rep-

resents “strong unexpected” for β-unexpectedness and γ-unexpectedness with (a)

τ = [0..3], (b) τ = [3..3], (c) τ = [3..5] and (d) τ = [3..∗].

5. Soft Belief with Concept Hierarchies

In this section, we extend the notion of belief on sequences to soft belief with concept

hierarchies.

A concept is a cognitive unit of knowledge, and a group of semantically related

concepts can be represented as a hierarchy, defined as follows.

Definition 3. A concept hierarchy H = (C,�) of concepts is a finite set C of

concepts and a partial order � on C.

In this definition, the partial order � is a specialization/generalization relation

on the concepts in the set C. For two concepts cϕ, cθ ∈ C, if cϕ � cθ, then we say

that the concept cϕ is more general than the concept cθ, and we also say that the

concept cθ is more specific than the concept cϕ. We write cϕ ≺ cθ if cϕ � cθ and

not cθ � cϕ.

Given a concept hierarchy H = (C,�), denote by c ∈ H the concept c ∈ C.

A concept pattern is an unordered collection C = (c1c2 . . . cm) of distinct concepts

sorted by lexical order, where ci is a concept and for any ci 6= cj , ci 6� cj . A

concept sequence is an ordered list S = 〈C1C2 . . . Ck〉 of concept patterns, where

Ci is a concept pattern. Denote C ∈ S a concept pattern contained in a concept

sequence S. The specialization relation � can be applied to concept patterns and

concept sequences. Given two concept patterns C and C′, if for each concept c ∈ C
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there exists a distinct concept c′ ∈ C′ such that c � c′, then we say that the concept

pattern C is more general than the concept pattern C′ (and C′ is more specific than

C), denoted as C � C′. Given two k-length concept sequences S = 〈C1C2 . . . Ck〉

and S′ = 〈C1
′C2

′ . . . Ck
′〉, if for each concept pattern Ci and Ci

′ (1 ≤ i ≤ k), we

have that Ci � Ci
′, than we say that the concept sequence S is more general than

the concept sequence S′ (and S′ is more specific than S), denoted as S � S′.

Given a sequence database D and a concept hierarchy H, each item i ∈ D

belongs to a concept c ∈ H, denoted as i |= c; if i |= cθ and cϕ � cθ, then i |= cϕ.

Let I be an itemset and C be a concept pattern, if for each i ∈ I there exist a

distinct concept c ∈ C such that i |= c, then we say that the itemset I supports

the concept pattern C, denoted as I |= C. Let S = 〈C1C2 . . . Cm〉 be a concept

sequence on H and s = 〈I1I2 . . . In〉 be a sequence in D, if there exist integers

1 ≤ i1 < i2 < . . . < im ≤ n such that Ii1 |= C1, Ii2 |= C2, . . . , Iim
|= Cm, then we

say that the sequence s supports the concept sequence S, denoted as s |= S.

An occurrence rule of concept sequence is in the form Sα →τ Sβ, where Sα, Sβ

are two concept sequences and τ = [min..max] is a constraint such that min,max ∈

N andmin ≤ max. Given a sequence s, if there exists a sequence s′ such that |s′| |= τ

and there exist sequences sα
′, sβ

′ ⊑ s such that sα
′ |= Sα, |sα

′| = |Sα|, sβ
′ |= Sβ ,

|sβ
′| = |Sβ|, and sα

′ · s′ · sβ
′ ⊑ s, then we say that the sequence s supports the rule

Sα →τ Sβ, denoted as s |= (Sα →τ Sβ).

A

D E F G

B C

fcba d e g h

Fig. 5. A concept hierarchy with items.

Example 3. Figure 5 shows a concept hierarchy of concepts and associated items.

We have A ≺ B, A ≺ C, B ≺ D, B ≺ E, C ≺ F , C ≺ G, {a, b} |= D, {c, d} |= E,

{e, f} |= F , and {g, h} |= G. With this hierarchy, given a concept occurrence rule

〈(D)〉 →∗ 〈(E)(EF )〉 and a sequence s = 〈(a)(b)(c)(de)〉, we have s |= (〈(D)〉 →∗

〈(E)(EF )〉) since we have a |= D (or b |= D), c |= E, and (de) |= (EF ).

We now discuss the semantic contradiction relation on concepts and concept

sequences. The relation � is monotone to the semantic contradiction relation: for

all cϕ, cφ ∈ C, if cϕ 6≃sem cφ and cϕ � cθ, then cθ 6≃sem cφ; if cϕ 6≃sem cφ and

iϕ |= cϕ, iφ |= cφ, then iθ 6≃sem iφ. In the same manner, given concept sequences

Sϕ, Sφ, and Sθ, the semantic contradiction relation on concept sequences determines
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that, if Sϕ 6≃sem Sφ and Sϕ � Sθ, then Sθ 6≃sem Sφ; if Sϕ 6≃sem Sφ and sϕ |= Sϕ,

sφ |= Sφ, then sϕ 6≃sem sφ.

We also call a concept sequence a generalized sequence and call a occurrence rule

of concept sequence a generalized occurrence rule. With a concept hierarchy, a soft

belief on sequences can therefore be defined as follows.

Definition 4. A soft belief on sequences consists of a generalized occurrence

rule Sα →τ Sβ associated with a concept hierarchy H, where τ = [min..max]

(min,max ∈ N and min ≤ max), denoted as {Sα →τ Sβ} ∧ {H}.

We discuss the satisfaction and violation of a soft belief in the next section

within the notions of fuzzy unexpected sequences.

6. Fuzzy Unexpected Sequences with Soft Beliefs

In this section, we present the fuzzy unexpected sequences with respect to the

soft beliefs and concept hierarchies. With soft beliefs, we consider the fuzziness in

unexpected sequences on both of the occurrence and semantics, with respect to

given concept hierarchies.

Let us consider again the instance on Web usage analysis addressed in Section

1, where a generalized occurrence rule can be defined as 〈(/)〉 →[0..5] 〈(Politics)〉.

For example, to build a belief with “technology news semantically contradicts

politics news”, the semantic contradiction 〈(Politics)〉 6≃sem 〈(Technology)〉 is

necessary. However, depending on user class and the hierarchy shown in Figure

6, not only the technology news contradicts politics news.

item

/

News Entertainment

Politics Science Technologies Music Movies Stars

112.html 113.html 116.html 114.html111.html 118.html117.html115.html

index.html concept

Fig. 6. A concept hierarchy based on Web structure.

The semantic contradiction of two concepts in a hierarchy is determined by the

distance and semantic similarity between the concepts. Given a concept hierarchy

H and two concepts ci, cj ∈ H, the semantic distance between the concepts ci and

cj in the hierarchy H is denoted as δ(ci, cj,H); the semantic similarity is defined

as a score λ(ci, cj), where 0 ≤ λ(ci, cj) ≤ 1. For two concepts, we have that the

more distance the less importance for relatedness, and the less similarity the more

contradiction. Therefore, we propose a simple formula for handling the semantic
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contradiction degree between concepts, denoted as ωsem(ci, cj ,H), as following:

ωsem(ci, cj,H) =
2 − λ(ci, cj)

δ(ci, cj ,H)
, (1)

where the semantic distance between the concepts ci and cj is defined as the path-

length (i.e., the number of edges) between the nodes ci and cj in the hierarchy

H, and if ci = cj , we define δ(ci, cj ,H) = 1. In this formula, we have that 0 ≤

λ(ci, cj) ≤ 1 if the semantic similarity between ci and cj is defined; otherwise, if the

semantic similarity is not defined, we define λ(ci, cj) = 1, so that ωsem(ci, cj ,H) is

the reciprocal value of the length-path between ci and cj in the hierarchy H. In the

case that ci = cj , we define λ(ci, cj) = 2, so that ωsem(ci, cj ,H) = 0.

Notice that we consider the semantic contradiction degree ωsem(ci, cj ,H) as a

value 0 ≤ ωsem < 1, that excludes the case that δ(ci, cj ,H) = 1 when λ(ci, cj) is

undefined.

Table 1. Semantic distance and similarity matrix (path-length : similarity).

Politics Science Technology Music Movie Stars

Politics 1:2 2:0.6857 2:0.7183 4:0.4270 4:0.3388 4:0.2996

Science 2:0.6857 1:2 2:0.6929 4:1 4:1 4:1

Technology 2:0.7183 2:0.9 1:2 4:1 4:1 4:1

Music 4:0.4270 4:1 4:1 1:2 2:0.5159 2:0.4274

Movie 4:0.3388 4:1 4:1 2:0.5159 1:2 2:0.3392

Stars 4:0.2996 4:1 4:1 2:0.4274 2:0.3392 1:2

Table 2. Semantic contradiction degrees between concepts.

ci : cj δ(ci, cj ,H) λ(ci, cj) ωsem(ci, cj ,H)

Politics : Politics 1 2 0

Politics : Science 2 0.6857 0.65715

Politics : Technology 2 0.7183 0.64085

Politics : Music 4 0.4270 0.39325

Politics : Movies 4 0.3388 0.4153

Politics : Stars 4 0.2996 0.4251

Politics : / 2 1 0.5

Politics : News 1 1 1∗

Example 4. With the hierarchy shown in Figure 6, we have the relations listed

in 1, where the semantic similarity between concepts is determined by the JWSL

library34 (assume that the similarities between concepts Science, Technology and
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Music, Movie, Stars are not defined). For instance, the path-length between concepts

Politics and Technology is 2; between Politics and Music is 4. With the JWSL

library we have that the similarity between the concepts Politics and Technology

is 0.7183; between Politics and Music is 0.4270. Thus, according to Equation (1),

the semantic contradiction degrees between Politics and other concepts are listed

in Table 2, where ωsem between Politics and News is excluded.

Given a sequence s, a generalized sequence S, and a concept hierarchy H, where

for each concept c contained in S, we have that c ∈ H. We determine the semantic

contradiction degree between s and S on H in the following manner.

We first consider the compatible form constraint on a generalized sequence of

concepts and a sequence of items, defined as follows.

Definition 5. Given a generalized sequence S and a sequence s, let S =

〈C1C2 . . . Cm〉 and s = 〈I1I2 . . . In〉. The compatible form is a constraint that

there exist integers 1 ≤ i1 < i2 < . . . < im ≤ n such that |C1| ≤ |Ii1 | , |C2| ≤

|Ii2 | , . . . , |Cm| ≤ |Iim
|, denoted as S ⊳ s, and denote by S E s the case |C1| =

|Ii1 | , |C2| = |Ii2 | , . . . , |Cm| = |Iim
|.

In order to determine the semantic contradiction between S and s, we require

that S ⊳ s. Now we consider the semantic contradiction between a concept pattern

C and an itemset I (where |C| ≤ |I|) on a hierarchy H, denoted as ωpat(C, I,H)

and defined as follows. Let Ω(ci, ij ,H) = max{ωsem(ci, cj ,H) | cj ∈ H, ij |= cj}

be the maximal semantic contradiction degree between a concept ci ∈ H and an

item ij ∈ I, then the number of the combinations of Ω(ci, ij ,H) on the elements in

ci ∈ C and ij ∈ I is the number of permutations of |C| items in I, that is,

P (|I| , |C|) =
|I|!

(|I| − |C|)!
. (2)

Let I be the set of such permutations, we denote the semantic contradiction degree

between a concept pattern C and an itemset I as:

ωpat(C, I,H) =

max{
∑

ci∈C

Ω(ci, ij ,H) | ij ∈ I ′, I ′ ∈ I}

|C|
. (3)

Therefore, given a generalized sequence S and a sequence s, for all subsequences s′ ⊑

s such that S E s′, the semantic contradiction degree between S and s, denoted as

ωseq(S, s,H), is defined as the average of the sum of ωpat(Ci, Ii,H) that is maximal,

where Ci and Ii are itemsets contained in S and s′, that is,

ωseq(S, s,H) =

max{
∑

1≤i≤‖S‖

ωpat(Ci ∈ S, Ii ∈ s′,H) | s′ ⊑ s, S E s′}

‖S‖
. (4)

Respectively, we define the semantic relatedness degree between concepts, denote

by ηsem(ci, cj ,H), as following:

ψsem(ci, cj ,H) =
λ(ci, cj)

δ(ci, cj ,H)
, (5)
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and let Ψ(ci, ij,H) = max{ψsem(ci, cj,H) | cj ∈ H, ij |= cj}, in the same manner

with the permutation set I of a given itemset I with respect to a concept pattern

C, we define the semantic relatedness degree between C and I as

ψpat(C, I,H) =

max{
∑

ci∈C

Ψ(ci, ij ,H) | ij ∈ I ′, I ′ ∈ I}

|C|
. (6)

Given a generalized sequence S and a sequence s, for all subsequences s′ ⊑ s

such that S E s′, the semantic relatedness degree between S and s, denoted as

ψseq(S, s,H), is defined as the average of the sum of ψpat(Ci, Ii,H) that is maximal,

where Ci and Ii are itemsets contained in S and s′, that is,

ψseq(S, s,H) =

max{
∑

1≤i≤‖S‖

ψpat(Ci ∈ S, Ii ∈ s′,H) | s′ ⊑ s, S E s′}

‖S‖
. (7)

With the notions of semantic relatedness and contradiction degrees, we formally

define the fuzzy unexpectedness of sequences with respect to soft beliefs on a concept

hierarchy as follows.

Definition 6. Given a concept hierarchy H, a soft belief B = {Sα →τ Sβ} ∧ {H}

where τ = [min..max] (min,max ∈ N and min ≤ max), a sequence s where there

exists sα ⊑ s such that sα |= Sα, a user defined minimum semantic contradiction

degree ωmin, and a user defined minimal semantic relatedness degree ψmin:

(1) τ = ∗: if there does not exist sβ ⊑ s such that sα ·sβ ⊑c s and ψseq(Sβ , sβ,H) ≥

ψmin, then s is a fuzzy α-unexpected sequence, denoted as s 3
∼
α B;

(2) τ 6= ∗: if there exist s′, sβ , sγ ⊑ s such that |s′| 6|= τ , sα · s′ · sβ ⊑c s, and

ψseq(Sβ , sβ ,H) ≥ ψmin, then s is a fuzzy β-unexpected sequence, denoted as

s 3
∼
β B;

(3) if there exist s′, sγ ⊑ s such that |s′| |= τ , sα · s′ · sγ ⊑c s, and ωseq(Sγ , sγ ,H) ≥

ωmin, then s is a fuzzy γ-unexpected sequence, denoted as s 3
∼
γ B.

The fuzzy unexpectedness on semantic relatedness and contradiction can be

partitioned into different fuzzy partitions, like “weak relatedness/contradiction”,

“medium relatedness/contradiction”, or “strong relatedness/contradiction” with re-

spect to β-unexpected or γ-unexpected sequences, by fuzzy membership functions

µsem(ψseq ,F) or µsem(ωseq,F), where F is a set of fuzzy partitions.

Example 5. For instance, given a soft belief {〈(/)〉 →∗ 〈(Politics)(Movies)〉}∧{H}

corresponding to the hierarchy shown in Figure 6, the sequence 〈(index)(117)(118)〉

(we ignore file extensions) is an expected sequence. Given a minimum semantic

contradiction degree 0.3, according to Table 1, the sequence 〈(index)(112)(113)〉 is

fuzzy γ-unexpected with “medium contradiction” since we have that

ωseq(〈(Politics)(Movies)〉 , 〈(112)(113)〉 ,H) = 0.456;



March 21, 2009 11:36 WSPC/INSTRUCTION FILE article

Discovering Fuzzy Unexpected Sequences with Concept Hierarchies 15

strong

0.1 0.3 0.5 0.80.6 0.7

0.5

1

0.9 1.00.2 0.4

weak medium
µ

ωseq

Fig. 7. Fuzzy partitions for the semantic contradiction degree ωseq.

the sequence 〈(index)(114)(113)〉 is fuzzy γ-unexpected with “weak contradiction”

since we have that

ωseq(〈(Politics)(Movies)〉 , 〈(114)(113)〉 ,H) = 0.338.

7. FUSE: Fuzzy Unexpected Sequence Extraction

In this section, we present the algorithm FUSE (Fuzzy Unexpected Sequence

Extraction) for extracting fuzzy unexpected sequences in a sequence database.

We first introduce the main routine of FUSE, then detail the algorithm HyMatch

(Hierarchy Matching) for computing the semantic relatedness/contradcition degree

between a generalized sequence of concepts and a sequence of items.

Notice that in the algorithms we consider a sequence as an object with the

properties ψseq, ωseq , µsem, µτ , etc., which correspond to the notions presented in

previous sections.

7.1. Algorithm FUSE

The main routine of the algorithm FUSE is listed in Algorithm 1, which extracts

fuzzy unexpected sequences in a sequence database D, with respect to a soft belief

set B, a concept hierarchy H, a minimum semantic relatedness degree ψmin and a

minimum semantic contradiction degree ωmin. The extracted sequences are associ-

ated with the best fuzzy degree specified by a fuzzy partition set F with respect to

a minimum occurrence degree µτmin
.

For each sequence s ∈ D and each belief B ∈ B as {Sα, Sβ , Sγ , τ}, the algorithm

first verifies the satisfaction of s |= Sα: if not, s cannot be unexpected with respect

to B. Then, the algorithm tries to match Sβ in the rest of s (from the end of sα

till to the end of s, denote by s − sα as at line 5), with respect to the occurrence

constraint τ . The routine HyMatch (see the next section for details) for matches the

correspondence of Sβ in the rest of s with sβ .ψseq ≥ ψmin. If the ψseq property of the

returned sequence equals to −1, then matching failed and s cannot be α-unexpected

neither β-unexpected; otherwise, if τ = ∗, then outputs s as α-unexpected, else

outputs s as β-unexpected. Finally, the algorithm calls HyMatch for matching the

correspondence of Sγ in the rest of s with sγ .ωseq ≥ ωmax: if the ωseq property of

the returned sequence does not equal to −1, then outputs s as γ-unexpected.
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Algorithm 1: The algorithm FUSE.

Input : D, B, H, F , ψmin, ωmin, µτmin

Output : all fuzzy unexpected sequences

foreach s ∈ D do1

foreach B ∈ B as {Sα, Sβ, Sγ , τ} do2

if ∃sα ⊑ s such that sα |= Sα then3

sβ := HyMatch(Sβ, s− sα,H, τ, ψmin, 0,F , µτmin);4

if sβ.ψseq 6= −1 then5

s.µsem := sβ.µsem;6

s.µτ := sβ .µτ ;7

if τ = ∗ then8

output s to {s | s 3
∼
α B};9

else10

output s to {s | s 3
∼
β B};11

sγ := HyMatch(Sγ , s− sα,H, τ, 0, ωmin,F , µτmin);12

if sγ .ωseq 6= −1 then13

s.µsem := sγ .µsem;14

s.µτ := sγ .µτ ;15

output s to {s | s 3
∼
γ B};16

else17

continue;18

The fuzzy unexpectedness of the occurrence constraint τ and the semantic relat-

edness/contradiction is handled by the membership functions µτ and µsem within

the routine HyMatch.

7.2. Algorithm HyMatch

Given a generalized sequence S, a sequence s, a concept hierarchy H, the Algorithm

HyMatch finds the first highest-scored subsequence s′ ⊑ s such that s′ |= S with

respect to an occurrence constraint τ , a minimum semantic relatedness degree ψmin

or a minimum semantic contradiction degree ωmin. A set F of fuzzy partitions is

also token into account for handling the fuzzy degrees of µτ and µsem, with respect

to a minimum occurrence degree µτmin
.

The algorithm first verifies the compatible form constraint on S and s, if not

S⊳ s, then returns an empty sequence (line 3); if S⊳ s, the function seqsat(S, s,⊳)

returns the set S of all maximal subsequences (i.e., without splitting itemsets) of

s′′ ⊑ s such that S⊳ s′′ and |s′′| = |S|. All sequences s′′ ∈ S that cannot satisfy the

constraint τ are removed (line 6). Not difficult to see, the sequence s′′ ∈ S having the

maximal semantic relatedness degree max{ψseq(S, s
′′,H)} or contradiction degree

max{ωseq(S, s
′′,H)} is also the sequence s′′ ⊑ s having the same maximal degree

such that SEs′′. The algorithm uses the equations proposed in the previous sections



March 21, 2009 11:36 WSPC/INSTRUCTION FILE article

Discovering Fuzzy Unexpected Sequences with Concept Hierarchies 17

Algorithm 2: The algorithm HyMatch.

Input : S, s, H, ψmin, ωmin, F , µτmin

Output : first highest-scored subsequence s′ ⊑ s such that s′ |= S

s′ := empty sequence; s′.ψseq := −1; s′.ωseq := −1;1

if not S ⊳ s then2

return s′;3

M := ∅;4

S := seqsat(S, s,⊳);5

S := S \ {s′′ | µτ (
˛

˛s′′
˛

˛ − |S| , τ,F) < µτmin , s
′′ ∈ S};6

if ψmin > 0 and ωmin = 0 then7

foreach s′′ ∈ S do8

s′′.ψseq := max{ψseq(S, s′′,H)}; /* use Equation (5), (6), (7) */9

s′′.ωseq := −1;10

if τ = ∗ then11

if s′′.ψseq 6≥ ψmin then12

M := M∪ s′′;13

else14

s′′.µτ := µτ (s′′.dist, τ,F);15

if s′′.ψseq ≥ ψmin and s′′.µτ ≥ µτmin then16

M := M∪ s′′;17

else if ψmin = 0 and ωmin > 0 then18

foreach s′′ ∈ S do19

s′′.ωseq := max{ωseq(S, s
′′,H)}; /* use Equation (1), (3), (4) */20

s′′.ψseq := −1;21

s′′.µτ := µτ (s′′.dist, τ,F);22

if s′′.ωseq ≥ ωmin and s′′.µτ ≥ µτmin then23

M := M∪ s′′;24

if M 6= ∅ then25

hs := max{abs(s′′.µτ ∗ s′′.ψmin ∗ s′′.ωmax) | s′′ ∈ M}; /* highest-score */26

foreach s′′ ∈ M do27

if abs(s′′.µτ ∗ s′′.ψmin ∗ s′′.ωmax) = hs then28

return s′ := s′′;29

return s′;30

by examining the values of ψmin and ωmin: if ψmin > 0 and ωmin = 0, then compute

the semantic relatedness degree of each sequence s′′ ∈ S for further determining α-

unexpected or β-unexpected sequence; if ψmin = 0 and ωmin > 0, then compute

the semantic contradiction degree of each sequence s′′ ∈ S for further determining

γ-unexpected sequence. If the ψseq or ωseq value of a sequence s′′ ∈ S satisfies the

required condition, and the fuzzy occurrence degree s′′.µτ ≥ µτmin
, then s′′ is added

to the candidate sequence set M, where s′′.dist (line 14 and 21) is the offset of s′′

in s, which must correspond to specified occurrence constraint τ .
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As shown in Equation (2), totally P (|I| , |C|) queries are needed for computing

ωpat(C, I,H) or ψpat(C, I,H) of a concept patter C and an itemset I on a hierarchy

H. If |C| = |I|, then totally |I|! queries must be performed. Therefore, in the worst

case, when |S| = |s| = 1 and ‖S‖ = ‖s‖, totally ‖s‖! queries are required. The

proof is immediate since we have that (m + n)! ≥ m! + n!. In the best case, when

‖S‖ = ‖s‖ = |S| = |s|, that is, s consists of the itemsets of 1 item, ‖s‖ queries are

required. Therefore, for a sequence s such that ‖s‖ = |s| and a generalized sequence

S such that S ⊳ s, the number of queries is the number of the combinations of |S|

itemsets in s, that is, |s|C|S| =

(

|s|

|S|

)

=
|s|!

|S|!(|s| − |S|)!
. For instance, if |s| = 10

and |S| = 5, then totally

(

10

5

)

= 252 queries are required.

8. Experiments

To evaluate our approach, we have performed a serial of experiments to extract

fuzzy unexpected sequences from a large log file of an online forum Web server. The

sequence database obtained from the Web access log file contains 67,228 sequences

corresponding to 27,552 distinct items with average sequence length of about 14

itemsets consisting of 1 item. All experiments have been performed on a Sun Fire

V880 system with 8 1.2GHz UltraSPARC III processors and 32GB main memory

running Solaris 10 operating system.

First, we examine the fuzzy occurrence of unexpected sequences with 4 groups

of 20 beliefs, which correspond to 4 categories of occurrence constraints. All the

20 beliefs are defined by domain experts: CAT1 stands for 5 beliefs with τ = [0..∗];

CAT2 stands for 5 beliefs with τ = [0..X] where X ≥ 0 is an integer; CAT3 stands

for 5 beliefs with τ = [Y..∗] where Y > 0 is an integer; and CAT4 stands for 5 beliefs

with τ = [X..Y ] where Y ≥ X > 0 are two integers. Figure 8 shows the numbers of

unexpected sequences with minimum fuzzy occurrence degrees 0.7 and 0.2.
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Fig. 8. (a) Minimum fuzzy occurrence degree 0.7. (b) Minimum fuzzy occurrence degree 0.2.



March 21, 2009 11:36 WSPC/INSTRUCTION FILE article

Discovering Fuzzy Unexpected Sequences with Concept Hierarchies 19

Then, we perform the tests on extracting fuzzy unexpected sequences with 20

soft beliefs, which are manually created from sequential patterns discovered in the

data set with examining the concepts of items. The hierarchy used in experiments is

built from the Web site structure and URI parameters, which contains 35 concepts

with maximal path-length of 8, where the similarities between concepts are defined

with expertise domain knowledge. An item-index file is used for mapping each item

i to an concept c such that i |= c, and a concept-index file is used for indexing

the path-length and semantic similarity between any two concepts contained in the

hierarchy instead of traversing the hierarchy.

Only one category of occurrence constraint τ is considered with soft beliefs:

τ = [X..Y ] where Y ≥ X ≥ 0 are two integers. The soft beliefs are classified

to 4 groups with respect to the length of Sβ (1, 2, 4, 8), each group contains 5

soft beliefs. The length of Sα is no longer than 2. Since the fuzziness on semantic

relatedness/contradiction is determined only by the degree, we did not specify the

fuzzy partitions. In order to focus on the performance in considering hierarchies,

the range τ ± 2 is used instead of computing the fuzzy occurrence degree.
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Fig. 9. (a) Fuzzy β-unexpected sequences. (b) Fuzzy γ-unexpected sequences.

Figure 9 shows the numbers of unexpected sequences extracted by using soft

beliefs with concept hierarchy. The experimental results on soft beliefs show that

the effectiveness of the proposed approach highly depends on the size of the sequence

Sβ in beliefs. For instance, when |Sβ | = 1, the number of β-unexpected sequences

extremely increases with decreasing the minimum semantic relatedness degree ψmin.

In fact, according to the combinations of items in a sequence, if |Sβ | is a small value,

then there are higher probability to satisfy the semantic relatedness required for

matching Sβ . Thus, when |Sβ| is a small value, the probability to satisfy the semantic

relatedness is much lower and much less unexpected sequences are extracted.

The execution time of each test is listed in Table 3, which shows that the time

for extracting unexpected sequences significantly increases with the increase of |Sβ |.

However, the increase of execution time is slower than 14C1 → 14C2 → 14C4 → 14C8
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Table 3. Execution time of each test by using soft beliefs.

|Sα| ψmin, ωmin : 0.2 ψmin, ωmin : 0.4 ψmin, ωmin : 0.6 ψmin, ωmin : 0.8

1 22.1 s 22.1 s 20.4 s 19.2 s

2 93.1 s 90.2 s 93.8 s 90.7 s

4 577.8 s 563.3 s 581.8 s 569.7 s

8 2024.2 s 1998.8 s 1994.3 s 1955.2 s

because with the increase of |Sβ |, the satisfaction of τ in the rest of an input sequence

(i.e., s− sα where sα |= Sα) becomes lower, and the step at line 6 in Algorithm 2

avoids matching all combinations of subsequences.

Notice that when we consider the semantics, we can determine the semantic

contradiction between two single items, for example, between “login” and “logout”.

However, for operational conjunction of items with temporal order, the semantic

contradiction is hard to be defined, which is still an open problem in semantics data

mining.

9. Conclusion

In this paper, we present a novel approach to the discovery of fuzzy unexpected

sequences by using soft beliefs with concept hierarchies. In comparison with our

previous approaches, the semantics in determining unexpected sequences can be

determined by concept hierarchies, instead of specified by domain experts. We also

extend the notion of unexpected sequences by unifying the occurrence constraint

and semantic contradictions with soft beliefs. We develop the framework FUSE,

which has been verified with real Web server log file analyzing and the usefulness

of hierarchies is shown in the condition of short sequences.

Our future research includes the discovery of fuzzy unexpected sequences or rules

in more general cases. For instance, if “age is old → salary is high” corresponds to

prior knowledge, then “age is young → salary is high” or “age is old → salary is

low” can be considered as unexpected. We concentrate also on studying semantics

data mining with integrating fuzzy and natural language processing techniques.
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