Preserving behaviour: Why and How

Fabienne Cathala®-® Pascal Poncelet(23

(1) Cemagref division Aix-en-Provence - (2) IUT Aix-en-Provence

() LIM - URA CNRS 1787 - Université de la Méditerranée
Faculté des Sciences de Luminy, Case 901, 163 Avenue de Luminy,
13288 Marseille Cedex 9, FRANCE

E-mail: cathala@lim.univ-mrs.fr

Abstract

In this paper, we propose a generic method for elaborating the behavioural
specification dictionary of applications. It could apply in the context of var-
ious conceptual modelling approaches and take advantage of functionalities
provided by associated CASE tools. The method is based on a meta-schema
abstracting the behavioural concepts by using the structural abstractions of
the chosen modelling approach. Once storage structures are generated from
this meta-schema, they can be populated in an automated way by examining
dynamic schemas specified by designers. The method is intended for dealing
with particular applications in which behaviour must be preserved.

1 Motivations

There are some kinds of applications in which behaviour must be represented not
to be simulated or enhanced (through some executive programs or even active rules
[Ha90, LNR87, TPC94b]) but to be preserved.

Reasons behind “storing behaviour” are various. First of all, by keeping the whole
trace of the application dynamics, scope of queries can be extended to the applica-
tion history. But a main difference between our concern and temporal or historical
database approaches [LZ88] is that we aim to capture much more semantics about
application behaviour. For instance we would like to express the following queries:
what happened when such event occurred? Which were the reactions of such or such
object? Another motivation is storing “behaviour patterns”, i.e. particular possible
behaviours which could be either critical or good behaviours. Whenever objects
adopt such behaviours, they must be detected automatically, thus it is possible to
control the application evolution over time or to anticipate critical situations. For
instance, in a library management application, users could be classified according
to their behaviour over time in different categories such as “good or bad borrower”,
“occasional”, ... We imagine that, depending on their category, they could be of-
fered some special privileges (or in contrast privileges could be revoked).

Adressing the issue of storing behaviour requires dealing with two different rep-
resentation models. On one hand, dynamic conceptual models are really suitable
for representing application behaviour, as well as behaviour patterns. On the other
hand, the only models available for storage are database models, i.e. structural
models. In this paper, we propose a generic method for preserving behaviour. It
could be used with various modelling approaches and yields the behavioural speci-
fication dictionary in form of instanciated storage structures (based on such or such

database model). The proposed method has two interesting qualities: its simplicity
and a non expensive enhancement particularly when integrated within the CASE
tool supporting the chosen modelling approach.

The paper is organized as follows. Section 2 gives the general principles of our
method. These principles are enforced through two different experimentations. The
first one, summarized in section 3, is based on the OMT approach [RBP*91]. It
serves as an illustration of the method feasability. The groundwork for the second
experimentation, described in section 4, is the IFO5 approach [PTCL93, TPC94a].
We take advantage of the associated CASE tool and complement it by an addi-
tional functionality. Section 5 proposes a brief survey of related work, in particular
through a comparison with our method.

2 Preserving behaviour: general principles

Behaviour representation has been addressed by various conceptual approaches
among which we could quote OMT, OOD, OOA-OOD, ... [Boo91, RBP*91, Som91,
SM88, SM92, SSE87, Saa91]. They provide designers with a high-level and object-
oriented model. It is complemented by tranformation mechanisms applying to con-
ceptual schemas and yielding specifications which could be implemented using var-
ious target systems (classical and object DBMSs or languages) [RBP*91, BM91,
PTCL93]. For describing the dynamics of applications, these approaches frequently
adopt state-transition diagrams.

Given our particular concern of preserving behaviour, conceptual approaches pro-
vide a dynamic representation for abstracting application behaviour, along with
structural representation facilities. The former capability meet our need of specify-
ing behaviour patterns, or possible behaviours; the latter offers high-level abstrac-
tions and mechanisms for modelling and designing database schemas. In such a
context, our approach (its general principles are described in figure 1) is based on a
meta-schema describing the dynamic concepts by using the structural abstractions
of the model. Meta-data is frequently required for capturing meaning, content, or-
ganization or purpose of data, and various approaches make use of meta-schemas.
Some of them are summarized in [SM91].

Once the meta-schema is specified, any application behaviour modelled by design-
ers is seen as an instance of the meta-schema. On an implementation level, storage
structures can be generated from the meta-schema, by using provided transfor-
mation mechanisms. Such facilities must be complemented in order to deal with
instances. In fact, an automatic instanciation can be performed. It applies to dy-
namic conceptual descriptions and populates object classes or relations generated
from the meta-schema.

Thus, the dynamic dictionary of the application is achieved and can be handled
by application programmers merely through the query language of target systems.
Such a facility could be an interesting tool in software engineering, in particular
for cooperative work, because it is the basis of a dynamic repository (with such or
such underlying storage model) while offering a high-level description of behaviour
(interfaces with aided tools supporting the chosen conceptual model can be easily
developped).

Following from this principle, we examine the enhancement of our method with
two different conceptual models: OMT and IFO,. OMT is representative of sev-
eral modelling approaches. It proposes an object-oriented extension of the En-
tity /Relationship model and its dynamic model is based on statecharts [Har88]. On

) Conceptual
Behavioural behavioural schema
met&schery

Is an_instance_of

Storage structure
generation

Behavioural
dictionary

Automatic instanciation

Figure 1: General principles of the approach

the other hand, IFO, adopts a “whole-object” and “whole-event” philosophy by
describing the static and dynamic aspects of applications.

In these two different contexts, we apply the described approach as detailed in the
following sections.

3 Enhancement with OMT

In OMT [RBP191], object dynamics is modelled through state-transition diagrams.
Basically, being in a given state, an object could evolve by performing a transition
and enter another state. A transition, triggered by event, is constrained by a con-
dition or guard and can perform actions. State-transition diagrams could be nested
(state generalization): a state can be expanded in a lower-level diagram offering a
refined vision of a behaviour part, in terms of states and transitions.

Furthermore, diagrams could be splitted into concurrent sub-diagrams and dia-
grams, at the highest level, reflect behaviour of object classes, inherently concurrent
(state aggregation). Synchronization between objects is based on event sending.

Exemple 1 As an illustration, we consider the behaviour of two kinds of objects
in the library application: “Book-Copies” and “Users”.

These behaviours are captured through the diagrams in figure 2. Let us consider the
state diagram describing the user’s behaviour, as regards the registration fees of the
library. His current situation is captured through the attribute “status”. The pro-
posed diagram encompasses three states: “Registred”, “Waiting” and “Excluded”
corresponding to the possible values of “status”. We imagine that a user changes
from “Registred” to “Waiting” if he is late in paying for registration. From the
state “Waiting”, the transition to “Registred” can be performed, if the user decides
to pay, else, after a certain delay, the user’s privileges are revoked and the object
state becomes “Excluded” (corresponding to the “User” diagram exit point).

To illustrate the concurrent sub-diagram mechanism, let us now examine the di-
agram “Registred”; it corresponds to the entry point of the diagram “User” and
it is splitted into two sub-diagrams “Subscriver-State” and “Borrow-State”. When
the transition “t4” is performed, the concerned object enters a state in each sub-
diagram. “Subscriver-State” is expanded in a lower-level diagram, encompassing
the states “User” (no current loan), “Borrower” and “Reminded”. This state is
entered whenever a user do not return the borrowed books in time. user borrowing
books. A very mere state diagram of “Book-copy” objects is also proposed

— User

Registred

Borrow-State

it state

E:\ry state
I

t10
Subscriber-State i () subdiagram

concurrent
dull Subscriver subdiagram
enior- Subscrlver
5 &

Pﬂwleged -Subscriver

——Book-Copy

t20

22
m% Clos>
t17 \ti8 |\ t19

Figure 2: Library application dynamics with OMT

The behavioural meta-schema, to be specified, must capture not only the basic
concepts but also the abstractions of state generalization and aggregation. The
meta-schema is partially depicted in figure 3. In fact, we focus on the more inter-
esting aspects when abstracting the dynamic model and do not detail the description
of all the concepts.

Due to its recursive feature, state generalization requires suitable structural abstrac-
tions and a clear cut vision of activity propagation through the various description
levels, since diagrams could be arbitrarily nested. For reflecting the nesting mech-
anism, we use the recursive aggregation of the object model, and adopt a uniform
vision of states and diagrams. More precisely, a DIAGRAM could be specialized in
a simple STATE (at the lowest level) or in a SUB-DIAGRAM (at whatever higher
level). A SUB-DIAGRAM is described as an aggregation of transitions, and in its
turn TRANSITION is modelled as a recursive aggregation having the following com-
ponents: INITIAL, FINAL, EVENT, CONDITION, and ACTION. The two former com-
ponents correspond to the diagram exited or entered by the transition, thus, at
the lowest-level, they are merely the initial and final states of the transition. This
representation makes it possible to capture not only transitions between states or
between higher-level diagrams but also transitions indicating entry or exit points in
a diagram. When specified, latter transitions must be necessarily triggered to enter
or exit a diagram. They can correspond to the beginning or the end of object life
cycle, and they play an interesting part in transition inheritance from a higher level
diagram. In fact, when a diagram is entered possible entry points are the only sub-
diagrams (or states) which can be reached. On the other hand, exit points must be
necessarily reached before performing a transition exiting the diagram. For these
particular transitions, the INITIAL (or FINAL) component has no instance. The

APPLICATION
BEHAVIOUR

Attribute

! } J)

|

’ Initial | ‘ Final ‘ ’ Event ‘ |Condition|

’ Action ‘

Formalism:
O e optional, multiple association
[] objectclass O aggregation
— link
AN specialization

Figure 3: Behavioural meta-schema with OMT

other components, describing TRANSITION, i.e. EVENT, CONDITION, and ACTION,
capture the possible event triggering a transition, its guard if any, and the actions
to be performed.

The meta-schema being defined, the second step of our approach can be applied
by using the transformation mechanisms defined for the object model of OMT.
We choose the relational model as transformation target, and achieve from the
behavioural meta-schema, the relational schema partially given below.

APPLICATION (NAME, ...);
DiaGraMm (ID.D, A_id, TYPE, O-id, Name);
TRANSITION (TR._ID, INITIAL, FINAL, E, C, D_id);

ATTRIBUTE (A_ID, ...);
OBJECT_CLASS (O.ID, ...);
AcTiON (A_ID, TR.ID, ...);

When performing such a mapping, we assume that diagrams in the behavioural
specifications are identified through the combination of their name and the attribute
which is abstracted. Transitions are provided with an artificial identifier (prefered to
the composite candidate key combining the attributes INITIAL, FINAL and EVENT).

Relations reflecting the meta-schema are then automatically populated from dy-
namic representations specified by designers. Thus the underlying mechanism per-
forms the instanciation of the behavioural dictionary of an application. Before de-
scribing the corresponding algorithms we need to introduce the following definitions.

Preliminary definitions

e Let D be the set of dynamic diagrams in the designer specifications.
Vd € D, d is defined as a couple (d;d, T;), where Ty is the set of transitions in
d.
Vt € Ty, t is defined as a tuple (¢_id, init, fin, E,C, A) where init and end
€ D, stand for the diagrams exited and entered by ¢, and E, C, A symbolize
the event, condition and action clauses of ¢.

e Let S C D be the set of states such that: Vd € S, Ty = 0;
and H € D, the set of highest-level diagrams, such that:
de€ H,}d € D and #t' € T} / t'-init = d or t'.fin = d where t'.init (t'.fin
resp.) is the initial (final resp.) diagram of ¢'.

e Marked_Diag is an intermediary set used to store diagrams already examined.

Instanciation algorithm

The instanciation mechanism starts from the highest-level diagrams by perform-
ing for each one the procedure Diag-Instanciation. This procedure captures the
diagram semantics (merely by operating suitable insertions) and then examines its
transitions. In order to insert the tuple describing a transition, diagrams entered
or exited by the transition must be captured. This is done by applying once again
the procedure Diag-Instanciation to the initial and final diagrams of the consid-
ered transition. Thus, if transition is defined between high level diagrams, it is
inserted only when the diagrams are fully described (with their own sub-diagrams
and transitions).

prog Schema Instanciation
for each d in H do
Marked_Diag < 0
Diag_Instanciation(d)
endfor

endprog

proc Diag Instanciation(d)
Insertion(DIAGRAM,d)
if d ¢ S then
for each t in T,; do
if t.init # 0 and t.init ¢ Marked_Diag then
Marked_Diag + Marked_Diag U {t.init}
Diag Instanciation(t.init)
endif
if t.fin # 0 and t.fin € Marked_Diag then
Marked_Diag < Marked_Diag U {t.fin}

Diag Instanciation(t. fin)

endif
Insertion(TRANSITION,¢)

endfor

Through this section, we show the feasability of our method by using OMT. The
chosen dynamic model is really suitable for representing how objects evolve over
time. Nevetheless, it is not adapted to set-oriented process. This is why we propose
a second experimentation in the following section.

4 Enhancement with IFO,

IFO, is a conceptual approach encompassing both structural and behavioural rep-
resentation capabilities. Its originality is to offer symetric concepts for the static
and dynamic descriptions. One of the main difference with OMT is that dynamics
is described in an overall way (and not object class by object class), by specifying
events of various semantics and their relationships (synchronization or triggering).
Basic event types are proposed (external, temporal, operation invocation). To ex-
press synchronization, they could be combined using various event constructors
(aggregation, sequence, grouping, union). Event types, either basic or complex, are
organized by using the key concept of event fragment. A fragment describes the
system reactions when faced by particular circumstances (or events). It necessarily
encompasses an event type, called the fragment heart, possibly related to other
types by mean of triggering functions. A precedence function must be specified
whenever events of the heart type must be preceded by other events. In short, a
fragment describes the causality relationships between a precedent type, a heart
type and triggered types. Fragments are integrated within event schemas by using
represented types and IS_A links. A represented type can symbolize any fragment
since it stands for its heart. It could be specified for a twofold reason: re-using, in a
fragment, the description of another fragment or refining the latter description (i.e.
specializing it through additional precedent or triggered types).

Exemple 2 Figure 4 represents the library application dynamics. This schema
is composed of five fragments related by IS_A links. The fragments “Subscrip-
tion_Application” and “Loan_Application” capture external events: user’s request
for library registration and borrowing request, along with operations which are
performed when such events occur. The precedence relationship between the two
external types is modelled through the represented type “Registred _Subscriver” re-
lated with a precedence function to “Loan_Application”. The loan management is
based on the fragment “Loan” (represented with a constructor sequence), which
successively trigger the simple types “Unavailable” (the corresponding method ap-
plies to the borrowed book which becomes unavailable) and “Init-Loan” (which
actually creates the loan). When a “Loan” event occurs, the number of current
loans is increased. (the simple type “Inc-Nb-Loan” performs a method). When a
given delay completes, the user could be sent a “Reminder” (perhaps several times).
The fragment “Return” describes what happens when a user returns a borrowed
book. And finally, the fragment “Closure” models how a loan completes: the bor-
rowed book becomes available or the user is excluded.

The behaviour meta-schema is specified by using the structural concepts of IFO,
(formally given in [PTCL93]), which are very close to the behavioural concepts.

Subscription_Application

/@W

Luan _Application

MNew Loan

Return

@amnatun

Smple Type i\: Represented Type

External or Temporal Type

Total Function

— — > Partial Function Composition Grouping
wait Deferred Function

———— Complex Total Function

— —— Complex Partial Function Sequence Union

Figure 4: Library application dynamics with IFO,

More precisely, object types in IFO5 could be either basic (simple (attribute) or ab-
stract (entity)) or complex. For the latter, various object constructors are defined.
Object types are organized through fragments: a principal type, called the heart,
is described with its properties, i.e. other object types. Object fragments could be
re-used or refined by introducing represented types which stand for the fragment
hearts, and IS_A links.

The meta-schema, depicted in figure 5, encompasses two main fragments: FRAG-
MENT and TYPE. Additional fragments are specified for specialization or re-using
concerns. The fragment TYPE is devoted to specifying an IFO2 event type, which
is characterized by its name, its category and its parameters. This description is
refined in four ways according to the category of the event type in question (thus
four additional fragments are introduced).(i) The event type can be simple. In that
case, the method invoked must be preserved along with its nature (update opera-
tion, request, ...). (ii) When the considered event type is abstract, its nature must
be kept (are events of this type external, temporal or internal?). (iii) Let us consider

Event_Schema

Parameter

F@'E Triggering @
£

Complex_T:

IF'reeed

Event_Type |constructar
T

I'I'r|ggered [Cormponent

condition
MNested L

fanction_type

O O

Printable Type Represented Type
Abstract Type
Total Function %
— — > Partial Function ’ Composition Grouping
Collection
%— Complex Total Function ® @
— —&B— Complex Partial Function Aggregation Union

Figure 5: Behavioural meta-schema with IFO,

now an event type which is a represented type. It has a particular feature since it
symbolizes another type (or several) called its source(s). This feature is captured,
in the fragment TER, by specifying a necessary and possibly multi-valued property:
SOURCE. The latter is a represented type which itself stands for TYPE. (iv) Finally,
when the event type under consideration is a complex type, it is abstracted through
a recursive construction. A COMPLEX_TYPE is seen as the aggregation of a CON-
STRUCTOR applying to a set of COMPONENT; each of which being itself an object
of TYPE. With this modelling style, arbitrarily complex types can be represented.
The fragment of heart FRAGMENT describes the organization of event fragments.
Event fragments are seen as abstract entities characterised by the following prop-
erties:

e a necessary and mono-valued property: HEART, which is a represented type
standing for a TYPE;

e a mono-valued property: PRECEDENT, is specified only if the considered event
fragment encompasses a precedent type;

9
4

Source

I

Nature Tea

Mature Tes
Method

¢ a multi-valued property: TRIGGERED, which captures the possible types trig-
gered by the heart. Each triggered type could be itself heart of a sub-fragment.
This means that it can, in its turn, trigger other types, called NESTED.

The fragment TRIGGERING is introduced in the meta-schema for a single reason:
sharing a part of specifications. In fact, when describing a precedent, triggered or
nested event type, we need to capture not only the type in question but also the
nature of the precedence or triggering function and the condition under which trig-
gering is actually performed. Such a description is encapsuled within the fragment
TRIGGERING, merely reduced to its heart (specified as an aggregated type).

class C_SchemaEvt
public type tuple(

class C_Complex_Type inherit C_TE
Fragments: set(C_Fragment))

public type tuple(
constructor: string,
component: set(C_FTE))

end;

end,
class C_Fragment

public type tuple(
heart: C_TE,
precedent: C_Triggering,
trig: set(

tuple(triggered: C_Triggering,

set(C_triggering))))
end;

class C_Triggering
public type tuple(
function_type: string,

class C_TES inherit C_TE
public type tuple(
method: string,
nature: string)
end,

class C_TEA inherit C_TE
public type tuple(

nature: string)
end,

condition: string,
TypeEvt: C_TE)

end; class C_TER inherit C_TE
public type tuple(

class C_TE sel(C_TE)
public type tuple(end;

name: string,

domain: string,

parameter: set(string))
end;

Figure 6: O2 classes

From IFO; structural schemas, mechanisms for generating code could be enhanced,
for relational systems, the Object-Oriented DBMS O3 or C++. As an illustration,
we chose IFO, transformation (described in [PTCL93]), which yields when applied
to the meta-schema the O, inheritance class hierarchy, given in figure 6.

For populating O classes, we define an instanciation mechanism which successively
examines event fragments and creates required objects in the suitable classes.

Preliminary definitions

e Let F be the set of dynamic fragments in the designer specifications.
Vf € F, f is defined as a couple (T, F,) where T is a set of types and F,, is a
set of functions;

10

e Vt € T, t is defined as a tuple (ident, domain, heart, parameters, category)
where ident is the type identifier, heart a boolean, and category symbolizes
the category type (simple, abstract, ...). Its structure is type-dependent, i.e.
holds all relevant items for category instanciation;

e Vf, € Fy, fu is defined as a tuple (source_type, target_type, type_fonction,
condition).

Instanciation algorithm

prog Schema._instanciation
for each f in F do
Frag_instanciate(f)
S+« S+{f}
endfor

endprog

proc Frag instanciate(f)
Insertion(FRAGMENT, f)
for each t in T do
Type-insertion(t)
if t.heart=TRUE then
f-heart « t.identifier
endif
endfor
for each f, in Fy; do
trigger_insertion(f,)
if fu-type_fonction=precedence then
f-preced « f,.source_type
else if f,.type_fonction=triggering then
f.suce « f.succ + {fy.source_type}
else f.imbr « f.imbr + {f,.source_type}
endif
endif
endfor

endproc

proc Type_insertion (t)
Insertion(TE,t)
if t.domain=TES then Insertion(TES,t) endif
if t.domain=TEA then Insertion(TEA,t) endif

11

if t.domain=complex then Insertion(complex,t) endif
if t.domain=TER then Insertion(TER,t) endif

endproc

An interesting feature of the IFO2 model is that it provides the concept of trace
(initially introduced in [Hoa85]). The trace is the sequence of all the events ever
occurred during the application life. Thus it proposes a chronological vision of
IFO, event schema instances. Mapping the structure of trace into an O, class
provides us with a suitable mechanism for storing actual behaviours, only in terms
of events (with their time-stamp, parameters, ...). Any object of the class TRACE
describes an event and the behavioural dictionary gives the circumstances in which
it happens. Thus using the O2 query language, historical requests can be expressed
for retrieving particular events but also causality relationships between events.

5 Related work

Motivated by needs of particular applications, our method addresses a specific issue.
However its general objective could be compared to that of historical or temporal
database approaches [LZ88, CI94, JSS94]. Actually, in both cases, the motivation
is to preserve objet history. Nevertheless, our method boosts this objective by fully
capturing the object behaviour, and not only its various states over time. In fact,
it could be seen as an additional tool for an improved management of temporal
databases for several reasons. First of all, the behavioural meta-schema provides
the precise context in which temporal data could be better interpreted. Comple-
menting temporal data, the behavioural dictionary could be used for extending
query capabilities. Finally our method can be seen as a modelling aid for defin-
ing the schema of a temporal database. Through a static analysis of behavioural
specifications along with simulations of real behaviours, relevant states which must
necessarily be preserved can be exhibited.

On the other hand, temporal database approaches provide us with possible target
models for enhancing our method, without altering its general principles.

In spite of different motivations, let us notice a similarity between our method
and research work in data mining field, interested in exhibiting sequential patterns
[AIS93, AS94, SA95]. For such a discovering, sequences of events describing the
behaviour and actions of users or systems are collected. This list of transactions,
each of which encompassing various database operations resemble more closely to
the trace structure used when enhancing our method with IFOs. But of course
these approaches place major emphasis on defining suitable mechanisms and non
expensive algorithms for extracting knowledge.

6 Conclusion

This paper presents a method for elaborating the behavioural specification dictio-
nary of application. It could be used with different modelling approaches such
as OMT or IFO3. A meta-schema describing behavioural abstractions is defined
with the structural concepts of the chosen modelling approach. From this meta-
schema, storage structures for various target systems could be yielded applying
transformation mechanisms. Instanciation of the behavioural dictionary could then
be performed in an automated way.

The motivation behind our proposal is dealing with particular applications in which
object behaviour must be carefully observed. Of course the next step is now to define

12

manipulation capabilities in order to compare real behaviours to patterns. Finally,
we intend to define an aided tool for exhibiting behavioural patterns from actual
bahaviours. This last perspective really meets a data mining objective.

References

[AIS93]

[AS94]

[BMO1]

[Boo91]

[CT94]

[Ha90]

[Har88)

[Hoa85]
[JSS94]

[LNR&7]

[LZ88]

[PTCLY3]

[RBP+91]

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In Proceeding of the ACM-
SIGMOD, pages 207-216, Washington, D.C., May 1993.

R. Agrawal and R. Srikant. fast association for mining association rules.
In Proceeding of the 20th International Conference on Very Large Data
Bases (VLDB’9/4), Santiago, Chile, September 1994.

M. Bouzeghoub and E. Métais. Semantic Modelling of Object-Oriented
Databases. In Proceedings of the 17th International Conference on Very
Large Data Bases (VLDB’91), pages 3-14, Barcelona, Spain, September
1991.

G. Booch. Object-Oriented Design with Applications. Ben-
jamin/Cumming Comp, 1991.

J. Clifford and T. Isakowitz. On the semantics of (bi)temporal vari-
able databases. In Proceedings of 4th Conference on Ezxtending Database
Technology (EDBT’94), volume 779 of Lecture Notes in Computer Sci-
ence, pages 215-230, Cambridge, UK, March 1994. Springer Verlag.

D. Harel and al. STATEMATE: A working environmentfor the devel-
opment of complex reactive systems. IEEE Transaction on Software
Engineering, 16(4):403-414, 1990.

D. Harel. On Visual Formalisms. Communications of the ACM,
31(5):514-530, 1988.

C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

C. Jensen, M. Soo, and R. Snodgrass. Unifying temporal data models
via a conceptual model. In Information Systems, volume 19 of 7, pages
513-547, 1994.

J.Y. Lingat, P. Nobecourt, and C. Rolland. Behaviour management in
database application. In Proceedings of the 13th International Confer-
ence on Very Large Databases (VLDB’87), Brighton, UK, September
1987.

P. Loucopoulos and R. Zicari. Special issue on temporal databases. Data
Engineering Bulletin, 11(4), December 1988.

P. Poncelet, M. Teisseire, R. Cicchetti, and L. Lakhal. Towards a Formal
Approach for Object-Oriented Database Design. In Proceedings of the
19th International Conference on Very Large Data Bases (VLDB’93),
pages 278-289, Dublin, Ireland, August 1993.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, 1991.

13

[SA95]

[Saa9l]

[SM8S]

[SMO1]

[SM92]

[Som91]
[SSES7]

[TPC94a

[TPC94b]

R. Srikant and R. Agrawal. Mining generalized association rules. In
Proceeding of the 21th International Conference on Very Large Data
Bases (VLDB’95), Zurich, Switzerland, September 1995.

G. Saake. Descriptive Specification of Database Object Behaviour. Data
& Knowledge Engineering, 6:47-73, 1991.

S. Shlaer and S.J. Mellor. Object-Oriented Systems Analysis: Modeling
the World in Data. Yourdon Press, Prentice Hall, 1988.

M. Siegel and S. Madnick. A Metadat Approach to Resolving Semantic
Conflicts. In Proceedings of the 17th International Conference on Very
Large Databases (VLDB’91), Barcelona, Spain, September 1991.

S. Shlaer and S.J. Mellor. Object Lifecycles Systems Analysis: Modeling
the World in State. Yourdon Press, Prentice Hall, 1992.

I. Sommerville. Software Engineering. Addison-Wesley, 1991.

A. Sernadas, C. Sernadas, and H. D. Ehrich. Object-Oriented Specifica-
tion of Databases: An Algebraic Approach. In Proceedings of the 13th
International Conference on Very Large Data Bases (VLDB’87), pages
107-116, Brighton, UK, August 1987.

M. Teisseire, P. Poncelet, and R. Cicchetti. Dynamic Modelling with
Events. In Proceedings of the 6th International Conference on Advanced
Information Systems Engineering (CAiSE’94), volume 811 of Lecture
Notes in Computer Science, pages 186—199, Utrecht, The NetherLands,
June 1994. Springer Verlag.

M. Teisseire, P. Poncelet, and R. Cicchetti. Towards Event-Driven Mod-
elling for Database Design. In Proceedings of the 20th International Con-
ference on Very Large Databases (VLDB’94), Santiago, Chile, September
1994.

14

