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Abstract

XML is playing an increasing role in data exchanges and the volume
of available resources is thus growing dramatically. As they are hetero-
geneous, these resources must be translated into a mediator schema to
be queried. For this purpose, automatic tools are required. These tools
must allow the extraction of common data structures from the tree-like
XML data. In this paper, we present a novel approach based on a low
memory-consuming representation which can be improved by considering
a binary representation. We show that these representations have many
properties to enhance subtree mining algorithms, especially when consid-
ering soft tree embedding constraints. Experiments highlight the interest
of our proposition.

Keywords: Data Mining, XML, Frequent Sub-Tree Mining, Fuzzy
Inclusion.

1 Introduction

The volume of data available from the Internet is growing dramatically. Al-
though it provides rich information, it raises many problems when querying
these huge volumes of data in order to retrieve relevant information. Since users
can indeed hardly be aware of the way the data are organized, it is necessary
to provide them with mediator schemas that are built automatically. In this
framework, a mediator schema is meant as an interface between the user and
the data. This interface provides the user with a schema to query heterogeneous
and distributed data in a very simple way, as shown on Figure 1.

As highlighted by the World Wide Web Consortium, XML has been proposed
to deal with huge volumes of electronic documents and is playing an increasing
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Figure 1: Querying Distributed Databases through a Mediator Schema

important role in the exchange of a wide variety of data on the Web. It is thus
necessary to be provided with tools to integrate XML schemas in order to query
XML data.

Even if recent works have been proposed to access data when a query schema
is known [15], it is still a challenge to mine automatically such mediator schemas.
Existing approaches from the literature are incomplete [12]. In this paper, we
focus on frequent pattern mining from an XML database. In this framework,
a frequent pattern is a subtree that occurs in most XML schemas from the
database. This proportion is examined regarding a support, which corresponds
to a minimal number of trees from the database that must contain the subtree
in order to consider this subtree as being frequent. The mining process work as a
repetitive two-step one: first candidate subtrees are built. Then these candidates
are tested over the whole database in order to compute if they are frequent or
not. If so, two frequent subtrees are combined to build a new candidate which
will be tested, and so on up to the point where no more frequent subtrees
can be mined. This mining process is complex since all the XML schemas
from the database must be represented using a representation structure that
can support data mining algorithms. In many approaches, this transformation
leads to memory-consuming representations requiring twice or three times the
number of nodes. As far as we know, there is no work in the literature that
provides both a compact representation and useful properties for data mining
algorithms. In this paper, we thus propose a new structure being a compact
representation as well as a relevant support for data mining, as some properties
can be used when generating candidates and pruning non frequent candidates.
This approach is compared to existing works [2, 11, 19] and we show its interest
through experiments.

Moreover, we address the problematic of soft embedding constraints. This
kind of constraints are indeed important to mine subtrees that are globally em-
bedded whithout forgetting a tree for which only a very little part does not fit.



Among the possible ways to consider fuzzy tree mining [9], we focus here on the
ancestor-descendant relation, meaning that we consider that when looking for a
relation between the node author and the node name, we may have some other
nodes between (e.g. civil status). For this purpose, we show that representing
trees using a binary representation is very efficient.

This paper is organized as follows. Section 2 presents related work. Section 3
presents the core of our proposition defining a new method to represent tree data
and the associated algorithms for frequent subtree mining. Section 4 presents
the problematic of fuzzy tree inclusion when considering the ancestor-descendant
relation. Section 5 introduces a binary representation in order to efficiently
manage fuzzy inclusion. Finally, Section 6 concludes and presents some further
work associated to our proposition.

2 Related Work

Mining frequent subtree has recently received a great deal of attention [2, 8, 11,
16, 19]. In the following, we first introduce preliminary definitions. Second we
focus on principal approaches.

2.1 Preliminary Definitions

A tree is a connected graph containing no cycle. A tree is composed by nodes,
which are linked by edges such that their exists a particular node called root
and such that all the nodes but the root are composed by sub-trees. A tree is
said to be an ordered tree if the children from a node are ordered. A tree is said
to be an unordered tree otherwise.

Let £ = {a,b,c,...} be a set of labels. A labeled ordered tree is a tree
T = {r,N,B,L,<r} where: r is the root, N is the set of nodes, B is the
set of edges such that B C V2, (L : N — L) is a mapping from the set of labels
L to the set of nodes N, and < is an ordered relation between brother nodes.

Several nodes can have the same label, which raises the polysemy problem,
since a label can be associated to several nodes. The size of T' is the number of
nodes in T |T|. The order of T is the number of edges in T

Fach node n is associated with a unique number i, corresponding to its
position in a breadth-first traversal of the tree. n; denotes the ith node in such
a traversal (¢ =0,...,|T| —1).

For each pair (x,y) € N x N, it is said that there is a direct relation between
x and y if there exists an edge from z to y. x is said to be the predecessor and
y is said to be the successor. It is said that there is a indirect relation between
z and y if there exists a path between x and y, meaning that there exists a
non-empty set of nodes v1,...,v, such that there exists edges from x to v,
from v to vo, ...and from v to y. In this case, x is said to be the ancestor
and vy is said to be the descendant.

Figure 2 shows a direct relation in 7' between the nodes 0 and 3, and an
indirect relation between the nodes 3 and 6.
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Figure 2: A Tree

S < T denotes that S is a subtree of T (¢f Figure 3). Considering an indirect
link ancestor-descendant, S < T holds under the following conditions:

1. Ng C Ny
2. for each edge bs = (x,y) € Bg, x is an ancestor of y in T
3. for each edge by = (z,y) € Br, x is an ancestor of y in S

4. for each by = (z,y1) € Bs and b*s = (z,y2) € Bs, ¥1 <F Y2 = Y1 <F Y2
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Figure 3: Inclusion and non inclusion of S in T'



Note that a tree may be included in another one several times, as shown on
Figure 4 when considering indirect ancestor-descandant links.

NN

Figure 4: Several Ways to Include S in T'. Indirect Links.

2.2 Mining Frequent Sub-trees

The approaches proposed in the literature for mining frequent subtrees are
mostly based on the data representation they use in order to speed up the
data mining algorithms.

The TreeMiner algorithm [19] proposes a method for frequent subtree dis-
covery. As we propose here, this work is based on an original representation of
the trees, which facilitates the management of the candidates. This approach
needs a storage space of three times the size of each tree (3|T]), as shown by
Figure 5.

The FreqT approach proposed in [2] is devoted to ordered trees. The data
structure that has been chosen leads to interesting results regarding runtime.
However, this proposal is as memory-consuming as [19], i.e. 3|T|, as shown by
Figure 6.

Although some other data structures have been proposed recently (Chopper
[13], FreeTreeMiner [5] and CMTreeMiner [4]), they do not offer useful prop-
erties for the management of the candidates that could be as interesting as
TreeMiner [19] and FreqT [2]. These representations are shown on Figures 7
and 8.

Our aim is thus to have both a data structure that is not memory-consuming
and that has some good properties regarding data mining.
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Figure 5: Data Structure proposed in [19]. Tree Miner
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Figure 6: Data Structure proposed in [2]. FreqT
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3 RSF: A Novel Efficient Representation of Trees

In this paper, we propose an original representation of the trees which allows
the efficient generation and pruning of candidate subtrees.

3.1 RSF': Representating a Tree in Two Vectors

When representing a tree T', we keep in mind the following property: all the
nodes but the root have one and only one predecessor. We propose thus to use
two vectors to represent a tree, as proposed in [14]. The first vector is denoted
by st. It stores the position of each node predecessor. Nodes are numbered
considering a depth-first traversal. The root is numbered as being at position
0, with st[0] = —1 since it has no predecessor. The values st[i],i =1,2,....k —1
correspond to all other predecessor positions, as shown on Figure 9.

This representation provides a constant-time method to retrieve the prede-
cessor of a node. Moreover, it allows us to find directly the most right leaf when
considering an index k since it is the node being stored in the last position of
the vector (Fig. 9). Finally, when visiting the tree, it is possible to build all
direct links from predecessors to descendants.

The second vector is denoted by Ib. It is used to store all the tree labels.
Ibli],s =0,1,...,k — 1 are the labels of each node n; € T.

The data structure we have chosen needs very low memory since it is reduced
to the size of 2|T|. Moreover, it has good properties when mining frequent
subtrees (see section 3.2).
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Figure 9: Representation of a Tree



3.2 Generating and Pruning Candidates

Candidates of size 1 (single nodes) are obtained by visiting all the nodes from the
trees of the database. Each node is mapped to a support which is incremented
during the traversal. Only the nodes having a support value greater than the
minimum user-defined threshold are kept. The database is then transformed in
order to delete all non frequent nodes, as shown on Figure 10.
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Figure 10: Transformation of the database after generation of F}

Candidates of size 2 are generated by combining all the pairs of candidates
of size 1.

The database is then updated by modifying the trees from the root, the
nodes, and the leaves so that only frequent links are kept.

Figures 11 and 12 illustrate this process, with o = 7 and Fy = {a —d,a —b}.
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Figure 11: Transformation of the database - root

The generation of candidates of size k > 3 is performed by a levelwise
APriori-like algorithm [1], by combining frequent subtrees of size k — 1.

The originality of our approach lies in the use of our representation for can-
didate pruning when deleting non frequent candidates. Computing the support
of each candidate is performed by counting the number of trees which contain
the candidate being considered. For this purpose, for each tree of the database,
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we aim at finding an anchor node on which the root of the subtree to be tested
can be deployed. For each anchor point that can be found out, our method
checks whether it is possible or not to deploy all the nodes. Please note that a
perfect deployment is looked for. If all the nodes of the candidate tree can be
found in a part of the tree from the database being considered, then this tree is
counted and the support is incremented.

3.3 Experiments

Experiments are led on synthetic data obtained by the XML data generator de-
velopped by A. Termier [11]. Results, shown on Figures 13, 14 and 15, highlight
the interest of our approach when considering scalability (runtime and memory)
over the number of trees in the database. These results compare our approach
(RSF) to FreqT (implementation provided by the authors) [2].
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Figure 13: Memory over number of trees
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4 Soft Embedding Constraints

4.1 Problematic

As highlighted in [9], fuzzy data mining can help when mining frequent subtrees
from a tree database. In this section, we show how the classical binary inclusion
(is/is not included) can be transformed into a gradual inclusion when considering
the ancestor-descendant relation. As shown on Figure 16, some nodes may be
positioned between an ancestor and a descendant.
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Figure 16: Inter-Node Interval

T

In existing approaches, if some nodes are positioned between a node and
another one, either these nodes are considered as being ancestor-descendant [19],
or they are not [3]. However, we argue that if the number of nodes between an
ancestor and a descendant is too important, then the relation between these two
nodes may not be considered. In order to convey the idea of important number
of nodes, we thus consider a fuzzy membership function. Such a function is
shown in Figure 17.

When taken into account, embedded trees are counted within the final sup-
port whatever the ancestor-descendant relationship may be. There is no consid-
eration of the number of nodes separating the ancestor node from the descen-
dant one. In our approach, we propose thus to give a scope to this ancestor-
descendant relationship. This scope is defined considering the number of nodes
between ancestor and descendant nodes. Since it does not make sense to con-
sider crisp boundaries, we propose to consider a fuzzy scope for the ancestor-
descendant relationship.

4.2 Handling Soft Constraints

We consider fuzzy membership functions describing the ancestor-descendant
relationship depending on the number of nodes separating the two nodes being
considered, as shown on Figure 17 when considering no more than five nodes in
a fuzzy way. For this purpose, we use fuzzy quantifiers [17, 18].

When considering tree inclusion, a tree may be included in another one in
different manners, as shown on Figure 4. When mining crisp frequent subtrees,
the aim is to discover subtrees that are found frequently within the trees from
the database, whatever the number of possibilities. When considering soft em-
bedding inclusion, each possibility is associated to a degree between 0 and 1

12



Figure 17: Ancestor-Descendant: A Fuzzy Definition

indicating to which extent the tree being considered is embedded (for instance
this degree may indicate to which extent the constraint no more than 5 nodes
holds).

This raises several questions:

e how to compute efficiently the indirection between two nodes (number of
intermediate nodes) as a degree between 0 and 1,

e how to merge the degrees for each indirection from the tree as a degree
between 0 and 1,

e how to efficiently compute the best way to include a tree in another one.

There may be several ways to include a tree in another one, as it has been
shown by Figure 4. In order to compute the best way to include a tree within
another one, It is necessary to consider all the possibilities while remaining
scalable.

In our approach, we consider the following method to compute the fuzzy
support of a tree S within a tree database DB:

e For each possibility to include the tree S within a tree T € DB, this
solution is associated with a degree ranging from 0 to 1 which is computed
by considering the average of all membership degrees of the fuzzy inter-
nodes distance being considered.

e For each tree T € DB, we compute the inclusion degree as the mazimum
of all the degrees described above.

e All the degrees are merged in order to compute the support of S using a
thresholded sigma-count.

Figure 18 sums up this process. In this example, we consider that no more
than 2 nodes must be between an ancestor and a descendant. For each possible
inclusion of the candidate subtree within a tree from the database, each edge is
labeled with a degree ranging from 0 to 1. This degree indicates to which extent
the indirection holds, depending on the membership degree computed regarding
the number of intermediate nodes. In this example, we know that when there
is no intermediate node, then the membership degree to the fuzzy set no more

13
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Figure 18: Computing the Fuzzy Inclusion Degree.

than 2 nodes is 1 while it is 0.5 when there are 2 intermediate nodes. For each
possible inclusion, these degrees are merged using the average, leading to 1 and
0.75 in this example. Finally, the best inclusion is considered by computing the
maximum. In this example, it turns up that the candidate tree is fully included
in the database tree (support=1).

Note that these are choices based on the idea that we must compute the
best way to consider the inclusion (which leads to the use of the mazimum to
merge different inclusion solutions) and that an inclusion may not be disturbed
by extrema (which leads to discard mazimum and minimum within a solution).
However, our algorithms and implementations are very general and may be used
with other operators.

As shown previously, RSF is an efficient data structure when dealing with
induced tree mining (looking for direct relations between nodes). However, RSF
is not well adapted to soft constraints since it is necessary to traverse a lot of
nodes from a tree when computing the number of intermediate nodes between
an ancestor and a descendant. We thus propose a new data structure based on
a binary representation of a tree.

5 FuzBT: An Efficient Binary Representation
for Soft Embedding Constraints

5.1 Binary Representation

In order to manage trees as efficiently as possible (as described in next sections),
each tree T is transformed into a binary representation denoted by T where
each node cannot have more than two children [7]. For this purpose, we propose

14



the following transformation: the first child of a node is put as the left-hand
child while the other children are put in the right-hand path, as illustrated in
Fig. 19.

T
B KD 7\
T E TD
T a tree in D
E

Tp: binary transformation of T

Figure 19: Example of a Binary Tree Transformation

Encoding Binary Trees

Once the tree has been transformed into a binary tree, nodes must be encoded
in order to be retrieved. The encoding is then used first in order to identify each
node and second in order to determine whether a node is a child or a brother. In
order to do so, we consider the Huffman algorithm [6] which we slightly modify
in order to fit our needs. The root has address 1. The other node addresses are
computed by concatenating the father address with:

e 1if it is a child (left-hand path) and
e 0 otherwise (right-hand path),

as shown on Fig. 20.

A
‘ Tpc the tree T transformed
7\ %
1‘\ D ATM Di100
E

Tp the tree T transformed and encoded

Figure 20: Node Addressing
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Data Structure

The data structure being considered here is used in order to represent the trees
and the candidates. In order to deal with huge amounts of data, we aim at
developping methods that are not memory-consuming. For this reason, consid-
ering a tree having 2|T'| nodes, T' must not be stored in more than 2|T| places,
as proposed in [10].

Tab. 5.1 shows how the binary tree Tg¢ is managed in data structure ST

st | 1|11 | 110 | 1101 | 1100 | 11010
b|A|B| C A D E

Table 1: Data structure ST

5.2 Managing Soft Embedding Constraints with the Bi-
nary Representation

In this section, we show how our data representation can manage soft embedding
constraints, especially when considering the binary tree representation.

As highlighted previously, the structure we propose here stores data in a 2
|T| data structure, following a depth-first traversal of the tree. This structure
allows us to compute very quickly if a node n is within the scope! of another
one. Considering the address of a node, the binary address of each child node
is obtained in the following way: the first child is encoded by the concatenation
of the father address and 1. All the brother nodes are encoded using the binary
code of the father to which a 0 is concatenated.

As in [19], each node is associated with the interval of the positions from
its descendants (the subtree having this node as a root). However, contrary to
Zaki who keeps this interval in memory, we do not need to represent it [19]. We
rather retrieve it by using our data represention structure since this computation
is very efficient by using binary operations. In order to decide whether a node
is a descendant of another one, we consider the binary code of the potential
father and the binary code of the second node. In a first step, the address of
the second node is substracted from the first digits of the father address. Then
we consider the following digit from the father address. If this digit is O then
the second node is not a descendant. If this digit is 1 then the second node is a
descendant. Note that if the digits of the second node are not the first digits of
the potential ancestor, then these nodes cannot be related as an ancestor and a
descendant.

For instance, let us consider the potential ancestor node 1101. When con-
sidering the node 11011001, we retrieve the digits of the first node in the first
digits of the second one. Then the next digit is a 1 so the second node is one of
the descendant, as shown in table 2.

IThe scope of a node n is constituted by the nodes for which n is an ancestor.
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Table 2: Evaluating two nodes uzing FuzBT.
A 111011
B 1|]1j0(121|0]0]1
Indice |O |12 |34 ]|5]|6

Moreover, we show that our method is very efficient to compute the number
of nodes between an ancestor and one of its descendants. Indeed, this number
of nodes is given by the number of 1 digits in the descendant node starting from
the ancestor node. Let us consider the example from Table 2, there are two 1
digits in B starting from the end of the code of A (indice=4) which are found
for indices 4 and 7, meaning that two nodes appear between A and B.

Figure 21 illustrates the ancestor-descendant relation and its binary repre-

sentation.
Tge T
1
11 @
111 10 @
llOl @ @ @
11011Q®

110110 \@)
/1101100

11011001

Figure 21: Ancestor-Descendant Relation

When mining frequent subtrees, the best way to embed a candidate tree in
tree from the database is computed. This leads to consider each possibility.
This is the main difference between our approach and the propositions from the
literature.

For this purpose, a graph is built, containing all the ways a subtree is in-
cluded within a tree from the database. For each of these inclusion ways, a
degree ranging from 0 to 1 has been computed by calculating the mean value of
all the membership degrees of the ancestor-descendant degrees. The degree to
which a subtree is included within a tree from the database is then computed
as the maximal solution degree.

In order to compute the support of a candidate, we consider a thresholded
Y-count by suming all the maximal solution degrees if they are greater than a
user-defined threshold.

17



5.3 Experiments

We compare here the two data structures we have proposed when dealing with
soft constraints. We show that the binary representation leads to better results.
Figures 22 and 23 report the memory and runtime depending on the size of the
database while Figures 24 and 25 report the memory and runtime depending
on the support, showing that FuzBT behaves better than RSF.
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Figure 22: Memory over Number of Trees. Support = 0.2
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6 Conclusion and Perspective

When addressing the problem of frequent subtree mining, it is interesting to
consider soft embedding constraints in order to define gradual inclusion of a
tree within another one. In this work, we propose data structures to represent
trees in an efficient manner to ease fuzzy subtree mining. We focus on the
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problem of the ancestor-descendant relation by considering a degree between 0
and 1 to indicate to which extent a node is an ancestor of another one.

Our proposition can be applied in many domains, especially for data media-
tion. Frequent subtrees that are mined by our method can indeed help building
a mediator schema. Such a solution can also be taken in the framework of on-
line data mining for data streams. This perspective is very promising since it
provides efficient and fast methods to deal with high volumes of XML data on
the Internet.

We also aim at building candidates more efficiently in order to enhance our
proposition.

Finaly, we aim at using the data structures we introduce here to manage all
the ways to handle fuzziness proposed in [9].
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