Recognition of Logical Units in Log Files

Hassan Saneifar’?, Stéphane Bonniol?,
Pascal Poncelet!, Mathieu Roche!*?

I LIRMM - CNRS - University Montpellier 2,
161 rue Ada, 34095 Montpellier, France
{Firstname.Lastname} @lirmm.fr
2 UMR TETIS, Cirad, Irstea, AgroParisTech
500, rue J.F. Breton
34093 Montpellier Cedex 5, France
{Firstname.Lastname }@Qcirad.fr
3 Satin Technologies,

MIBI, 672 rue du Mas de Verchant, 34000 Montpellier, France
{Firstname.Lastname } @satin-tech.com

Abstract

With the development of new technologies more and more informa-

tion is stored in log files. Analyzing such logs can be very useful for the
decision maker. One of the probably best known example is the Web log
file analysis where lots of efficient tools have been proposed to extract
the top-k accessed pages, the best users or even the patterns describing
the behaviors of users on a Web site. These tools take advantages of the
well-formed structures of the data. Unfortunately, logs files from the in-
dustrial world have very heterogeneous complex structures (e.g., tables,
lists, data blocks). For experts, analyzing logs to find messages helping to
better understand causes of a failure, if a problem have already occurred
in the past or even knowing the main consequences of a failure is a hard,
tedious, time-consuming and error-prone task. There is thus a need for
new tools helping the experts to easily recognize the appropriate part in
logs.
Passage retrieval methods have proved to be very useful for extracting
relevant parts in documents. In this paper we propose a new approach for
automatically split logs files into relevant segments based on their logical
units. We characterize the complex logical units found in logs according to
their syntactic characteristics. We also introduce the notion of generalized
vs-grams which is used to automatically extract the syntactic character-
istics of special structures found in log files. Conducted experiments are
performed on real datasets from the industrial world to demonstrate the
efficiency of our proposal on the recognition of complex logical units.

Keywords: Log files, Text segmentation, Logical units, Generalized
vs-grams

1 Introduction

With the development of new technologies more and more information is stored
in log files. Analyzing such logs can be very useful for the decision maker [7, 15].
Probably one of the most well known example is the Web log analysis which
alms at extracting information or knowledge from access log files. Actually
these logs store information about connected users on a Web site and have a
well-formed structure (e.g., IE, apache, Facebook, and so forth). Generally the
volume of stored data is very high, e.g. Facebook has to manage more than 25
terabytes of data per day, that is equivalent of about 1,000 times the volume of
mail delivered daily by the U.S. Postal Service!.

Today very efficient tools exist to know the top-k users, the most down-
loaded pages and even the behaviors of users on a site. All these approaches
take advantages on the well-formed structure but unfortunately, in industrial
domains, lots of logs generated are very heterogeneous. For instance electricity
company logs have to store information such as date, time, list of equipment
affected, length of outage, and weather conditions. As they are usually fed by
very different systems, these kind of logs can contain very complex data (e.g.
tables, texts, numerical and symbolic data, and so on).

Today, specially in industrial domains, finding information in log files is cru-
cial since the number of generated logs is dramatically increasing. For instance,
for experts, it is important to determine which messages correspond to real
problems in order to answer, for instance, to the following questions: what can
be the main causes of a failure?, did this problem already happened before?, what
are the main consequences?. Unfortunately analyzing these logs to get the rel-
evant information, i.e. information that can represent answers to the questions
of the domain, is a hard, tedious, time-consuming and error-prone task. Thus,
experts need solutions for an automatic and accurate extraction of information
from these logs.

Question answering systems (QAS) which is one type of information retrieval
(IR) system that attempts to find exact answers to user’s questions expressed
in natural language has been revealed quite efficient (e.g., [1, 9, 18]). More
precisely, passage retrieval (PR) is a major constituent of QAS which aims at
retrieving relevant passages in documents which contain answers to questions.
Usually, in this context, a passage is a fixed-length sequence of words which can
begin and end anywhere in a document. Despite the advantages of passage-
level information access, there is no general agreement about how one should

Isource: http://www.datacenterknowledge.com/

define those passages in order to obtain an optimum performance [12]. Actu-
ally, the different PR systems mainly differ by the way they consider boundaries
of a passage and how they evaluate its relevancy. In most of passage retrieval
methods, we can distinguish two main phases: (1) passage segmentation, (2)
passage ranking. Passage segmentation is the task of determining text segments
in documents which are considered as candidate passages. Here the main issues
considered are the following: how to define a passage boundaries? and how to
recognize them in a corpus? On the other part passage ranking assesses the
relevancy of passages according to a given query.

Here, we focus on the issue of passage segmentation for a particular kind
of complex data: log files generated by Electronic Design Automation (EDA)
tools. These logs, from the industrial world, represent a major source of infor-
mation on designs, products or even causes of seen problems. They are used to
answer specialized questions in the field of micro-electronics where, in this do-
main, to ensure the design quality, there are some quality check rules that must
be checked. These rules are usually expressed in the form of natural language
questions (e.g., “Capture the total fized cell STD” or “Captures the mazimum
Resistance value”). Verification of these rules is principally performed, with an
expert, by analyzing the generated log files. In the case of large designs where
tools may generate megabytes or gigabytes of log files each day, the problem is
to wade through all of this data to locate the critical information that we need
to analyze the quality of rules.

In this paper we propose a new segmentation approach and characterize
the complex logical units found in the log files according to their syntactic
characteristics.

Recognition of these logical units is the main core of our segmentation ap-
proach. Within our approach, we also present the original notion of generalized
vs-grams which is used to automatically extract the syntactic characteristics of
special structures found in log files.

The paper is organized as follows. A detailed study on related work and their
relevance in the context of log files is discussed in Section 2. Then, in Section
3, we present the main phases of our segmentation approach. Sections 4 and
5 are devoted to the development of different phases of our approach notably
the characterization of logical units. We also present the original notion of
“generalized vs-grams” which is used to characterize the logical units in Section
5. Results of experiments are presented in Section 6. A conclusion is addressed
in Section 8.

2 Related Work

We detail here text segmentation methodologies which are used to split a docu-
ment into candidate passages. According to [1] and [9], there are usually three

types of passages: semantic (thematic), window passages, and discourse. Se-
mantic segmentation consists in identifying various topics conveyed by the text,
to segment it into homogeneous units forming thematic blocks [19, 26]. Then, it
is also possible to segment documents based on a sliding phrase or a line window
which is called window-based segmentation. In the case of “discourse passages”,
the segmentation is carried out based on logical divisions or in other words, the
discourse units in documents. Indeed, the documents often have logical (dis-
course) units like sentences, paragraphs, or sections. The logical components of
documents can be regarded as passages (segments) [1, 9]. The choice of segmen-
tation type depends largely on the objectives, application domain, and specially
document characteristics.

Semantic segmentation. By Semantic segmentation a document is split into
semantic pieces, according to the different topics in the document [9, 12, 20].
The semantic segmentation methods principally rely on the usage of word fre-
quency, lexical co-occurrences, or lexico-semantic relations to identify subject
changes in documents. For instance, TextTiling is a well-known semantic seg-
mentation approach which uses word frequencies to recognize topic shifts [5].
In TextTiling, the main cues for identifying major subtopic shifts are patterns
of lexical co-occurrence and distribution. Marti A. Hearst assumes in [5] that a
set of lexical items is used during the course of a given subtopic discussion, and
when that subtopic changes, a significant proportion of the vocabulary changes
as well. TextTiling being a well-known semantic segmentation, we evaluate its
application in the context of log files. This evaluation, presented in Section
7, gives a survey about the efficiency and relevance of semantic segmentation
approaches in the context of textual data like log files.

The values of some measures like word repetition and redundant utterances
are used to find the segmentation points [28]. For instance, [10] proposes to cal-
culate a lexical cohesion profile which locates segment boundaries in a text. This
approach relies on the similarity of words in a sentence. Word similarity, repre-
senting word cohesiveness, is calculated using a semantic network constructed
from an English dictionary. There are also semantic segmentation methods
calculating a semantic distance between terms. These methods often rely on
external resources such as domain ontologies or semantic networks [11].

Studying main researches regarding semantic segmentation shows that topic
change discovery mainly relies on the assumption of cohesion, which is a device
for making connections between parts of the text [17]. As it is also mentioned in
[17], we note that the current cohesion-based text segmentation approaches fo-
cus on either term iterations, term semantic relations, or both. These methods
suppose that analysing term occurrences can guide to discover topic changes.
Techniques based on semantic distance include relations between words that
tend to co-occur in the same contexts, which have systematic and the non-
systematic semantic relations [17].

In our domain, these methods suffer from some common points. We try to

explain below why these semantic segmentation methods are not suited to seg-
ment log files. First, the notion of subject change based on the lexical cohesion
assumption is questionable in our context. Semantic segmentation methods use
phrase or paragraph as the basic unit. Whereas log file, as explained above, are
not natural language texts which means that notion of phrase or paragraph is
not significant in this context. Furthermore, we show trough few examples that
a change of co-occurrences or a change of term repetitions does not necessarily
result in topic change in log files. This throws doubt on the relevance of as-
sumptions based on term iteration or term occurrences which are used in above
mentioned methods. As an instance, Fig. 1 demonstrate a fragment of a log file
corresponding to a segment.

67 | —————- Design Statistics:

68

69 | Number of ports: 00
70 | Number of nets: 10
71 | Number of cells: 20
72

73 | Combinational area: 40
74 | Noncombinational area: 50

Figure 1: A fragment corresponding to a segment.

After a lexical co-occurrences and repetition analysis of this segment, we
discover a co-occurrence change after line 72. Based on the above assumptions,
we should consider lines 69 to 71 as a segment and lines 73 to 74 as another
one which treat different topics thought the entire of this fragment should be
considered as a single segment according to a domain expert. Indeed, the whole
chunk from line 67 to 74 reports information about “design statistics”. This
issue is highlighted when we are dealing with tables or numerical data in log
files. As another example, Fig. 2 illustrates a table in a log file.

76 | #patterns #faults #ATPG faults test process

77 | stored detect/active red/au/abort coverage CPU time
78 | ————— = —mme———- -———= -

79 | Begin determ. ATPG: #uncollapsed_faults=2865, abort_limit=10
80 | 32 26155 2495 0/0/0 53.50% 0.08
81 | 50 2141 353 1/0/0 57.01% 0.11

82 | 77 219 129 4/2/9 57.37% 0.21

Figure 2: An example of a table in a log file.

In this table, a considerable vocabulary change is noticeable after line 79
as we have only numerical data. However, this change does not mean a topic

change. A table has to be always considered as a single segment in log files.
Beside tables, we have many adjacent text chunks in log files which contain
principally numerical data. Discovery topic changes in text chunks treating
principally numerical data is not feasible by semantic segmentation methods
which rely on vocabulary change or lexical cohesion.

Furthermore, in our situation, there are no resources (e.g., domain ontolo-
gies) to calculate the semantic correlations between words in the EDA context.
Creation of such resources which enable to inference the semantic relations, is
revealed time-consuming task, which also needs a lot of domain expert inter-
ventions. Thus, we are faced with some difficulties in our context in using the
methods based on semantic network like ontologies. Finally, we seek methods
quite independent of the vocabulary of log files which evolves over time (vocab-
ulary changes) and also according to the tools.

Window Based Segmentation. Other segmentation methodology is based
on the notion of sliding window [8]. As mentioned in [27], windows can be
defined in terms of words [9] or in terms of sentences or paragraphs [29]. Window
segmentation imposes a single model of text division. The fixed or variable size
windows may be either non-overlapping or overlapping sliding windows [9, 13].
The window segmentation methods are also used along with passage scoring
methods. In such a case, windows can start with a keyword of query and
continue according to the presence of other keywords. In order to find the best
segments, one slides the window or changes its size and calculates the relevance
of new obtained segment based on the new position of the window.

Window models have the main advantage to be simpler to accomplish [12].
A drawback of these methods is the potential cutting of a relevant chunk of a
document into several segments, whereas it should be seen as a single segment.
This error, also noted in [1], can simply occur in the case of tables or data block
in log files. Segmentation based on windows also ignores the structure of log files
although log file structures contain relevant information to identify segments or
extract information.

Discourse Passages. In the case of “discourse passages”, the segmentation
is carried out according to logical divisions or in other words, the logical units
of documents. Indeed, texts are often composed of logical units like sentences,
paragraphs, or sections. The logical (or discourse) units of documents can be
regarded as candidate passages (segments) [1, 9, 22]. The segment definition is
intuitive in this approach, because sentences should develop a single idea; para-
graphs should address a single topic, and sections are the subject of a question
[1, 9]. As mentioned in [6], in the last twenty years, the study of discourse has
received continuous attention from the Natural Language Processing commu-
nity. Discourse structure is fundamental to many text-based applications, such
as Question Answering [24]. In discourse segmentation we can consider differ-
ent granularities. Discourse segmentation for Information Retrieval or Question
Answering is usually performed at the granularity level, distinguished in [14],

which consists on clause, sentence, paragraph, and section. The finer granular-
ities are usually studied in Logical Parser studies to create logical structure of
a document.

There are some solutions to identify classic logical units such as paragraphs
in texts. We can also exploit the elements marking the logical units (i.e., logical
divisions) such as “white lines” or “indentations” at the beginning of para-
graphs. For instance, Deborah Schiffrin defines discourse markers in [23] as a
set of linguistic expressions that brackets units of talk. There are also passage
retrieval approaches which simply consider sentence logical unit as the base of
segmentation. For example, a passage is defined as one or more adjacent sen-
tences in the AskHERMES medical QA system [2]. A similar approach is also
used in [4] which considers sentence as the base of segmentation.

As noted in [12], the discourse-based models look more effective since they
are using the structure of the document itself. Similarly, Callan notes in [1]
that discourse passages are expected to be the most effective, because discourse
boundaries organize material by content. However, they also note several draw-
backs and limits of discourse-based segmentation.

First, segmentation results could depend on the writing style of the doc-
ument author [12]. Discourse passages require more consistency from writers
than do semantic or window passages. If writers are sloppy or rushed then seg-
menting documents by textual discourse boundaries may be inappropriate [1].
Second, even though most documents are supplied with their structure, manual
processing is required for those without it, thus making discourse passages im-
practical [9]. Third, logical unit markers (i.e., logical divisions) are not always
available or ambiguous with other types of separators [27]. For example, head-
ers, list elements or table rows might be separated in the same way as discourse
related paragraphs (for example using an empty line). Problems with the clas-
sical discourse passage approaches often arise with special structures such as
headers, lists, and tables which are easily mixed with other units such as proper
paragraphs [27].

In our context, data have, for example, structures such as tables, data blocks,
and specific strings marking the beginning of new information. Moreover, log
files are generated by computing systems which means their structural orga-
nization is based on a defined grammar. Even though we do not have access
to these grammars? or they vary from a log file type to another type, but
it guarantees a consistency in writing log files. Therefore, the first and second
mentioned drawbacks of discourse segmentation, regarding writing style and ex-
istence of document structure, do not exist in the context of log file. However,

2 Although log files are semi-structured data and should conform to a grammar, acquisi-
tion or knowing of their generator grammar is challenging and in some situations irrelevant.
According to some constraints like data confidentiality or software licensing, access to design
tools is not always possible. Moreover, extracting language model or grammar of log files
generated by a given tool requires sufficient amount of data (i.e., logs) generated in different
configurations by that tool. Creation of such corpus is tedious, time/resource consuming and
sometimes not feasible according to the available number of log files.

the third problem is emphasised in log files where conventional logical divisions
are meaningless (e.g., paragraph indentions) or ambiguous (e.g., empty lines).
In the same time, we deal with special structures such as headers, lists and
tables in log files which can take different representation formats (e.g., different
table types). These textual structures, more complex than conventional struc-
tures (classic logical units), are used to gather ideas and information. Thus, we
consider these complex structures (which gather the correlated information) as
logical units of log files.

We hence aim at proposing an approach to recognize special logical units
in log files and overcome the above drawbacks notably ambiguity in logical
divisions and issues in dealing with special structures such as headers and tables.
Our approach enables to identify different complex kinds of logical units while
they can take different forms or presentation formats. By means of our approach,
we overcome the drawbacks of discourse-based segmentation in texts having
special structures like tables, lists, or data blocks. In the following section, we
describe how to discover the special logical divisions of log files and subsequently
recognize their logical units.

3 Global Process of Logical Units Recognition

Since the logical structures of log files are different and more complex than those
found in classical texts, we aim at identifying different kinds of discourse units
in log files. To identify these logical units, we need to recognize different layouts
and data presentation formats which are used to structure them. We hence look
for syntactic cues that can be useful to reveal a separation of consecutive text
chunks.

This means that we determine the syntactic characteristics of logical units
in log files. They allow to distinguish the beginning of a logical unit (i.e.,
a logical division) from the other lines in the documents. For example, in
classical texts, we can consider the “indentation” as one of the characteristics
allowing to identify a paragraph. We call these syntactic characteristics features.
We therefore characterize the logical units of log files by defining a number of
“features”. In order to perform the feature acquisition, we chose two different
methods: (1) semi-automatic and (2) automatic. Fig. 3 shows the general
outline of our approach of logical structure recognition.

In the semi-automatic way, we first define the features according to some
heuristics based on an expert knowledge. Afterwards, we model the logical di-
visions based on the presence/absence of features.

In the case of the automatic method, we propose an original type of n-grams,
called “generalized vs-grams”. The features are determined automatically by ex-
tracting generalized vs-grams in a corpus without any need to expert knowledge.
We will develop both methods of feature acquisition and the notion of general-
ized vs-grams respectively in Sections 4.1 and 4.2.

Annotated I
Log Files

Class + Classification
(Lines representing a LD) Model
4
Class -
(Lines representing a LD) Log Files
7 (Not

annotated)

Figure 3: The global process of logical structure recognition.

Once all the features determined by one of these methods (automatic or
semi-automatic), we represent the lines of the corpus by a binary vector in
the vectorial space obtained by the set of features. For a given vector, the
value of each element corresponds to the presence or absence of a feature. This
representation allows us to build a training dataset based on the features. We use
this dataset in a supervised classification system to obtain the rules (models)
for the recognition of logical structures. The trained classification model is
subsequently used in order to associate the lines of a new non-annotated corpus
with a class: Class of lines representing a logical division (positive), and class of
lines which are not associated with a logical division (negative). The learning
phase is developed in Section 5.

4 Representation of Logical Divisions of Log Files

In this section, we present the steps to characterize and find the complex logical
divisions: the feature acquisition and the classification model creation. We also
introduce the original notion of generalized vs-grams, used in the automatic
acquisition of features, which are the main contribution of our segmentation
approach.

4.1 Heuristics Based Feature Acquisition

First, we assume that the identification of the beginning of a segment is suf-
ficient to recognize a logical unit in a document. The end of a logical unit is
determined by the start of the next one. Thus, we seek to identify syntactic
patterns which exist in lines representing the beginning of a logical unit. These
syntactic patterns allow to differentiate the beginning lines of logical unit (i.e.,
logical divisions) from other lines.

1

set_ top i:/WORK/fifo
Setting top design to ’'i:/WORK /fifo’
Status: Implementing inferred operators

Figure 4: A logical unit in a log file.

Fig. 4 shows an example of a logical unit in a log file. The highlighted line
represents the beginning of the unit. In a simple way, we can characterize the
beginning of this unit by a pattern as “<abs-shift><string><:><string>” 3
which means a line beginning with an absolute shift (indentation), followed by
a string, then a “:”, and finally followed by another string. We consider the
couple of this pattern and its position around the beginning of the segment as
a feature whose the presence helps to recognize this logical unit.

However, according to the domain characteristics and especially the hetero-
geneity that exists in such documents, we must characterize the beginning of
segments more accurately. This means that it is necessary to characterize a
logical unit by using a sufficient number of relevant features. To build this set
of features, we identify syntactic patterns in a window of lines around the be-
ginning of logical units. The window size being a parameter of our approach:
“nlp” represents the number of lines before the beginning of the segment, and
“nls” is the number of lines following the beginning of the segment. In the case
of log files studied here, the values of these two parameters are fixed following
an experimental protocol. The used values are presented in Section 6.

We detail below the constitution of features based on an example. Fig. 5
shows another fragment of a log file. The highlighted lines (lines 86 and 92)
represent the beginning of two logical units (segments).

To simplify the example, we use a window size of five lines around the be-
ginning of each segment (i.e., nlp=2 and nls=2). Regarding the first segment,
we can identify the pattern “<---><string><fin :>” on the beginning line of
the segment (line 86). We also have the pattern “<string> <:> <string>” on
the both second lines before and after the beginning of the segment (i.e., lines
84 and 88). We also consider the empty line as a pattern. Thus, considering

3abs-shift: Absolute shift (indentation) at beginning of line.

10

84 | Total IO Pad Cell Area : 1076208.64
85

86 | ------ Design Statistics:

87

88 | Number of Instances 1 13628
89 | Number of Nets : 14293
90 | Maximum number of Pins in Net : 531
91

92 IO Port summary

93 | Number of Primary I/O Ports : 388
94 | Number of Input Ports : 259

Figure 5: Two logical units in a log file

the identified patterns and their locations, we obtain the following features for
the first segment:

fa (<= ==><string><fin :>, 0) fa(<string><:><string>, -2)
fv(<emptyLine>, -1) fe(<string><:><string>, +2)
fe(<emptyLine>, +1)

For each feature, the number after the pattern is the line number in the window.
The zero corresponds to the beginning line of the segment. As an example, the
fa presents a feature consisting of the shown pattern, found on the beginning
line of the segment (i.e., line 0 in the window around the beginning of the seg-
ment) which corresponds to the line 86 in the example. fy also presents another
feature consisting of the pattern found on second line before the beginning of
the segment.

Regarding the second segment in Fig. 5, we can identify some of the
features found around the first segment. For instance, on the second line
before the beginning of the second segment (line 90), we found the pattern
“<string><:><string>” which has been also found on the same position (sec-
ond line before the beginning of the segment) around the first segment. Thus,
we also note the same feature (i.e., fy) for the second segment. Meanwhile, we
also identify two new features (i.e., f; and f;) identified on lines 92 and 93. We
note the below features around the beginning of the second segment.

ff(<abs-shift><string>, 0) fa(<string><:><string>, -2)
fo(<emptyLine>, -1) fe(<string><:><string>, +2)
fo(<string><:><string>, +1)

Finally, by combining all the identified features (for both segments), we obtain
a set of features. The following list represents this set of features obtained on

the example of Flg 5= {faa fb7 fCa fda f67 ffa fq}

11

Then, by considering the feature set as a vector space, we represent both logical
units in form of binary vectors. Therefore, the beginning of each logical unit of
the example is represented by a binary vector as follows. Here, “1” means the
presence of the feature and, “0” its absence.

Sy:{1,1,1,1,1,0,0} S :{0,1,0,1,1,1, 1}

To obtain the set of features, we established a corpus of different log files.
The constitution of this corpus (presented in Section 6) is done in collaboration
with a domain expert to ensure that all domain logical units exist in the corpus.
The determined feature set contains 123 features in total. Once the feature
set constituted, we characterize each line of the documents in the vector space
defined by the feature set. Since the logical units in the log corpus are annotated
by an expert, we obtain the vectors of positive instances (the lines corresponding
to the beginning of logical units) and negative instances (the lines that do not
match the beginning of logical units). Then, we use this positive and negative
instances in a supervised learning system to obtain a model for the recognition
of logical units (see Section 5).

4.2 Features Acquisition Using the Generalized VS-Grams

In the previous section, we have described a solution to build the feature set
using syntactic patterns. Nevertheless, this method (see Section 4.1) requires
expert knowledge to provide some heuristics and then define the patterns spe-
cific to them.

In the remainder of this work, we propose an automatic method that we
use to create the set of features, without requiring human intervention. Thus,
to create the set of features, we decided to use the n-grams to characterize the
beginning of logical units in the log files. An n-gram is a set of n items in a
sequence. In the field of NLP, an n-gram is a series of n items in a text where
the items can be letters or words. N-grams are often used as features in the
textual document classification tasks [25] to model the content and the sequence
of words in a document.

But in our context, we are only interested in the structure of documents.
That means we do not seek to identify the logical units according to their con-
tent (words or letters), but according to their textual structures (punctuation,
symbols, layouts, etc.). This necessity led us to define and propose an original
kind of grams that we call generalized vs-grams. Generalized vs-grams allow
to model the textual structures (the layouts and the composition of letters and
special characters) of a document while being insensitive to the contents of the
latter. This enables to characterize the visual structure of a text document.

Generalized Vs-grams. We present here the concept of generalized vs-grams
that we defined in the context of this work. We choose the term vs-gram as an
abbreviation for “Variable Size Grams”. To better understand the concept of

12

vs-grams, we first explain, via an example, the needs that led us to define vs-
grams.

52 | X Sional Coverages ****#%

53 | CV_ INT[0:255] No No
54 | ALG. DATA_INT [0:127] No No
55 | END_ KEY No No

62 | **** MODULE INSTANCE ****
63 | MODULE TB_ ECB_ VK_ DEC_ ITER.TOP_ LEVEL.CTRL
64 | FILE /users/AES/src/controller_ iter.vhdl

Figure 6: logical unit in a log file.

Fig. 6 shows an extract from a log file. The highlighted lines (52 and 62)
represent the beginning of two logical units. In this example, the beginning of
the two logical units is characterized by a string preceded and followed by a
series of the symbol “*”. By extracting the fixed size n-grams (e.g., n = 3), we
obtain the following tri-grams on the first segment?:

“rxx”“ 81" “gna”, “l.c”, “ove”, “rag”’, “es.”.
Similarly, we have the following tri-grams for the second segment.

“rkx” | “x m”, “odu”, “le.”, “ins”, “tan”, “ce.”.

The extracted tri-grams show “the sequence of letters” in those two lines.
However, the particular composition of special characters® and letters® which
characterizes here the visual layout of these two logical units is hardly high-
lighted by the tri-grams. Indeed, the fixed size n-grams are not relevant when
one focuses at layout and the composition of letters, symbols, and punctuation”.
In order to describe the layout and the composition of letters and symbols in
a line by means of a kind of feature, we define vs-grams where grams can have
variable size.

We aim at defining a kind of feature which characterizes how letters, whites-
paces, and symbols are located in a text line from the point of view of their
positions. This makes it enable to describe the layout or visual structure of a
line. Thus, we define vs-gram as a series of alphanumeric and non-alphanumeric
characters whose boundaries are determined according to the type of seen char-
acters. In order to determine the boundaries of a vs-gram, we define three
conditions which make it enable to describe how the alphanumeric and non-

4The extracted grams are case-insensitive, as the letter case is not informative in this
context.

5Non-alphanumerical character.

6 Alphanumerical characters.

"In other words, how the alphanumerical and non-alphanumerical characters follow each
other in a line.

13

alphanumeric characters follow each other in a line (i.e., visual structure of a
line). Therefore, a vs-grams is a series of alphanumeric and non-alphanumeric
characters, which is defined as follows:

e If the gram contains a series of alphanumeric characters, it ends with a
non-alphanumeric character. The next gram begins with the non-alpha-
numeric character.

e If the gram starts with a series of non-alphanumeric characters, it ends
with an alphanumeric character. The next gram begins with the alphanu-
meric character.

e if the seen character is a whitespace, it is systematically added to the
current gram.

Taking the previous example (Fig. 6), we obtain the following grams for the
first segment: “s*x**xx*_s” “signal.coverage._*”, “xk*xxx”

Algorithm 1 presents how to extract the vs-grams. As shown in the algo-
rithm, the extraction process consists in verification of three conditions: if the
current character is a alphanumeric one, if it is a white space or finally it is
non-alphanumeric character. Based on the type of the current char and that of
previously seen char as well as the following one, we extract the vs-grams.

Contrary to the extracted 3-grams, the vs-grams show the composition model
of the letters and special characters (here, “*”) and their positions according to
each other in this line. That is, these vs-grams express a composition of char-
acters as a string of letters surrounded by symbols “*”. This pattern identified
by vs-grams marks the beginning of a logical unit in the log files.

The vs-grams are still sensitive to the content of texts. For example, here,
the second extracted vs-gram presents a series of letters comprising the words
“signal” and “coverage”. However, the essential knowledge to take into ac-
count is the presence of a string. Similarly, the number of stars (“*”) in the
two other vs-grams, for example, is not informative. That is why we general-
ize vs-grams by replacing sequences of letters and special characters by some
symbols representing their character type and a counter notion like “+78. This
means that we replace, for example, a string of alphanumeric characters with
the symbol “\w+”. The series of stars will be replaced by “*+”. Thus, in this
example, we obtain the following generalized vs-grams: “*+.s”, “\w+_*+",
LL*+77

We finally obtain generalized vs-grams that express well the existence of a

Wy ”

string of alphanumeric characters surrounded by a sequence of the “x” symbol.

844” means one repetition or more.

14

Algorithm 1: Extraction of vs-grams in a text file

Data: Text(T) = {cho,chi,cha,...,chy, | n=|T| and ch; € {ASCI chars}
Result: LIST (vsgrams) : list of extracted vs-grams

for i — 0 to n do
currentChar = char; € T}
if currentChar is LetterOrDigit then
if last char was not LetterOrDigit then
| Call AddGram();
else
| gram «— gram + currentChar;

else if currentChar is Whitespace then
| gram «— gram + currentChar;
else if currentChar is Special Char then

if last char was not LetterOrDigit then
| gram «— gram + currentChar;
else

| Call AddGram();

return LIST (vsgrams);

AddGram(){ gram «— gram + currentChar;
LIST (vsgrams) «— gram;

gram «— currentChar }

15

The generalized vs-grams allow to generalize the content of the lines. This
constitutes essential information while reducing the representation space com-
pared to n-grams.

Once the notion of generalized vs-grams defined, we build the set of features
by extracting the generalized vs-grams in a line window around the beginning of
logical units. Like the previous solution, the generalized vs-grams are associated
with line numbers (in the window) wherein they are extracted. A feature is hence
a composition of a vs-gram and the position of the line (in the window) wherein
it is extracted. The obtained feature set for the corpus of log files contains 1023
elements. The creation of positive and negative instances is conducted by using
the feature set obtained by extracting generalized vs-grams in the tagged corpus
of log files.

To exemplify the creation of vs-gram features, we use the same log file seg-
ments presented in Fig. 5, which were previously used to extract manual fea-
tures. Taking the first segment of Fig. 5, we obtain the following features by
extracting the generalized vs-grams:

Si(\-+-\w+, 0) fa(\w+ 3, 0)
f3(\W—|— \S+ 5 '2) f4(: \W+7 '2)
fS(\W+ \S+ 5 +2) fﬁ(: \W+7 +2)

Feature f; contains a seen vs-gram (\-+.\w+) on the beginning of the first
segment. This vs-gram corresponds to “------ D” in the beginning of the
segment (line 86). Then the rest of line is characterized by the next extracted
vs-gram (\w—+ :) which is used in feature fo. Thus, the beginning line of the
first segment, is characterized by the two features f; and f,. Then, we have
f3 and f4 which are composed of vs-grams extracted in the second line (line
84) before the beginning of the first segment. f5 and fg correspond also to the
second line after the beginning of the first segment.

5 Learning to Identify Logical Units

The objective of our work is to determine a model of rules from which we can
identify the logical units in the log files. For this purpose, we first establish
a corpus of log files. Then, we identify the set of features using the methods
described in Sections 4.1 and 4.2. Each line of the corpus is seen as a positive or
negative instance. The lines are represented as a boolean vector whose elements
are features.

Afterwards, a supervised machine learning process based on a classification
method is applied. The instances previously obtained are used as training set.
The obtained classification model enables to classify the lines of corpus into two
classes (beginning of segment / not beginning of segment).

Regarding the training data, we are faced with the balance of positive and

negative instances problem. Indeed, in our corpus obtained from real data, the
number of negative examples is seven times more than the number of positive

16

examples. The distribution of “+” and “-” examples can influence a classifier
that uses the probability of each class to predict. Moreover, the lack of examples
for special cases prevents the classifier to create the necessary rules. To address
this unbalance problem several solutions can be applied: over sampling, under
sampling, SMOTE. Interested reader may refer to [3] when an overview of the
different approaches is proposed.

In the “Over sample”, examples of the class with fewer examples are du-
plicated. If we want to retain the same size for the new dataset, it requires
removing some of the examples of the other class. The choice of examples to
be duplicated or removed is performed randomly. Nevertheless a real situation
may create a problem of over-fitting.

The solution “Under Sampling” consisting of removing some examples of a
class with more examples, has its own drawbacks. Indeed, we cannot guarantee
the conservation of all instances of a particular case in that class. Moreover,
this does not solve the lack of examples in the other class.

The “SMOTE” method consists in generating synthetic examples. This
generation can build synthetic positive examples that cannot exist in real case
according to the characteristics of the domain. Indeed, we observed that in
some cases, by changing the value of a single feature in a positive example, we
obtain an example which is inconsistent in the real world.

Depending on the characteristics of our data, we finally chose the “over
sampling” solution. Actually, generating synthetic example is difficult in our
context and with under sampling we can lost useful structures. The parameters
of the algorithm like the size of the new dataset and the new class distribution
rate are set after several tests. We tested several classification methods including
“K Nearest Neighbors” (KNN) and “decision trees”. The classification model
obtained in the learning phase will be used to identify the lines representing
the beginning of logical units in real industrial data. The classification results,
explanation of parameters and obtained models are developed in Section 6.
We also discuss the impact of both methods of feature acquisition in the next
section.

6 Experiments

The experiments are conducted in two main directions to compare the semi-
automatic approach (via heuristics of an expert) and the automatic approach
(via extraction of generalized vs-grams):

e performance of the classification of the log file lines into positive and neg-
ative classes:

— using features built based on defined patterns

— using generalized vs-gram features

17

e comparison of our segmentation method with the well-know TextTiling
segmentation method.

We use the same training corpus in all experiments. The learning corpus
consists in 19 different log files from the industrial world. The log files contain
real data and differ in content and especially in structure. The training corpus
size is 1.1 MB and contains in total 19,638 lines.

We have calculated the performance of our approach in terms of precision
and recall of the classification model. Precision for a class is the number of true
positives divided by the number of instances predicted as positive. Recall in a
class is the number of true positives divided by the number of instances actually
belonging to the class. Finally, the harmonic average between precision and
recall is calculated by the F-Score. More formally they are defined as follows:

Relevant segment retrieved
retrieved segments
__ Relevant segment retrieved
Recall = relevant segments

_ Precision X Recall
F-Score =2 x Precision+Recall

Precision =

We thus test the classification models obtained with each feature acquisition
methods proposed in this chapter. As a reminder, in the classification, a line
is a positive instance if and if it presents the beginning of a logical unit (i.e.,
logical division). A negative instance is a line which does not represent a logical
division.

6.1 Tests Using Features Build by the Defined Patterns

At this stage of experiments, the feature set is created by the method described
in Section 4.1. By using the training corpus to build the feature set, we iden-
tified 128 patterns. Consequently, we have 128 features to create instances. In
the training data, there are initially (before dataset balancing) 1,142 positive
examples against 18,496 negative examples. To perform the tests, we balanced
the dataset using the “over sampling” method of Weka. We chose 0.8 as the
equilibrium rate of the number of examples. We finally got a dataset in which
there are 5,833 positive examples against 9,877 negative examples.

We present here the results obtained using the classification algorithms that
yielded the best results: C4.5 decision tree [21] and KNN [16]. Although the re-
sults obtained by other algorithms like SVM are largely close to those obtained
by KNN or C4.5, we do not provide the results of all tested algorithm as our
objective if not to compare the performance of classification algorithm, but to
evaluate the quality of build feature sets. C4.5 is particularly appropriate in
our concern since at the end of the process we are provided with the classifier
learnt by examining the learnt decision tree. In other words, we look to know
if the extracted features (manually and automatically) are enough relevant to
represent the visual characteristics of logical units. Their relevancy can be de-
termined by the accuracy of the classification using these features.

18

To apply the classification algorithms, we use the built-in implementations in
WEKA software®. To evaluate the classification performance, we use the cross
validation (10 folds). Cross-validation is a method for estimating reliability of
a model based on a sampling technique. We divide the initial training set into
“n” samples and repeat the learning “n” times while choosing n-1 samples as
training set and the last sample for evaluation. Each sample is used once for
evaluation. Finally, the performance is given by the average of performances

obtained in each iteration of the process.

C4.5 KNN
Class | Precision | Recall | F-Score || Class | Precision | Recall | F-Score
Pos 0.98 0.99 0.99 Pos 0.98 0.99 0.99
Neg 0.99 0.99 0.99 Neg 0.99 0.99 0.99

Table 1: Classification performance according to each class - C4.5 (left) and
KNN (right) - using the balanced dataset - Features obtained by “defined pat-
terns”

Table 1 presents the results obtained for each class using the balanced dataset
built using heuristic-based features. We observe that by using these heuristics-
based features, we succeed in creating a set of rules (a classification model) with
an overall F-score of 0.99.

6.2 Tests Using Generalized vs-grams Features

We experiment in this section the use of generalized vs-grams as features (au-
tomatic method). For this purpose, we use the same corpus described above.
The tests are also conducted using the balanced datasets. Table 2 shows the
results obtained by each classifier using the balanced dataset where the features
are obtained via the extraction of generalized vs-grams.

C 4.5 KNN
Class | Precision | Recall | F-Score || Class | Precision | Recall | F-Score
Pos 0.92 0.74 0.82 Pos 0.94 0.75 0.84
Neg 0.96 0.98 0.97 Neg 0.97 0.98 0.97

Table 2: Classification performance according to each class - C4.5 (left) and
KNN (right) - using the balanced dataset - Features obtained by “generalized
vs-grams”

Using the features obtained by extracting the vs-grams, we reach a precision
equal to 0.94 in the positive class and equal to 0.97 in the negative class. This
means that the automatic method based on generalized vs-grams gives a clas-
sification performance close to the semi-automatic method which was based on

Shttp : / Jwww.cs.waikato.ac.nz/ml/weka/

19

an expert heuristics. This shows that the generalized vs-grams represents well
the characteristics of logical units of a document.

Finally, in order to improve the performance of classification, we have de-
cided to create a set of features comprised mainly the automatic features (the
generalized vs-grams), and a limited number of features from the heuristics of
an expert (defined patterns). We use, in this test, ten features obtained by the
heuristics. These features mostly characterize the beginning and the end of the
line representing a logical division. Table 3 shows the performance of classifica-
tion and therefore the recognition of logical units using a new dataset obtained
by this new set of mixed features.

C 4.5 KNN
Class | Precision | Recall | F-Score || Class | Precision | Recall | F-Score
Pos 0.98 0.99 0.99 Pos 0.98 0.99 0.99
Neg 1 0.99 1 Neg 1 0.99 1

Table 3: Classification performance according to each class - C4.5 (left) and
KNN (right) - using the dataset obtained by set of mixed features.

The results show that we obtain a performance similar to that obtained by
using heuristics-based features. This shows that a minimum addition of expert
knowledge (only ten semi-automatic features) significantly improves the results.

7 Discussing Semantic and Discourse Segmen-
tation

Here we aim at studying how a semantic segmentation method would behave
in the context of log files. For this purpose, we use the well-known TextTiling
semantic segmentation method. This method, presented in Section 2, is a topic
based segmentation method. It tries to recognises the topic changes in docu-
ments based on term co-occurrences and lexical cohesion measures. In order to
perform the tests, we use the David James implementation of TextTiling, which
is used in Lingua NLP package'C.

What is a relevant segment? Regarding the segments obtained by Text-
Tiling, we observed that they hardly correspond to the segments initially tagged
by a domain expert in the corpus of log files. In fact, we should consider that
each segmentation method split a document into segments which may differ
from segments obtained by another method. This point is emphasized when the
segmentation methods use different strategies and assumptions. In the same

10http:/ /search.cpan.org/~splice/Lingua-EN-Segmenter-0.1/lib/Lingua/EN/Segmenter/
TextTiling.pm

20

time, we note that it is possible to have different kinds of relevant segmentation
for a document. This means that we cannot say that there is only one relevant
segmentation model for a document.

In our context, the log files are initially tagged by an expert based on their
structure whereas TextTiling determines segments based on the identified topic
changes. That is why it is not relevant to compare the segments obtained by
TextTiling with reference segments which are based on the log file logical struc-
ture. Therefore, we asked the domain expert again to independently analyze
the relevance of segments obtained by TextTiling. In this analysis, a segment
is considered irrelevant if:

e it contains several text chunks that each one should be considered as a
unique segment;

e it does not contain the entire of a text chunk that represents an unique
segment.

In the first case, the obtained segment should be split into more segments
as it contains different text chunks which are not significantly correlated. The
fact that there are different kinds of information in a segment can bias the pas-
sage retrieval performance. A relevant segment should only contain correlated
information.

In the second case, the issue is more important as the obtained segment do
not contain the totality of the information. This means that the segmentation
method has split a relevant segment into two or more irrelevant segments. In
such situation, we lost some part of information which is not situated in the
obtained segment.

Quality of TextTiling segments. For segments obtained by TextTiling, we
evaluate them based on the two previously presented conditions. Once the rele-
vant and irrelevant segments are determined, we define precision as the number
of relevant segments divided by the number of all obtained segments. Since in
the case of TextTiling, there are not a reference segmentation model, we do
not provide a recall estimation. In other words, we just seek to evaluate the
relevance of segments obtained by TextTiling.

In the case of our proposed approach, by using the automatic method (ex-
traction of generalised vs-gram) to acquire the features, we do not need the ex-
pert knowledge nor to adapt our approach to different kind of log files. Whereas
TextTiling needs to be parametrized according to the characteristics of docu-
ments. The main TextTiling parameters are Pseudo-sentence size and size (in
sentences) of the block used in the block comparison method. After some tests
on log file corpus, we set these two parameters to “8” which determine the size
of Pseudo-sentence in terms of word and the size of text blocks in terms of
sentences. In order to note also the performance of our approach, we provide
the results obtained by our approach. In our approach, we used the vs-gram
features and KNN classification.

21

Obtained segments | Irrelevant | Relevant | Precision

Segmentation 1086 56 1030 94%
using vs-grams
TextTiling 377 145 232 61%

Table 4: Segmentation by structure recognition using generalized vs-gram vs.
TextTiling method

As shown in Table 4, we observe that only 61% of segments obtained by
TextTiling are relevant. Regarding our method, the obtained results show that
94% of determined segments are relevant.

By analysing the obtained segments, we observed that TextTiling is not
capable to recognize all topic changes, which results in large segments which
should be split into more small segments. In the same time, TextTiling did not
recognize the entire of tables as an unique segments. Most tables are split into
several segments. This situation is explained via an example in Section 2 while
we discussed the relevance of existing topic based methods. Moreover, there is a
visual structure in log files which helps to recognize the correlated information
whereas the topic based methods, like TextTiling, which use the lexical cohesion
measures do not take this visual structure into account.

8 Conclusions and Future Work

We have presented an approach to segment log files (texts with complex logical
structures). In our approach we created a set of features where each feature
presents a syntactic characteristic of logical structures. To build the set of fea-
tures, we have proposed two methods: semi-automatic approach (via heuristics
of an expert), and automatic approach (via extraction of generalized vs-grams).
The results show that the generalized vs-grams, introduced in this paper, can
be used for modeling the complex logical structures of documents.

Using a training set based on the obtained features and a supervised clas-
sification method, we build a classification model which makes it possible to
distinguish the logical structures in the log files with an F-Score of 0.99. These
results have confirmed the experts to use our segmentation protocol in their
industrial usages.

In our future work, we wish to experiment our approach with other learning
algorithms and test our approach on other types of complex data. We also plan
to learn automatically the classes of the most discriminatory features to identify
a logical structure. Such knowledge can guide the user to add more relevant
expert information in an automated process.

22

References

[1]

2]

J. P. Callan. Passage-level evidence in document retrieval. In Proceedings
of the 17th annual International ACM SIGIR Conference on Research and
development in information retrieval, SIGIR’94, pages 302-310, New York,
NY, USA, 1994. Springer-Verlag New York, Inc.

Y. Cao, F. Liu, P. Simpson, L. Antieau, A. Bennett, J. J. Cimino, J. Ely,
and H. Yu. Askhermes: An online question answering system for complex
clinical questions. Journal of Biomedical Informatics, 44(2):277 — 288, 2011.

N. V. Chawla. Data Mining and Knowledge Discovery Handbook, chap-
ter Data Mining for Imbalanced Datasets: An Overview, pages 853-867.
Springer Verlag, 2013.

M. Embarek. Un systéme de question-réponse dans le domaine médical.
PhD thesis, Université Paris-Est, France, 2008.

M. A. Hearst. Texttiling: segmenting text into multi-paragraph subtopic
passages. Computational Linguistics, 23:33-64, March 1997.

H. Hernault, H. Prendinger, D. A. duVerle, and M. Ishizuka. Hilda: A
discourse parser using support vector machine classification. Dialogue and
Discourse, 1(3), 2010.

M. Jafari, F. SoleymaniSabzchi, and S. Jamali. Extracting users’ naviga-
tional behavior from web log data: a survey. Journal of Computer Sciences
and Applications, 1(3):39-45, 2013.

M. Kaszkiel and J. Zobel. Passage retrieval revisited. In Proceedings of
the 20th annual International ACM SIGIR Conference on Research and
development in information retrieval, SIGIR’97, pages 178-185, New York,
NY, USA, 1997. ACM.

M. Kaszkiel and J. Zobel. Effective ranking with arbitrary passages.
Journal of the American Society for Information Science and Technology,
52:344-364, February 2001.

H. Kozima. Text segmentation based on similarity between words. In
Proceedings of the 31st annual meeting on Association for Computational
Linguistics, ACL’93, pages 286—288, Stroudsburg, PA, USA, 1993. Associ-
ation for Computational Linguistics.

A. Labadié and V. Prince. Lexical and semantic methods in inner text topic
segmentation: A comparison between c99 and transeg. In Proceedings of
NLDB’08, pages 347-349, Berlin, Heidelberg, 2008. Springer-Verlag.

F. Llopis, A. Ferrndez, and J. Vicedo. Text segmentation for efficient in-
formation retrieval. In A. Gelbukh, editor, Computational Linguistics and
Intelligent Text Processing, volume 2276 of Lecture Notes in Computer Sci-
ence, pages 13-29. Springer Berlin / Heidelberg, 2002.

23

[13]

[18]

[19]

[20]

F. Llopis, J. L. Vicedo, and A. Ferrandez. Passage selection to improve
question answering. In proceedings of the 2002 Conference on multilin-
gual summarization and question answering - Volume 19, MultiSumQA’02,
pages 1-6, Stroudsburg, PA, USA, 2002. Association for Computational
Linguistics.

D. Marcu. The theory and practice of discourse parsing and summarization.
MIT Press, 2000.

D. Mehrzadi and D. G. Feitelson. On extracting session data from activity
logs. In Proceedings of the 5th Annual International Systems and Storage
Conference, SYSTOR. ’12, pages 3:1-3:7, New York, NY, USA, 2012. ACM.

T. M. Mitchell. Machine Learning. McGraw-Hill International Edit, 1997.

V. C. Nguyen, L. M. Nguyen, and A. Shimazu. Improving text segmen-
tation with non-systematic semantic relation. In Proceedings of the 12th
International Conference on Computational linguistics and intelligent text
processing - Volume Part I, CICLing’11, pages 304-315, Berlin, Heidelberg,
2011. Springer-Verlag.

B. Ofoghi, J. Yearwood, and R. Ghosh. A semantic approach to boost pas-
sage retrieval effectiveness for question answering. In ACSC’06: Proceed-
ings of the 29th Australasian Computer Science Conference, pages 95-101,
Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

J. M. Ponte and W. B. Croft. Text segmentation by topic. In Proceedings
of the First European Conference on Research and Advanced Technology
for Digital Libraries, pages 113-125, London, UK, 1997. Springer-Verlag.

J. M. Ponte and W. B. Croft. Text segmentation by topic. In Proceedings
of the First European Conference on Research and Advanced Technology
for Digital Libraries, pages 113125, London, UK, 1997. Springer-Verlag.

J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

G. Salton, J. Allan, and C. Buckley. Approaches to passage retrieval in full
text information systems. In Proceedings of the 16th annual International
ACM SIGIR Conference on Research and development in Information Re-
trieval, SIGIR’93, pages 49-58, New York, NY, USA, 1993. ACM.

D. Schiffrin. Discourse markers. Cambridge University Press, Cambridge,
1987.

M. Sun and J. Y. Chai. Discourse processing for context question answer-
ing based on linguistic knowledge. Knowledge-Based Systems, 20:511-526,
August 2007.

24

[25]

[29]

C.-M. Tan, Y.-F. Wang, and C.-D. Lee. The use of bigrams to enhance
text categorization. Information Processing and Management, 38:529-546,
July 2002.

O. Tarek. La segmentation des documents techniques en amont de
I'indexation : définition d’'un modele. Revue d’Information Scientifique

et Technique (RIST), vol. 13(nol):79-94, 2003.

J. Tiedemann and J. Mur. Simple is best: experiments with different
document segmentation strategies for passage retrieval. In Coling 2008:
Proceedings of the 2nd workshop on Information Retrieval for Question
Answering, IRQA’08, pages 17-25, Stroudsburg, PA, USA, 2008. Associa-
tion for Computational Linguistics.

M. A. Walker. Redundancy in collaborative dialogue. In Proceedings of the
14th Conference on Computational linguistics - Volume 1, COLING’92,
pages 345-351, Stroudsburg, PA, USA, 1992. Association for Computa-
tional Linguistics.

J. Zobel, A. Moffat, R. Wilkinson, and R. Sacks-Davis. Efficient retrieval
of partial documents. In Proceedings of the second Conference on Text
retrieval Conference, pages 361-377, Elmsford, NY, USA, 1995. Pergamon
Press, Inc.

25

