
Statistical Supports for Mining Sequential

Patterns and Improving the Incremental Update

Process on Data Streams

Pierre-Alain Laur1, Jean-Emile Symphor1, Richard Nock1, and Pascal
Poncelet2

1
Grimaag-Dépt Scientifique Interfacultaire,

Université Antilles-Guyane, Campus de Schoelcher,
B.P. 7209, 97275 Schoelcher Cedex, Martinique, France
{palaur,je.symphor,rnock}@martinique.univ-ag.fr

2
Lg2ip-Ecole des Mines d’Alès,

Site EERIE, parc scientifique Georges Besse,
30035 N̂ımes Cedex, France
pascal.poncelet@ema.fr

Abstract. Recently the knowledge extraction community takes a closer
look to new models where data arrive in timely manner like a fast and
continous flow, i.e. data streams. As only a part of the stream can be
stored, mining data streams for sequential patterns and updating pre-
viously found frequent patterns need to cope with uncertainty. In this
paper, we introduce a new statistical approach which biaises the initial
support for sequential patterns. This approach holds the advantage to
maximiez either the precision or the recall, as chosen by the user, and
limit the defradation of the other criterion. Moreover, these statistical
supports help building statistical borders which are the relevant sets of
frequent patterns to use into an incremental mining process. Theoreti-
cal results show that the technique is not far from the optimum, from
the statistical standpoint. Experiments performed on sequential patterns
demonstrate the interest of this approach and the potential of such tech-
niques.

1 Introduction

A growing body of works arising from databases and data mining manage to
deal with ordered sequence of items that arrives in timely manner, also known
as Data Stream. Data stream have seen the emergence of crucial problems that
were previously not as pregnant for databases, such as the accurate retrieval of
information in a data flow that prevents its exact storage, and whose information
may evolve through time. Emerging and real applications generate data streams:
trend analysis, fraud detection, intrusion detection, click stream, among many
others [13, 9, 12]. An important task in datamining that has recently attracted
significant attention is to build the set of most frequent patterns encountered in
the data stream. Addressing this issue faces a particular and highly non-trivial

2

problem. The knowledge of the stream is only partial at any time. Basically, the
data stored catches a glimpse of a data stream and thus the information we mine
should take into account the uncertainty generated by this partial observation
of the whole stream. From the frequent pattern standpoint, for instance, it is
not enough to observe some pattern as frequent in the data stored, it is much
more important to predict if it is really frequent or infrequent on the whole data
stream. The first problem, we are facing is to make a statistical approximation of
the true supports by observed supports. More over, in the case of data streams,
where the database is subject to be updated regularly, maintaining frequent
patterns has been addressed by various incremental algorithms, in order to mine
frequent patterns without having to build repeatedly everything from scratch
[33]. This is the second problem we are facing which consists in constructing and
maintaining over the successive updating, a set of frequent patterns the most
relevant as possible in an incremental mining process. The remainder of this
paper is organised as follow. Section 2 goes deeper into presenting the problem
statement. Our theoretical approach is presented and discussed in section 3.
Section 4 reports the results of our experiments.We make some comparisons
with related approaches in section 5. Finally, in section 6 we summarize our
finding and conclude the paper with future avenues of research.

2 Problem statement

2.1 Mining sequential patterns into data streams

We define items as the unit information, itemsets to be sets of items [1], and
sequential patterns to be sequences of items [25]. A pattern is θ-frequent if it
occurs in at least a fraction θ of the data stream (called its support), where θ is
a user-specified parameter.

Our problem is motivated by the fact that the data we store catches a glimpse
of a data stream, and the information we mine should take into account the un-
certainty generated by this partial observation of the whole stream. Our setting
is thus a bit more downstream than those of [2, 4, 6, 15, 29]. Given the nature
of the streaming data, there are two sources of error when estimating frequent
patterns from the available part of the stream:

1. it is possible that some patterns observed as frequent might in fact not be
frequent anymore from a longer observation of the data stream;

2. on the other hand, some patterns observed as not frequent may well in fact
be frequent from a longer history of the data stream.

The point is that it is statistically hard to nullify both sources of error from
the observation of a subset, even very large, of the whole data stream [28]. This
unsatisfiable goal can be relaxed to the tight control of one source or error, while
keeping the other one within reasonable bounds. This goal, which we address in
this paper, can be summarized as follows; the user fixes some related parameters
and chooses a source of error:

3

S∗Xθ

X,D (unknown)

sampling
stream (observed)

X∗

θ

Fig. 1. Problem statement.

(a) the source of error chosen is nullified with high probability;
(b) the other one incurs a limited loss.

In this paper, we propose a solution to this problem which is statistically near
optimal: any other technique that would yield a loss significantly smaller on (b)
would not satisfy (a), regardless of its computation time.

2.2 Borders and Incremental updates

Let DB be the original database and minSupp the minimum support. Let db
be the increment database where new sequences of items are added to DB.
DB′ = DB ∪ db is the updated database containing all sequences from DB
and db. Let LDB be the set of frequent patterns in DB. In incremental mining
of sequential patterns, one important problem is to find frequent sequences in
DB′, noted LDB′ , with respect to a given minimum support θ provided by the
user. Furthermore, the incremental approach has to take advantage of previously
discovered patterns in order to avoid re-running mining algorithms when the
data is updated. More precisely, here we will not address the whole problem of
incremental mining here. In fact some algorithm does not only keep the LDB

set but for improving performance they keep a bigger set calls a border. Such
border holds informations in order to avoid computing from scratch. We will
address the following issue: which frequent patterns should be a member of this
border when we have choosen to nullified with high probability one of the source
of error from section 2.1.

3 Our approach

3.1 Definitions

The data stream is supposed to be obtained from the repetitive sampling of a
potentially huge domain X which contains all possible data sequences, see figure
1. Each sequence is sampled independently through a distribution D, see figure 1,
for which we make absolutely no assumption, except that it remains fixed: there

4

is no distribution drift through time. The reader may find relevant empirical
studies on concept drift for supervised mining in [30]. The user specifies a real
0 < θ < 1, the theoretical support, and ideally wishes to recover all the true

θ-frequent sequential patterns of X . This set is called Xθ, see figure 1.

Definition 1.

∀0 ≤ θ ≤ 1, Xθ = {T ∈ X : ρX(T) ≥ θ} , (1)

with ρX(T) =
∑

T ′∈X:T≤tT ′ D(T ′), and T ≤t T ′ means that T generalizes T ′.

The recovery of Xθ faces two problems. Apart from our statistical estimation
problem, there is a combinatorial problem which comes from the fact that X is
typically huge. The set of observed data sequences which we have sampled from
X in the data stream (S) has a size |S| = m (|S| << |X |). In our framework, we
usually reduce this difference with some algorithm returning a superset S∗ of S,
having size |S∗| = m∗ > m. Typically, S∗ contains additional generalizations of
the elements of S. The key point is that S∗ is usually still not large enough to
cover Xθ, regardless of the way it is built, so that the pregnancy of our statistical
estimation problem remains the same.

Our statistical estimation problem can be formalized as follows:

• approximate as best as possible the set :

X∗
θ = Xθ ∩ S∗ , (2)

of true θ-frequent sequential patterns of X on S∗, for any S and S∗ (see
figures 1 and 2).

Remark that ∀T ∈ S∗, we cannot compute exactly ρX(T), since we do not
know X and D. Rather, we have access to its best unbiased estimator, ρS(T) =
∑

T ′∈S:T≤tT ′ w(T ′) (∀T ∈ S∗). Here, w(T ′) is the weight (observed frequency)
of T ′ in S. We adopt the following approach to solve our problem:

• find some 0 < θ′ < 1 and approximate the set X∗
θ by the set of observed

θ′-frequent of S∗, that is:

S∗
θ′ = {T ∈ S∗ : ρS(T) ≥ θ′} . (3)

Before computing θ′, we first turn to the formal criteria appreciating the goodness-
of-fit of S∗

θ′ , see figure 2. The two sources of error, committed with respect to X∗
θ ,

come from the two subsets of the symmetric difference with S∗
θ′ , as presented in

figure 2. To quantify them, let us define:

TP =
∑

T∈S∗

θ′
∩X∗

θ

D(T) (4)

FP =
∑

T∈S∗

θ′
\X∗

θ

D(T) (5)

FN =
∑

T∈X∗

θ
\S∗

θ′

D(T) (6)

TN =
∑

T∈S∗\(S∗

θ′
∪X∗

θ
)

D(T) (7)

5

S∗
θ′ FP

S∗

TP TN

FN

X∗
θ

Fig. 2. The error estimation.

The precision allows to quantify the proportion of estimated θ-frequent patterns
that are in fact not true θ-frequents, out of S∗

θ′ :

P = TP/(TP + FP) . (8)

Maximizing P leads to minimize our first source of error. Symmetrically, the recall

allows to quantify the proportion of true θ-frequent patterns that are missed in
S∗

θ′ :

R = TP/(TP + FN) . (9)

Maximizing R leads to minimize our second source of error. We also make use of a
well known quantity in information retrieval, which is a weighted harmonic aver-
age of precision and recall, the Fβ-measure. Thus, we can adjust the importance
of one source of error against the other by adjusting the β value:

Fβ = (1 + β2)PR/(R + β2
P) , (10)

Our approach is also represented using databases on figure 3.

– (a) (on this figure) represents a database that contains all possible data se-
quences of the stream X .

– (b) is the observed part of the stream S that could be store in a database.
It has been build by sampling the stream through the distribution D.

– (c) is the set of true θ-frequent sequential patterns of X in S∗ that we want
to approximate as best as possible.

– (d) represent the formal criteria for appreciating the goodness-of-fit of S∗
θ′

by comparing results from (c) and the sets built from (e).

– (e) show the differents sets we will construct using well choosen θ′ value on
(b).

6

Observed

Stream

Real

Sequential Pattern

(a)

(b)

(d)

(e)(c)

Algorithm

X∗

θ

X
S

P , R, Fβ

S∗

θ−ε S∗

θ S∗

θ+ε

sampling (D)

Fig. 3. Our databases framework.

3.2 About choosing θ
′

A naive approach to approximate X∗
θ would typically be to fix θ′ = θ. Un-

fortunately, the main and only interesting property of S∗
θ′ is that it converges

with probability 1 to X∗
θ as m → ∞ from Borel-Cantelli Lemma [7]. Glivenko-

Cantelli’s Theorem gives a rate of convergence as a function of m, but it does
not give the possibility to maximize P or R.

Informally, our approach boils down to picking a θ′ different from θ, so as
to maximize either P or R. Clearly, extremal values for θ′ would do the job,
but they would yield very poor values for Fβ , and also be completely useless
for data mining purposes. For example, we could choose θ′ = 0, and would
obtain S∗

0 = S∗, and thus R = 1. However, in this case, we would also have
P = |X∗

θ |/|S∗|, a too small value for many domains and values of θ, and we
would also keep all elements of S∗ as true θ-frequents sequential patterns, a
clearly huge drawback for mining issues. We could also choose θ′ = 1, so as to
be sure to maximize P this time; however, we would also have R = 0, and would
keep no element of S∗ as θ-frequent sequential patterns.

These extremal examples show the principle of our approach. Should we want
to maximize P, we would pick a θ′ larger than θ to guarantee with high probability
that P = 1, yet while keeping large enough values for R (or Fβ), and a set S∗

θ′

not too small to contain significant informations. There is obviously a statistical
barrier which prevents θ′ to be too close to θ to keep the constraint P = 1. The
objective is to be the closest to this barrier, which statistically guarantees the
largest R values under the constraint.

3.3 Statistical borders

Statement In this section, we introduce two statistical borders (upper and
lower) which are relevant in the choice of frequent sequential patterns to use

7

into an incremental mining process. We adopt the concise probabilistic notation
of [21], and define for some predicate P the notation ∀δP which means that
P holds for all but a fraction ≤ δ of the sets S sampled under distribution
D. Equivalently, P holds with probability ≥ 1 − δ over the sampling of S on
distribution D. The following definition is the cornerstone of our approach.

Definition 2. ∀0 ≤ θ ≤ 1, ∀0 ≤ ε ≤ 1, ∀S ⊆ X, we say that S∗ is a upper

statistical border of X iff ∀T ∈ X∗
θ ,

ρS(T) ≥ ρX(T) − ε . (11)

Respectively, we say that S∗ is a lower statistical border of X iff ∀T ∈ S∗\X∗
θ ,

ρS(T) ≤ ρX(T) + ε . (12)

FN

S∗

S∗

θ+ε

VP VN

X∗

θ

Fig. 4. Lower statistical border.

S∗

FP

S∗

θ−ε

VP
VN

X∗

θ

Fig. 5. Upper statistical border.

The way we use definition 2 is simple. Consider that the user has fixed both
the theoretical support 0 ≤ θ ≤ 1, and a statistical risk parameter 0 < δ < 1.
Suppose we can find ε such that:

∀δ, S∗ is a lower statistical border of X . (13)

Now, fix θ′ = θ + ε, so that we keep S∗
θ+ε. Because (13) holds, we observe

∀T ∈ S∗\X∗
θ , ρS(T) ≤ ρX(T)+ ε < θ + ε. Thus, we obtain ∀δ , S∗

θ+ε ⊆ X∗
θ , which

easily yields:

∀δ , P = 1 . (14)

Thus, there is no first source of error, with high probability. All patterns of S∗
θ+ε

are true θ-frequent of X∗
θ , but some are missing (see figure 4). S∗

θ+ε is the biggest
possible set that only hold true θ-frequent patterns of X∗

θ after looking inside
a sample of the stream. This set is define as the lower statistical border of X∗

θ

obtained from the observed part of the stream S∗ of X .

Now, suppose we can find ε such that ∀δ , S∗ is a upper statistical border of
X , and fix this time θ′ = θ− ε, so that we keep S∗

θ−ε. Because of the property of

8

S∗, we observe ∀T ∈ X∗
θ , ρS(T) ≥ ρX(T)−ε ≥ θ−ε, which yields ∀δ, X∗

θ ⊆ S∗
θ−ε,

and finally:

∀δ , R = 1 . (15)

In that case, there is no second source of error with high probability. S∗
θ−ε hold

patterns true θ-frequent of X∗
θ , but it also hold extra ones which are not (true

θ-frequent figure 5). S∗
θ−ε is the smallest possible set that hold all the true θ-

frequent patterns of X∗
θ after looking inside a sample of the stream. This set is

define as the upper statistical border of X∗
θ obtained from the observed part S∗

of the stream X .

Computationally speaking, both sets S∗
θ+ε and S∗

θ−ε can be easily built em-
pirically from S∗. Finally, the way we address 3 is now reduced to finding an
accurate value of ε such that S∗ is an upper or lower statistical border of X with
high probability.

Stream

(a) (b)

(c)

Sequential patterns

DB db

P , R, Fβ

S∗

θ+ε
S∗

θ−ε

DB ∪ db

S

X
′
∗

θ

S
′

=

Fig. 6. Statistical borders for the incremental update process.

Incremental updates We show in figure 6 how we use the previously defined
statistical borders into an incremental mining process. We search the θ-frequent

sequential patterns from the statistical borders ((a) and (b) on the figure 6).
These borders have been built for a θ′ support, computed from the orginal

9

θ support and the ε value obtained from S (DB). These borders allow us to
approximate as best as possible the set of all true θ-frequent sequential pat-
terns for S

′

, which represents the database DB updated with the increment db
(S

′

= S ∪ db). In the section X, we will compare the set of θ-fréquent sequential
patterns obtained through the statistical borders using the set X

′∗
θ ((c) on fig-

ure 6). This set represents all the true θ-frequent sequential patterns after the
incremental update occured (DB ∪ db).

3.4 finding ε

The following Theorem gives a value ε which yields with high probability an
upper statistical border of X .

Theorem 1. ∀X, ∀D, ∀m > 0, ∀0 ≤ θ ≤ 1, ∀0 < δ ≤ 1, the following holds:

∀δ , S∗ is an upper statistical border of X, for any ε satisfying:

ε ≥
√

(1/(2m)) ln(|X∗
θ |/δ) .

Proof. A standard application of Chernoff bounds yields that the probability
for any fixed itemset T ∈ X to observe ρS(T) ≤ ρX(T) − ε is no more than
exp(−2mε2). Using the union bound, the probability that this is observed for
some itemset ∈ X∗

θ is no more than |X∗
θ | exp(−2mε2). Solving for ε this quantity

equal to δ yields the Theorem.

The same kind of result can be obtain for a lower statistical border, with the
same proof. Hereafter, we give the statement of the Theorem.

Theorem 2. ∀X, ∀D, ∀m > 0, ∀0 ≤ θ ≤ 1, ∀0 < δ ≤ 1, the following holds:

∀δ , S∗ is a lower statistical border of X, for any ε satisfying:

ε ≥
√

(1/(2m)) ln(|S∗\X∗
θ |/δ) .

Theorems 1 and 2 say that finding (lower/upper) statistical borders is a
fairly easy task. What they do not say is whether this simplicity can be replaced
by another approach, may be more sophisticated, to find significantly better

statistical borders. In other words, could there exists equivalents to Theorems 1
and 2 with a significantly smaller ε ? Let’s show that the answer to this question
is no.

The following argument shows that there are no significant better statistical
borders than those proposed in Theorems 1 and 2. Informally, we build to this
extent a skewed distribution D on some very simple X∗

θ , such that with prob-
ability ≥ δ we ”miss” the statistical border for some value of ε slightly smaller
than that proposed in Theorems 1 or 2. The following Theorem proves the result
for the upper statistical border of X .

10

Theorem 3. ∃X, ∃D, ∃m > 0, ∃0 ≤ θ ≤ 1, ∃0 < δ ≤ 1 such that the following

holds: with probability ≥ δ, S∗ is not an upper statistical border of X, for any ε
satisfying:

ε ≤ c
√

(1/(2m)) ln(|X∗
θ |/δ) ,

for some constant c < 1.

The proof of this Theorem is postponed to the appendix. Since failing to ob-
tain an upper statistical border of X ultimately means failing to have maximal
recall, our computation of ε is thus close to the best possible which keeps the
guarantees we want on recall. Obviously, the same kind of Theorem holds for a
lower statistical border of X , and its proof follows that of Theorem 3.

Theorem 4. ∃X, ∃D, ∃m > 0, ∃0 ≤ θ ≤ 1, ∃0 < δ ≤ 1 such that the following

holds: with probability ≥ δ, S∗ is not a lower statistical border of X, for any ε
satisfying:

ε ≤ c
√

(1/(2m)) ln(|S∗\X∗
θ |/δ) ,

for some constant c < 1.

The criterion which is not controlled may suffer some loss, but what Theorems
3 and 4 say on this criterion is that the loss it incurs is also statistically near-
optimal; a simple argument shows that the value of this loss behaves in a very
reasonable manner: Theorems 1 and 2 guarantee that ε ≤ (1/m) logm∗ for
reasonable δ; since generating S∗ is as worst reasonably polynomial in m, we
can expect m∗ ≤ mk for some small constant k > 0, which yields ε ≤ 1/m1−o(1).
In other words, θ ± ε converges quite rapidly to θ, and since a similar rate of
convergence of the observed frequencies to their expectations holds as well, we
observe a fast convergence of X∗

θ \S∗
θ+ε → ∅ (for θ′ = θ + ε) or S∗

θ−ε\X∗
θ → ∅

(for θ′ = θ − ε), ensuring a reasonably fast maximization of the unconstrained
criterion as well.

4 Experiments

Two kind of experiments were performed. Since our method for statistical sup-
ports does not depend on the algorithm used to build the frequent sequential
patterns, and since its computational cost is not larger than that of computing
ordinary frequencies, we do not evaluate it in terms of speed. Rather we focus
on evaluating: how our statistical support can be helpful to mine sequential pat-
terns on a data streams, given a fragment of this stream and how we can use
statistical borders to help optimizing an incremental updates process.

11

4.1 Measures

We previously define in eqs (8), (9) and (10) the following information retrieval
measeures : the precision P, the recall R and a weighted harmonic average of
both, the Fβ measure. These measures are widely spread to evaluate statisti-
cal predictive models. We have chosen to use them in our experiments when
considering sequential patterns mining.

4.2 Datasets and sequential pattern algorithms

In order to evaluate our predective method and use of statistical borders into an
incremental updates, we have chosen two real life datasets form Web servers. The
first database, named “Dragons”, is obtained from an Internet web site3 from
March 21th 2005 to March 28th 2005. More specifically the data represent the
behavior of this Web site usage. The Web logsize is about 2,54Go (132k transac-
tions). A preprocess was done in order to prune irrevelant data (spiders, robots,
etc.). In order to avoid traditional problems when considerating raw web logs,
URL pages having same values for similar variables were grouped together. Fi-
nally we consider that the session time was set to 4 hours. The second database,
named “BuAG”, is obtained from 3,48Go (54k transactions) web log server of
the University4 from january 1st to November 1st 2004. It shows how user access
to this University Library Web Site. As previously a preprocess was done and
the session time was set to 3 minutes.

As we previously advocate the independancy of our method with the used
algorithm we have chosen to use two traditional sequential pattern algorithms
PSP [19] for the evaluation of the statistical supports themselves and SPADE [32]
while testing the use of statistical borders in the incremental update process.

4.3 Statistical support

To analyze the correctness of our statistical supports, we need to evaluate as
many situation as possible, that is, we need to use our method with a range as
large as possible for each of the parameters (the exception is δ, which was fixed
to be .05). These parameters that vary during ours experiments are described in
figure 7.

Better than using a real data stream, which would possibly skew the perfor-
mance evaluations of the statistical supports, we have chosen to simulate data
streams assuming the complete knowledge of the domains, thus allowing to com-
pute exact values for the performance measurements. More precisely, we simulate
data streams by sampling each database into fragments. For example, we could
consider that data arrive in a timely manner from the “Dragons” database, and
that only 20% of the whole data is stored. So we pick 20% of the transactions of

3 www.elevezundragon.com.
4 www.univ-ag.fr/buag/.

12

Database θ sampling1 sampling2

Dragons [.07, .2] / .03 [.02,.1] / .01 [.15, .7] /.05
BuAG [.08, .2] / .03 [.05,.1] / .01 [.15, .7] /.05

Fig. 7. Range of parameters for the experiments in the form [a, b]/c, where a is the
starting value, c is the increment, and b is the last value.

this database, we consider that it is the data stored, and check the the precision
P, the recall R and the weighted harmonic average of both Fβ values with the
whole database. Obviously, 20% is an arbitrary percentage, and we have in fact
chosen to sample the database on a broad range of percentages using two scales.
The first allows a fine sampling of the database, for small values ranging from
2% to 10% by steps of 1% (“sampling1” in figure 7), and typically gives an idea
of what may happens for very large, fast data streams.We have completed this
first range with a coarse range of samplings, from 15% to 70% by steps of 5%
(“sampling2” in figure 7), which gives an idea of the average and limit behaviors
of our method.

On the top of our experiments, we have chosen to use a traditional sequen-
tial pattern algorithm PSP [19]. Given the very large number of tests to do for
each database, we have written a test generator, which automatically crosses the
parameters, and make all experiments for all possible tuples of parameters.

Due to the very large number of experiments and the lack of space to report
them all, we have chosen to report some plots we consider as representative, and
synthesize the whole results.

Figure 8 shows result from experiments on choosen databases with δ = .05.
Each plot describes for one database and one support value, either the precision
P or the recall R of the three methods which consist in keeping S∗

θ−ε, S
∗
θ , and

S∗
θ+ε.

A first glance at these plots reveals that their behavior is almost always the
same. Namely:

– the precision P increases with θ′ (eq. 3), while the recall R decreases with θ′,
– the precision P equals or approaches 1 for mostly storing sizes when θ′ = θ+ε,
– the recall R equals or approaches 1 for mostly storing sizes when θ′ = θ − ε.

These observations are in accordance with the theoretical results of section 3.2.
There is another phenomenon we may observe: the recall R associated to θ′ = θ+ε
is not that far from the recall R of θ′ = θ. Similarly, the precision P associated
to θ′ = θ − ε is not that far from the precision P of θ′ = θ. This shows that the
maximization of the precision P or the recall R is obtained at a reduced degra-
dation of the other parameter. We also remark that the precision P plots tend
to be better than that of the recall R. This is not really surprising, as advocated
in section 3.2, since the range of values for the precision P is smaller than that

13

Dragons, θ = .07

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70

P

Size (%)

(Pθ, Pθ+ε, Pθ-ε) = f(size S)

Pθ+ε
Pθ-ε

Pθ
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

R

Size (%)

(Rθ, Rθ+ε, Rθ-ε) = f(size S)

Rθ+ε
Rθ-ε

Rθ

Dragons, θ = .13

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

P

Size (%)

(Pθ, Pθ+ε, Pθ-ε) = f(size S)

Pθ+ε
Pθ-ε

Pθ
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

R

Size (%)

(Rθ, Rθ+ε, Rθ-ε) = f(size S)

Rθ+ε
Rθ-ε

Rθ

BuAG, θ = .08

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

P

Size (%)

(Pθ, Pθ+ε, Pθ-ε) = f(size S)

Pθ+ε
Pθ-ε

Pθ
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80

R

Size (%)

(Rθ, Rθ+ε, Rθ-ε) = f(size S)

Rθ+ε
Rθ-ε

Rθ

Fig. 8. Examples of plots with δ = .05 and three θ values. For theses values we give the
P (left plot) and R (right plot) for the three methods consisting in picking S∗

θ−ε, S
∗

θ , S∗

θ+ε.

of the recall R.

A close look at small storing sizes of the streams (before 10%) also re-
veals a more erratic behavior without straight convergence to maximal preci-
sion P or recall R. This behavior is not linked to the statistical support, but to
the databases used. Indee, the data stream is simulated out of each database.
So,small databases lead to even smaller storing sizes, and frequent sequential
patterns kept out of small databases are in fact trickier to predict than for big-
ger databases. This point is important as, from a real-world standpoint, we tend
to store very large databases, so we may expect this phenomenon to be reduced.

On these databases, another phenomenon seems to appear. First of all, be-
cause of the small values for θ, some tests have not be performed because θ−ε was

14

< 0. Furthermore, the greater difference observed between the curves seems to
stem out from the different sizes of databases. For example, the BuAG database
is smaller than the Dragons database by a factor 2.4. This, we think, explains
the greater differences between the curves: they are mostly a small database phe-
nomenon, and may not be expected from larger databases, or even real-world
data streams.

θ = .19

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

Fβ

Size (%)

(Fβ θ,Fβ θ+ε, Fβ θ-ε) = f(size S)

Fβ θ+ε
Fβ θ-ε

Fβ θ
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

Fβ

Size (%)

(Fβ θ,Fβ θ+ε, Fβ θ-ε) = f(size S)

Fβ θ+ε
Fβ θ-ε

Fβ θ

θ = .1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

Fβ

Size (%)

(Fβ θ,Fβ θ+ε, Fβ θ-ε) = f(size S)

Fβ θ+ε
Fβ θ-ε

Fβ θ
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

Fβ

Size (%)

(Fβ θ,Fβ θ+ε, Fβ θ-ε) = f(size S)

Fβ θ+ε
Fβ θ-ε

Fβ θ

Fig. 9. Two sets of plots of the Fβ value from the Dragons database, with β = .2 for
the left plots and β = 1.8 for the right plots.

In figure 9, two sets of two plots taken from the Dragons database plot the
weighted harmonic average of precision and recall Fβ measure, against the size
of the stream used (in %). The values of β have been chosen different from 1,
since it would make no real sense to put the same weight into precision and
recall given, that we put our primary emphasis on the maximization of a single
criterion. The values have also been choosen not too small or too large to yield
a reasonable prominence of one criterion (.2 and 1.8, see figure 9).

Different phenomenons appears on these plot. First of all, as seen on the left
plots, the weighted harmonic average of precision and recall Fβ value displays
the advantage of choosing θ′ = θ + ε against the choice θ′ = θ. Meanwhile,
as shown on the right plots choosing θ′ = θ − ε against the choice θ′ = θ is
not always a win / win strategy. Moreover, recall R that this is obtained while
statistically guaranteeing the maximal value for whichever of the precision P or

15

Database θ size of DB size of db

Dragons [.07, .2] / .03 [.2,.6] / .1 [.1, .5] /.1
BuAG [.08, .2] / .03 [.2,.6] / .1 [.1, .5] /.1

Fig. 10. Range of parameters for the experiments in the form [a, b]/c, where a is the
starting value, c is the increment, and b is the last value.

recall R criterion, as chosen by the user. Such result throws out a question that we
are working on in a near future: is it possible to build a new frequent sequential
patterns set based on a mix of the frequent sets obtained with this statistical
support, which will have a better weighted harmonic average of precision and
recall Fβ value ?

4.4 Incremental updates

We will focus here on the evaluation of the quality of our statistical borders
using P and R measures more than their computation costs. To inforce that our
method is independant from any algorithm we hace choosen here to use another
well know sequential patterns algorithm SPADE [32] different from the one used
in the previous section. To analyze the quality of our statistical bordes, we have
evaluated as many situations as possible using a broad range of parameters (ex-
cept for δ which will be set to .05). These variations are described in the figure
10. The first parameter shows the different support values used during these
experiments (“θ”). The second one, define the ratio between the size of DB and
the simulated data stream (“size of DB”). The last one, define the ratio between
the size of db and the size of DB. In our case db will be at most 50% of the size of
DB (“size of db”), this parameter allows us to control the size of the increment.
In order to cross all these parameters, a generator has been built to run the tests.

As previously, we have chosen to simulate a data streams assuming the com-
plete knowledge of the domains X . Thus to simulate the stream we sample each
database into fragments DB (S). For example, we could consider that data arrive
in a timely manner from the Dragons database, and that only 20% of the whole
data could be stored. So we pick 20% of the transactions of this database, we
consider that it is the data stored DB. We just now need to take an increment,
db for example of size of 10%, of this database. Then we build the statistical
borders (upper and lower) defined into section 3.3 for DB.

Figures 11 and 12 show results of experiments, with δ = 0.05, for the
databases Dragons and BuAG. In order to evaluate the quality of our borders,
we plot their behaviour for P and R in relation to S

′

(S
′

= DB ∪ db). Thus,
plots Pθ+ε and Pθ−ε, represent the precision respectively for the lower statistical
border and for the upper statistical border. As well as the Rθ±ε plots stand for
the recall. Plots Pθ and Rθ stand for the naive choice of θ′ = θ. Here again a
first glance at these plots reveals that their behavior is almost always the same
and moreover similar to the ones noticed in the experiments of section 4.3:

16

Dragons, θ = 0.07, S = 60%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 65 70 75 80 85 90

P

Taille S’(%)

(Pθ, Pθ+ε, Pθ-ε) = f(taille S’)

Pθ+ε
Pθ-ε

Pθ
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 65 70 75 80 85 90

R

Taille S’ (%)

(Rθ, Rθ+ε, Rθ-ε) = f(taille S’)

Rθ+ε
Rθ-ε

Rθ

Dragons, θ = 0.19, S = 20%

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 32 34 36 38 40 42 44 46

P

Taille S’(%)

(Pθ, Pθ+ε, Pθ-ε) = f(taille S’)

Pθ+ε
Pθ-ε

Pθ 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 21 22 23 24 25 26 27 28 29 30

R

Taille S’ (%)

(Rθ, Rθ+ε, Rθ-ε) = f(taille S’)

Rθ+ε
Rθ-ε

Rθ

Fig. 11. shows precision P plots (on the left) and recall R plots (on the right) on the
Dragon database for three values of θ′ : θ − ε, θ and θ + ε, two values of θ and two size
of S (% of—X—).

– the precision P equals or approaches 1 for mostly storing sizes when θ′ = θ+ε,
– the recall R equals or approaches 1 for mostly storing sizes when θ′ = θ − ε.

Again, these observations are in accordance with the theoretical results of
section 3.2. The recall R associated to θ′ = θ + ε is not that far from the recall R
of θ′ = θ as it was in section 4.3. Similarly, the precision P associated to θ′ = θ−ε
is not that far from the precision P of θ′ = θ. We also keep here our property of
maximization of one criteria while the other is obtained at a reduced degradation
cost of the other. Here also, we remark that, for the same reasons, the precision
P plots tend to be better than that of the recall R especially on the figure 12.

Variation of the size of S (DB) has a non trivial impact on the plots and
comfort a theorical result that sounds logical. Indeed if we have a deeper look at
the recall R, we notice that, either on figure 11 or on figure 12, observed values
for this quantity increase along with the size of S. In fact the more data are
available the more quality the prediction is.

As in the experiment of section 4.3, for the same reasons advocate there,
an other phenomenon seems to appear. First of all, because of the small values
for θ, some tests have not be performed because θ − ε was < 0. Furthermore,
the greater difference observed between the curves seems to stem out from the
different sizes of databases.

On these plots (figures 11 and 12), the choice of θ′ = θ tends to give better
results if we consider the mean of P and R than the choice of the two other values

17

BuAG, θ = 0.08, S = 20%

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 22 23 24 25 26 27 28 29 30 31

P

Taille S’(%)

(Pθ, Pθ+ε, Pθ-ε) = f(taille S’)

Pθ+ε
Pθ-ε

Pθ
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 22 23 24 25 26 27 28 29 30 31

R

Taille S’ (%)

(Rθ, Rθ+ε, Rθ-ε) = f(taille S’)

Rθ+ε
Rθ-ε

Rθ

BuAG, θ = 0.08, S = 40%

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 44 46 48 50 52 54 56 58 60 62

P

Taille S’(%)

(Pθ, Pθ+ε, Pθ-ε) = f(taille S’)

Pθ+ε
Pθ-ε

Pθ 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 44 46 48 50 52 54 56 58 60 62

R

Taille S’ (%)

(Rθ, Rθ+ε, Rθ-ε) = f(taille S’)

Rθ+ε
Rθ-ε

Rθ

Fig. 12. shows precision P plots (on the left) and recall R plots (on the right) on the
BuAg database for three values of θ′ : θ − ε, θ and θ + ε, two values of θ and two size
of S (% of—X—).

of θ′, but in this case neither P, nor R are close to 1 with a high probability. With
our approach, we can efficiently optimize the incremental update process. In the
case where we have enough storage space, we would choose θ′ = θ− ε, the upper
border, which holds tough guarentees on the future frequents (R = 1). In these
case the amount of complementary computations for the update would be low.
However in the case where we have a limited storage space it would be wiser to
keep a smaller border. θ′ = θ + ε, the lower border, will there be the best choice
as it holds the more revelant informations available (P = 1). Thus we can see
our statistical borders as useful tools for the incremental update. Moreover they
represent the limit from where it is useless to store more information in the case
of θ′ = θ − ε (inferior value for θ

′

); and on other hand the limit from where the
loss of information would be to important θ′ = θ + ε (superior value for θ

′

).

5 Related work

5.1 About mining sequential patterns from data streams

A significant body of previous works has addressed the accurate storing of the
data stream history. This storage problem consists in finding compact data struc-
tures to reduce the size of the data kept out of the stream, while guaranteeing
with high probability that the items observed as frequent from the stream are

18

still observed frequent inside the data structure [2, 6, 15]. The first approach was
proposed by [18] where they define the first single-pass algorithm. Li et al. [17]
use a top-down frequent itemset discovery scheme. A regression-based algorithm
is proposed in [26] to find frequent itemsets in sliding windows. Chi et al. [5]
consider closed frequent itemsets. In [10], they propose a FP-tree-based algo-
rithm [14] to mine frequent itemsets at multiple time granularities by a novel
tilted-time windows technique. It should be more convenient, from a data mining
standpoint, to try to reduce the storage uncertainty with an accurate forecasting
on the data stream, rather than reducing it to the portion observed. This is the
main difference with our framework.

A previous Chernoff-type analysis, due to [27], may be fit to handling data
streams as well, but for slightly more restricted problems; in particular, while
some of the bounds would typically not be applicable for large S∗, the others
would be mainly addressed at controlling the precision of the support estima-
tion, and not the maximization of our criteria (precision or recall). Finally, such
results (and ours) do not rely on optimizing the estimation of these criteria (util-
ity functions), like for example in [8], [24].

Perhaps the works closest to ours are some that have specifically focused in
forecasting some properties on data due to a lack of information, either because
the data are noisy [31], or because a constraint exists on the data storage that
prevents to keep all the information [11]. A first difference with these works is
that they focus on approximating 2 from section 3 without emphasis on the com-
ponents of the solution’s accuracy (precision and recall). Thus, they somewhat
rely on the sole statistical hardness of the estimation task [28], without drilling
down into its components. A second difference, very technical, is that all their
bounds are pointwise, i.e. hold for a single itemset, and typically do not yield
properties that hold uniformly, i.e. for a whole set of itemsets. That later case
makes it necessary to bring some additional material, such as approximating
cardinals or the concept of statistical borders , but at this price, we are able
to show the statistical near-optimality of our approach (an important issue, not
discussed in [11, 31]).

5.2 About incremental updates

Since 1996, numerous research works focus on maintaining frequent patterns
sets obtained from static databases. Partition and FUP (Fast UPdate) [4] are
two algorithms when the database is splitted in order to firstly seek for local
frequents in each partition and then combining them in order to compute global
frequents using cross validation technics. This rely on the hypothesis that global
frequent patterns should be at least frequent in one partition. [23] developped
an incremental update algorithm ISM (Incremental Sequence Mining) by main-
taining a lattice of the database patterns build from all frequent patterns and
the negative border. [34] have built an algorithm IUS(Incrementally Updating
Sequence) by using a support value to limit the size of the stored negative border

19

candidates. These approaches are subjected to all drawbacks linked to the use
of the negative border:

– the space of the pattern candidates that have to be maintained is huge;
– It is necessary to consider the structural relationships that exist between

patterns, especially in the case where patterns have a small support value.

[20] have proposed an incremental update algorithm ISE using a generating /
pruning technic for the candidates that has the following drawbacks:

– the space of candidates could be huge, indeed the pruning phase (support
counting) is very slow;

– this algorithm need many loops on the whole database. This phase costs a
lots of time especially for long sequential patterns.

−−−−−−− −− −− − −− −−−−−−−−−−−−

−

+ ++ + ++ +
+ + + +

++
+ + +

+

+ + +
+ +

+
++

+
+

+
+

++ + + + + + + + + + + ++
+ + + + +

+
+
+++

++
+++

+

+

SFS

statistical border

statistical border

True frequents

Observed frequents

Lower

Upper

Fig. 13. Comparison.

IncSpan (Incremental Mining of Sequential Patterns in large database) algorithm
from [3] rely on a statistical approach where they build a set of semi-frequents
(SFS) by reducing the original value of the minimal support by a factor. Their
main idea is that some of the frequent patterns in the updated database could
come from the SFS or are already frequents in the database before the update
occured. In another way, SFS is a kind of frontier area between frequent and
non frequent patterns. On the figure 13, we show an exemple of the SFS set.
This approach holds major insufficiency on a statistical stand point either on
the estimation of the uncertainty due to the data streams as well as the way
the set of pattern candidates that are used for the incremental update is built.
Indeed, the choice of the factor used to reduce the minimal support value is
heuristic and does no rely on any theorical assumption. This approach neither
provide any certainty nor any information on the error made while building the
SFS set and so on for the true θ-frequent patterns of the stream build on top of
it (area with - symbol on the figure 13). Moreover, we don’t have any guarentee
on the fact that this set is minimum in matter of size (area with + symbol on
the figure 13). This is very inconvenient for using it in the goal of optimizing the
incremental update process.

20

6 Conclusion

There are five main contributions in this paper. First, we discuss the replacement
of the conventional minimal support requirement for finding frequent sequential
patterns by a statistical support, in case where storing the entire data is impos-
sible (such as data streams), so as to keep some convenient properties over the
data kept. Then, we provide a method to compute this statistical support, while
keeping those revelant properties. The method exploits concentration inequali-
ties for random variables a tool that has previously been helpful from both the
theorical and pratical standpoints in other domains [16, 22, 28]. Moreover this
method is near optimal from the statistical estimation standpoint. Our fourth
contribution rely on how using these statistical supports to build borders in order
to optimize an incremental update process. Finally we validate experimentally
our approach. Experiments seem to display that the method is robust, regard-
less of the domain’s complexity, the size of the data stored or the support values
chosen. These are clear good points in favor of the applicability and scalability
of the method.

There are a number of possible extensions to this work in many data mining
researh fields. One very promising research direction would be to integrate our
approach with those exploring data structures to maintains item that are ob-
served as frequent with maximal recall [15]. Currently we are trying to address
the following question: is it possible to build an intermediate set that keep as
much as possible properties of these borders ? This set would represent a trade off
between a too big statistical border to store and an other one for which needed
database access while maintaining would be too important. In other words :
how to build a border under a constraint of size that represent the best trade
off between a recall R close to 1 and a precision P close to 1. A last research
direction which is almost done will study how our method behaves when there
is a distribution drift inside the stream.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large database. In Proc. of ACM SIGMOD’93, 1993.

2. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. In Procs of the 29 th International Colloquium on Automata, Languages,

and Programming, pages 693–703, 2002.

3. X. Cheng, X. Yan, and J. Han. Incspan: Incremental mining of sequential patterns
in large database. In Proc. of KDD’04, 2004.

4. D. Cheung, J. Han, V. Ng, and C. Wong. Maintenance of discovered association
rules in large databases: an incremental update technique. In Proc. of ICDE’93,
1996.

5. Y. Chi, H. Wang, P.S. Yu, and R.R. Muntz. Moment: Maintaining closed frequent
itemsets over a stream sliding window. In Proc. of ICDM’04, 2004.

21

6. G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most
frequent items dynamically. In Proc. of the ACM International Conference on the

Principles of Database Systems, pages 296–306. ACM Press, 2003.
7. L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni-

tion. Springer, 1996.
8. Carlos Domingo, Ricard Gavaldà, and Osamu Watanabe. Adaptive sampling meth-

ods for scaling up knowledge discovery algorithms. Proc. of DMKD’02, 6, 2002.
9. W. Fan, Y.-A. Huang, H. Wang, and P.-S. Yu. Active mining of data streams. In

Proc. of the SIAM International Conference on Data Mining, pages 457–461, 2004.
10. G. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining frequent patterns in data

streams at multiple time granularities. In Next Generation Data Mining, MIT

Press, 2003.
11. P.-B. Gibbons and Y. Matias. New sampling-based summary statistics for im-

proving approximate query answers. In Proc. of the ACM SIGMOD International

Conference on Management of Data, pages 331–342, 1998.
12. L. Golab and M. Tamer Ozsu. Issues in data stream management. ACM SIGMOD

Records, 2:5–14, 2003.
13. S. Gollapudi and D. Sivakumar. Framework and algorithms for trend analysis in

massive temporal datasets. In Proc. of the 13 th ACM International Conference

on Information and Knowledge Management, pages 168–177, 2004.
14. J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, U. Dayal, and M. Hsu. Freespan:

Frequent pattern-projected sequential pattern mining. In Proc. of KDD’00, 2000.
15. C. Jin, W. Qian, C. Sha, J.-X. Yu, and A. Zhou. Dynamically maintaining frequent

items over a data stream. In Proc. of CIKM’03. ACM Press, 2003.
16. M. J. Kearns and Y. Mansour. A Fast, Bottom-up Decision Tree Pruning algorithm

with Near-Optimal generalization. In Proc. of ICML’98, 1998.
17. H.-F. Li, S.Y. Lee, and M.-K. Shan. An efficient algorithm for mining frequent

itemsets over the entire history of data streams. In Proc. of the 1st Intl. Workshop

on Knowledge Discovery in Data Streams, 2004.
18. G. Manku and R. Motwani. Approximate frequency counts over data streams. In

Proc. of VLDB’02, 2002.
19. F. Masseglia, F. Cathala, and P. Poncelet. The PSP approach for mining sequential

patterns. In Proc. of PKDD’98, 1998.
20. F. Masseglia, P. Poncelet, and M. Teisseire. Incremental mining of sequential

patterns in large databases. Data and Knowledge Engineering, 46, 2003.
21. D. McAllester. Some PAC-Bayesian theorems. Machine Learning, 37:355–363,

1999.
22. R. Nock and F. Nielsen. Statistical Region Merging. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 2004. to appear.
23. S. Parthasarathy, M. Zaki, M. Orihara, and S. Dwarkadas. Incremental and inter-

active sequence mining. In Proc. of CIKM’99, 1999.
24. Tobias Scheffer and Stefan Wrobel. Finding the most interesting patterns in a

database quickly by using sequential sampling. Proc. of JMLR’02, 3, 2002.
25. R. Agrawal R. Srikant. Mining sequential patterns. In Proc. of ICDE’95 Confer-

ence, 1995.
26. W.-G. Teng, M.-S. Chen, and P.S. Yu. A regression-based temporal patterns mining

schema for data streams. In Proc. of VLDB’03, 2003.
27. Hannu Toivonen. Sampling large databases for association rules. In Proc. of

VLDB’96, 1996.
28. V. Vapnik. Statistical Learning Theory. John Wiley, 1998.

22

29. A. Veloso, W. Meira, M. Carvalho, B. Possas, S. Parthasarathy, and M.-J. Zaki.
Mining frequent itemsets in evolving databases. In Proc. of the 2nd SIAM Inter-

national Conference on Data Mining, pages 31–41, 2002.
30. D. Wettschereck and D. Aha. Mining concept-drifting data streams with ensemble

classifiers. In Proc. of KDD’03, 2003.
31. J. Yang, W. Wang, P.-S. Yu, and J. Han. Mining long sequential patterns in a

noisy environment. In Proc. of the ACM SIGMOD International Conference on

Management of Data, pages 406–417, 2002.
32. M.J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine

Learning Journal, 42, 2001.
33. Q. Zheng, K. Ksu, S. Ma, and W. Lv. The algorithms of updating sequential

patterns. In Proc. of ICDM’02, 2002.
34. Q. Zheng, K. Xu, S. Ma, and W. lv. The algorithms of updating sequential patterns.

In Proc. of ICDM’02, 2002.

7 Appendix

We prove Theorem 3. We make the assumption that X∗
θ is a singleton, and θ will

be chosen in (1/2, 1]: there exists a single θ-frequent itemset T . We also suppose
that there are two itemsets in X with respective weight θ (this is T) and 1 − θ.
Given that we sample independently in S the data stream for m itemsets, there
is a probability ≥ η to observe ρS(T) < ρX (T) − ε, with:

η =

(

m

m(θ − ε)

)

(1 − θ)m(1−θ+ε)θm(θ−ε) , (16)

and
(

m

k

)

= m!/((m− k)!k!) the binomial coefficient. In fact, we could have used
for η the tail of the Binomial distribution from the terms k < m(θ − ε), and
this would yield a bound for η stronger than that of eq. (16). For the sake of
readability, we abbreviate f(m, θ, ε) the right-hand side of eq. (16). We make
use of the following well known Stirling-type inequalities:

√
2nπ(n/e)n ≤ n! ≤ exp(1/(12n))

√
2nπ(n/e)n .

We obtain the following lowerbound on f(m, θ, ε):

f(m, θ, ε) ≥ exp

(

− 1

12my(1− y)
− 1

2
ln(2πmy(1 − y))

−m

[

(1 − y) ln
1 − y

1 − θ
+ y ln

y

θ

])

.

Here, we have made use of the shorthand y = θ − ε, which we suppose to be
∈ [0, 1]. The quantity inside the brackets is a Kullback-Leibler divergence, which
can be upperbounded with the relationship ln(x) ≤ x − 1 by:

(1 − y) ln
1 − y

1 − θ
+ y ln

y

θ
≤ (θ − y)2

θ(1 − θ)
. (17)

23

Provided m is not too small (in particular, m ≥ max{4π2, 1 + 1/(3y(1 − y))}),
we may obtain:

f(m, θ, ε) ≥ exp

(

−m
ε2

θ(1 − θ)
− ln m

)

.

Now, provided:

ε ≥
√

θ(1 − θ)

m
ln m , (18)

we finally obtain f(m, θ, ε) ≥ exp(−2mε2/(θ(1 − θ))). We shall clearly have
f(m, θ, ε) ≥ δ provided:

ε =

√

θ(1 − θ)

2m
ln

1

δ
, (19)

which satisfies eq. (18) whenever δ ≤ 1/m2. Choosing θ close to 1/2 brings the
statement of Theorem 3.

