
RSF - A New Tree Mining Approach with an Efficient Data
Structure

Federico Del Razo Lopez

LIRMM - CNRS
161 rue Ada

34392 Montpellier
FRANCE

delrazo@lirmm.fr

Anne Laurent

LIRMM - CNRS
161 rue Ada

34392 Montpellier
FRANCE

laurent@lirmm.fr

Pascal Poncelet

EMA - Site EERIE
69 rue G. Besse
30035 Nı̂mes
FRANCE

pascal.poncelet@ema.fr

Maguelonne Teisseire

LIRMM - CNRS
161 rue Ada

34392 Montpellier
FRANCE

teisseire@lirmm.fr

Abstract

Mining frequent subtrees from tree databases is
currently a very active research topic. This re-
search has many interests, including for instance
mediator schema building from XML schemas. In
this framework, many works have been proposed.
However, the way the data are represented is often
very memory-consuming. In this paper, we pro-
pose a new method to represent such data. We
show that this representation has many proper-
ties, which can be used in order to enhance sub-
tree mining algorithms. Experiments are led to
assess our proposition (data representation and
its associated algorithms).

Keywords: Data Mining, XML, Frequent Sub-
Tree Mining.

1 Introduction

The volume of data available from the Internet is
growing dramatically. Although it provides rich
information, it raises many problems when query-
ing these huge volumes of data in order to re-
trieve relevant information. Since users can in-
deed hardly be aware of the way the data are or-
ganized, it is necessary to provide them with me-
diator schemas that are built automatically. In
this framework, a mediator schema is meant as
an interface between the user and the data. This
interface provides the user with a schema to query
heterogeneous and distributed data in a very sim-
ple way, as shown on Figure 1.

As highlighted by the World Wide Web Consor-
tium, XML has been proposed to deal with huge

Figure 1: Querying Distributed Databases
through a Mediator Schema

volumes of electronic documents and is playing
an increasing important role in the exchange of a
wide variety of data on the Web. It is thus neces-
sary to be provided with tools to integrate XML
schemas in order to query XML data.

Even if recent works have been proposed to access
data when a query schema is known [11], it is still
a challenge to mine automatically such mediator
schemas. Existing approaches from the literature
are incomplete [8]. In this paper, we focus on
frequent pattern mining from an XML database.
In this framework, a frequent pattern is a sub-
tree that occurs in most XML schemas from the
database. This proportion is examined regard-
ing a support, which corresponds to a minimal
number of trees from the database that must con-
tain the subtree in order to consider this subtree
as being frequent. This mining process is com-
plex since all the XML schemas from the database
must be represented using a representation struc-
ture that can support data mining algorithms.

In many approaches, this transformation leads
to memory-consuming representations requiring
twice or three times the number of nodes. As
far as we know, there is no work in the literature
that provides both a compact representation and
useful properties for data mining algorithms. In
this paper, we thus propose a new structure be-
ing a compact representation as well as a relevant
support for data mining, as some properties can
be used when generating candidates and pruning
non frequent candidates. This approach is com-
pared to existing works [2, 7, 13] and we show its
interest through experiments.

This paper is organized as follows. Section 2
presents related work. Section 3 presents the core
of our proposition defining a new method to rep-
resent tree data and the associated algorithms for
frequent subtree mining. Section 4 presents the
results from experiments led on synthetic data.
Finally, Section 5 concludes and presents some
further work associated to our proposition.

2 Related Work

Mining frequent subtree has recently received a
great deal of attention [2, 5, 7, 12, 13]. In the fol-
lowing, we first introduce preliminary definitions.
Second we focus on principal approaches.

2.1 Preliminary Definitions

A tree is a connected graph containing no cycle.
A tree is composed by nodes, which are linked
by edges such that their exists a particular node
called root and such that all the nodes but the
root are composed by sub-trees. A tree is said to
be an ordered tree if the children from a node are
ordered. A tree is said to be an unordered tree

otherwise.

Let L = {a, b, c, ...} be a set of labels. A labeled

ordered tree is a tree T = {r,N,B,L,≺F } where:
r is the root, N is the set of nodes, B is the set
of edges such that B ⊆ V 2, (L : N → L) is a
mapping from the set of labels L to the set of
nodes N , and ≺F is an ordered relation between
brother nodes.

Several nodes can have the same label, which
raises the polysemy problem, since a label can be

associated to several nodes. The size of T is the
number of nodes in T : |T |. The order of T is the
number of edges in T .

Each node n is associated with a unique number
i, corresponding to its position in a breadth-first
traversal of the tree. ni denotes the ith node in
such a traversal (i = 0, . . . , |T | − 1).

indirect relation

a a

a

b

predecessor

successor

descendant

ancestor

L={a,b}

a

b

b

0

1 2 3

4

5 6

T direct relation

Figure 2: A Tree

For each pair (x, y) ∈ N ×N , it is said that there
is a direct relation between x and y if there exists
an edge from x to y. x is said to be the predecessor

and y is said to be the successor. It is said that
there is a indirect relation between x and y if there
exists a path between x and y, meaning that there
exists a non-empty set of nodes ν1, . . . , νk such
that there exists edges from x to ν1, from ν1 to
ν2, . . . and from νk to y. In this case, x is said to
be the ancestor and y is said to be the descendant.

Figure 2 shows a direct relation in T between the
nodes 0 and 3, and an indirect relation between
the nodes 3 and 6.

S � T denotes that S is a subtree of T (cf Fig-
ure 3). Considering an indirect link ancestor-

descendant, S � T holds under the following con-
ditions:

1. NS ⊆ NT

2. for each edge bS = (x, y) ∈ BS , x is an an-
cestor of y in T

3. for each edge bT = (x, y) ∈ BT , x is an an-
cestor of y in S

4. for each b1

S
= (x, y1) ∈ BS and b2

S =
(x, y2) ∈ BS , y1 ≺F y2 ⇒ y1 ≺F y2 in T

b

S
a

a c

0

1 2

S3

a

a

0

1 2
b

S4 a
0

21 3
b c d

1
b

T4 a
0

T2

a

b

a

0

1

2

a
0

S1

a
0

1

2

T3

a

b

a)

b)

2 3
dc

c)

a

T

1

2

3

1

a
4
b

5
c

b

a

a
0

1 2

2

Figure 3: Inclusion and non inclusion of S in T

2.2 Mining Frequent Sub-trees

The approaches proposed in the literature for
mining frequent subtrees are mostly based on the
data representation they use in order to speed up
the data mining algorithms.

The TreeMiner algorithm [13] proposes a
method for frequent subtree discovery. As we pro-
pose here, this work is based on an original repre-
sentation of the trees, which facilitates the man-
agement of the candidates. This approach needs
a storage space of three times the size of each tree
(3|T |), as shown by Figure 4.

a

b a

c

a
n=0, s=[0, 4]

n=1, s=[1, 3]

n=2, s=[2, 3]

n=3, s=[3, 3]

n=4, s=[4, 4]

T0

0, [0, 4]
0, [2, 3]
0, [4, 4]

0, [1, 3] 0, [3, 3]

 a b c

T, as a numbered chain:

T, as a scope list:

a b a c −1 −1 −1 a −1, size: (2|T|)

size: (3|T|)

Figure 4: Data Structure proposed in [13].
TreeMiner

The FreqT approach proposed in [2] is devoted
to ordered trees. The data structure that has

been chosen leads to interesting results regarding
runtime. However, this proposal is as memory-
consuming as [13], i.e. 3|T |, as shown by Figure
5.

b a c aa

2 3 410

1 2 3

4next

first

lb

T

a

b a

c

a

T

0

1

2

3

4

Representation "first child − next sibling" of T, size: (3|T|)

Figure 5: Data Structure proposed in [2]. FreqT

Although some other data structures have been
proposed recently (Chopper [9], FreeTreeMiner

[4] and CMTreeMiner [3]), they do not offer use-
ful properties for the management of the candi-
dates that could be as interesting as TreeMiner

[13] and FreqT [2]. These representations are
shown on Figures 6 and 7.

level

1

2

3

4

T represented as a combination of a depth−first
traversal and level:

a1 b2 a3 c4 a2 size: (2|T|),

a

b a

c

a

T0

Figure 6: Data Structure proposed in [9].
Chopper

Our aim is thus to have both a data structure that
is not memory-consuming and that has some good
properties regarding data mining.

a

b a

c

a

T

T, as a numbered chain:

size: (2|T|)a b a c & & & a #,

& to traverse up to the higher level
end of the chain.

Figure 7: Data Structure proposed in [3, 4].
FreeTreeMiner and CMTreeMiner.

3 Proposition

In this paper, we propose a new method for fre-
quent subtree mining. Our proposition is based
on an original representation of the trees which
allows the efficient generation and pruning of can-
didate subtrees.

3.1 Tree Representation

When representing a tree T , we keep in mind the
following property: all the nodes but the root
have one and only one predecessor. We propose
thus to use two vectors to represent a tree, as
proposed in [10]. The first vector is denoted by
st. It stores the position of each node predeces-
sor. Nodes are numbered considering a depth-first
traversal. The root is numbered as being at posi-
tion 0, with st[0] = −1 since it has no predecessor.
The values st[i], i = 1, 2, ..., k−1 correspond to all
other predecessor positions, as shown on Figure 8.

This representation provides a constant-time
method to retrieve the predecessor of a node.
Moreover, it allows us to find directly the most
right leaf when considering an index k. Finally,
when visiting the tree, it is possible to build all
direct links from predecessors to descendants.

The second vector is denoted by lb. It is used to
store all the tree labels. lb[i], i = 0, 1, ..., k − 1 are
the labels of each node ni ∈ T .

The data structure we have chosen needs very low
memory since it is reduced to the size of 2|T |.
Moreover, it has good properties when mining fre-
quent subtrees (see section 3.2).

(−1)

st

lb b a c aa

−1

2 3 410

0 1 2 0
a

b a

c

a
0

1

2

3

4

T

root most right−
leaf

Figure 8: Representation of a Tree

3.2 Generating and Pruning Candidates

Candidates of size 1 (single nodes) are obtained
by visiting all the nodes from the trees of the
database. Each node is mapped to a support
which is incremented during the traversal. Only
the nodes having a support value greater than the
minimum user-defined threshold are kept. The
database is then transformed in order to delete
all non frequent nodes, as shown on Figure 9.

st

lb

0 1 2 3 4 5 6 7

c b a b d

−1−1 −1 1 −1 3 4 4

b

6

7
d

F1={a, b, c ,d}
T2

a

3

4

5

0

c

b

b

b

(−1)
(−1)

a

1 3

2 4

5 6

7

0
e

c

b

b

b e

d

T2

Figure 9: Transformation of the database after
generation of F1

Candidates of size 2 are generated by combining
all the pairs of candidates of size 1.

The database is then updated by modifying the
trees from the root, the nodes, and the leaves so
that only frequent links are kept.

Figures 10 and 11 illustrate this process, with σ =
7 and F2 = {a − d, a − b}.

The generation of candidates of size k ≥ 3 is per-
formed by a levelwise APriori-like algorithm [1],

7
d

T2

2 nodes from F ={a, b, d}

b

a

3

4

5

b

b

(−1)

st

lb

0 1 2 3 4 5 6 7

b a b d

−1−1 −1 −1 3 4 4

b

−1

2

0 1 6

Figure 10: Transformation of the database - root

T2
F2=

7
d

(−1)

st

lb

0 1 2 3 4 5 6 7

a b d

−1−1 −1 −1 4 4−1

a

b

a

d

Set of predecessor nodes = {a }

3

a
4

5
b

0 1 2 6

−1

Set of successor nodes = { b, d }

Figure 11: Transformation of the database - nodes

by combining frequent subtrees of size k − 1.

The originality of our approach lies in the use
of our representation for candidate pruning when
deleting non frequent candidates. Computing the
support of each candidate is performed by count-
ing the number of trees which contain the candi-
date being considered. For this purpose, for each
tree of the database, we aim at finding an anchor

node on which the root of the subtree to be tested
can be deployed. For each anchor point that can
be found out, our method checks whether it is
possible or not to deploy all the nodes. Please
note that a perfect deployment is looked for. If all
the nodes of the candidate tree can be found in a
part of the tree from the database being consid-
ered, then this tree is counted and the support is
incremented.

4 Experiments

Experiments are led on synthetic data obtained
by the XML data generator developped by A. Ter-
mier [7]. Results, shown on Figures 12, 13 and 14,
highlight the interest of our approach when con-
sidering scalability (runtime and memory) over

the number of trees in the database. These re-
sults compare our approach (RSF) to FreqT (im-
plementation provided by the authors) [2].

 1

 10

 100

 0 20 40 60 80 100 120 140 160

M
em

or
y

(M
o)

Database Size (x1000)

FREQT−dd
RSF

Figure 12: Memory over number of trees

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160

R
un

tim
e

(s
ec

s)

Database Size (x1000)

FREQT−nodd
RSF

Figure 13: Runtime over database size, FreqT-
nodd and RSF. min sup = 0.05

5 Conclusion and Perspective

In this paper, we propose a new approach for tree
representation which provides good properties for
efficient frequent subtree mining. Experiments
led on synthetic data show very promising results
compared to the works from the literature.

Our proposition can be applied in many domains,
especially for data mediation. Frequent subtrees
that are mined by our method can indeed help
building a mediator schema. Such a solution can
also be taken in the framework of on-line data

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

R
un

tim
e

(s
ec

s)

Database Size (x1000)

FREQT−nodd
RSF

Figure 14: Runtime over database size, FreqT-
nodd and RSF. min sup = 0.5

mining for data streams. This perspective is very
promising since it provides efficient and fast meth-
ods to deal with high volumes of XML data on the
Internet.

We also aim at softening our approach by using
fuzzy logic when dealing with tree inclusion, as
shown in [6]. In this framework, we argue that the
data structure we present here has many prop-
erties that would be interesting in such a fuzzy
context.

References

[1] R. Agrawal et R. Srikant, Fast algo-

rithms for mining association rules in large

databases, in Proceedings of the 20th VLDB
Conference, Santiago, Chile, 1994.

[2] T. Asai, K. Abe, S. Kawasoe,

H. Arimura et H. Sakamoto, Effi-

cient substructure discovery from large

semi-structure data, in 2nd Annual SIAM
Symposium on Data Mining, SDM2002,
Arlington, VA, USA, 2002, Springer-Verlag.

[3] Y. Chi, Y. Yang et R. Muntz, Cmtreem-

iner: Mining both closed and maximal fre-

quent subtrees, in The Eighth Pacific-Asia
Conference on Knowledge Discovery and
Data Mining (PAKDD’04), 2004.

[4] Y. Chi, Y. Yang et R. R. Muntz,
Indexing and mining free trees., in Inter-

national Conference on Data Mining 2003
(ICDM2003), 2003.

[5] M. Kuramochi et G. Karypis, Frequent

subgraph discovery, in IEEE International
Conference on Data Mining (ICDM), 2001.

[6] A. Laurent, P. Poncelet et M. Teis-

seire, Fuzzy data mining for the seman-

tic web: Building XML mediator schemas,
in Fuzzy Logic and the Semantic Web,
E. Sanchez, éd., Capturing Intelligence, EL-
SEVIER, to appear.

[7] A. Termier, M.-C. Rousset et M. Se-

bag, Treefinder, a first step towards XML

data mining, in IEEE Conference on Data
Mining (ICDM), 2002, p. 450–457.

[8] J. Tranier, R. Baraer, Z. Bellahsene

et M. Teisseire, Where’s Charlie: Fam-

ily based heuristics for peer-to-peer schema

integration, in Proceedings of the 8th In-
ternational Database Engineering and Appli-
cations Symposium (IDEAS ’04), Coimbra,
Portugal, July, 7th - 9th 2004.

[9] C. Wang, Q. Yuan, H. Zhou, W. Wang

et B. Shi, Chopper: An efficient algorithm

for tree mining, Journal of Computer Science
and Technology, 19 (May 2004), p. 309–319.

[10] M. A. Weiss, Data Structures And Algo-

rithm Analysis In C, Addison Wesley, 1998.

[11] L. Xyleme, A dynamic warehouse for xml

data of the web, in IEEE Data Engineering
Bulletin, 2001.

[12] X. Yan et J. Han, gspan: Graph-based sub-

structure pattern mining, in IEEE Confer-
ence on Data Mining (ICDM), 2002.

[13] M. Zaki, Efficiently mining frequent trees in

a forest, in ACM-SIGKDD’02, 2002.

