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ABSTRACT
RDF is a standard for the conceptual description of knowl-
edge, and SPARQL is the query language conceived to query
RDF data. The RDF data is cherished and exploited by
various domains such as life sciences, Semantic Web, social
network, etc. Further, its integration at Web-scale compels
RDF management engines to deal with complex queries in
terms of both size and structure. In this paper, we propose
AMbER (Attributed Multigraph Based Engine for RDF
querying), a novel RDF query engine specifically designed
to optimize the computation of complex queries. AMbER
leverages subgraph matching techniques and extends them
to tackle the SPARQL query problem. First of all RDF
data is represented as a multigraph, and then novel index-
ing structures are established to e�ciently access the in-
formation from the multigraph. Finally a SPARQL query
is represented as a multigraph, and the SPARQL querying
problem is reduced to the subgraph homomorphism prob-
lem. AMbER exploits structural properties of the query
multigraph as well as the proposed indexes, in order to tackle
the problem of subgraph homomorphism. The performance
ofAMbER, in comparison with state-of-the-art systems, has
been extensively evaluated over several RDF benchmarks.
The advantages of employingAMbER for complex SPARQL
queries have been experimentally validated.

1. INTRODUCTION
In the recent years, structured knowledge represented in

the form of RDF data has been increasingly adopted to im-
prove the robustness and the performances of a wide range
of applications with various purposes. Popular examples are
provided by Google, that exploits the so called knowledge
graph to enhance its search results with semantic informa-
tion gathered from a wide variety of sources, or by Facebook,
that implements the so called entity graph to empower its
search engine and provide further information extracted, for
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instance by Wikipedia. Another example is supplied by re-
cent question-answering systems [4, 15] that automatically
translate natural language questions in SPARQL queries and
successively retrieve answers considering the available infor-
mation in the di↵erent Linked Open Data sources. In all
these examples, complex queries (in terms of size and struc-
ture) are generated to ensure the retrieval of all the required
information. Thus, as the use of large knowledge bases, that
are commonly stored as RDF triplets, is becoming a com-
mon way to ameliorate a wide range of applications, e�cient
querying of RDF data sources using SPARQL is becoming
crucial for modern information retrieval systems.

All these di↵erent scenarios pose new challenges to the
RDF query engines for two vital reasons: firstly, the au-
tomatically generated queries cannot be bounded in their
structural complexity and size (e.g., the DBPEDIA SPARQL
Benchmark [12] contains some queries having more than 50
triplets [1]); secondly, the queries generated by retrieval sys-
tems (or by any other applications) need to be e�ciently
answered in a reasonable amount of time. Modern RDF
data management, such as x-RDF-3X [13] and Virtuoso [7],
are designed to address the scalability of SPARQL queries
but they still have problems to answer big and structurally
complex SPARQL queries [2]. Our experiments with state
of-the-art systems demonstrate that they fail to e�ciently
manage such kind of queries (Table 1).

Systems AMbER gStore Virtuoso x-RDF-3X

Time (sec) 1.56 11.96 20.45 >60

Table 1: Average Time (seconds) for a sample of 200 com-
plex queries on DBPEDIA. Each query has 50 triplets.

In order to tackle these issues, in this paper, we introduce
AMbER (Attributed Multigraph Based Engine for RDF
querying), which is a graph-based RDF engine that involves
two steps: an o✏ine stage where RDF data is transformed
into multigraph and indexed, and an online step where an ef-
ficient approach to answer SPARQL query is proposed. First
of all RDF data is represented as a multigraph where sub-
jects/objects constitute vertices and multiple edges (predi-
cates) can appear between the same pair of vertices. Then,
new indexing structures are conceived to e�ciently access
RDF multigraph information. Finally, by representing the
SPARQL queries also as multigraphs, the query answering



Prefixes: x= http://dbpedia.org/resource/ ;  y=http://dbpedia.org/ontology/

Subject  Predicate Object

x:London y:isPartOf x:England

x:England y:hasCapital x:London

x:Christophar_Nolan y:wasBornIn x:London

x:Christophar_Nolan y:LivedIn x:England

x:Christophar_Nolan y:isPartOf x:Dark_Knight_Trilogy

x:London y:hasStadium x:WembleyStadium

x:WembleyStadium y:hasCapacityOf “90000”

x:Amy_Winehouse y:wasBornIn x:London

x:Amy_Winehouse y:diedIn x:London

x:Amy_Winehouse y:wasPartOf x:Music_Band

x:Music_Band y:hasName “MCA_Band”

x:Music_Band y:FoundedIn “1994”

x:Music_Band y:wasFormedIn X:London

x:Amy_Winehouse y:livedIn x:United States

x:Amy_Winehouse y:wasMarriedTo x:Blake Fielder-Civil

x:Blake Fielder-Civil y:livedIn x:United States

(a) RDF tripleset
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(b) Graph representation of RDF data
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(c) Equivalent multigraph G

Figure 1: (a) RDF data in n-triple format; (b) graph representation (c) attributed multigraph G

task can be reduced to the problem of subgraph homo-
morphism. To deal with this problem, AMbER employs
an e�cient approach that exploits structural properties of
the multigraph query as well as the indices previously built
on the multigraph structure. Experimental evaluation over
popular RDF benchmarks show the quality in terms of time
performances and robustness of our proposal.

In this paper, we focus only on the SELECT/WHERE clause
of the SPARQL language1, that constitutes the most impor-
tant operation of any RDF query engines. It is out of the
scope of this work to consider operators like FILTER, UNION
and GROUP BY or manage RDF update. Such operations can
be addressed in future as extensions of the current work.

The paper is organized as follows. Section 2 introduces
the basic notions about RDF and SPARQL language. In
Section 3 AMbER is presented. Section 4 describes the
indexing strategy while Section 5 presents the query pro-
cessing. Related works are discussed in Section 6. Section 7
provides the experimental evaluation. Section 8 concludes.

2. BACKGROUND AND PRELIMINARIES
In this section we provide basic definitions on the interplay

between RDF and its multigraph representation. Later, we
explain how the task of answering SPARQL queries can be
reduced to multigraph homomorphism problem.

2.1 RDF Data
As per the W3C standards 2, RDF data is represented

as a set of triples <S,P,O>, as shown in Figure 1a, where
each triple <s, p, o> consists of three components: a subject,
a predicate and an object. Further, each component of the
RDF triple can be of any two forms; an IRI (International-
ized Resource Identifier) or a literal. For brevity, an IRI is
usually written along with a prefix (e.g., <http://dbpedia.

1http://www.w3.org/TR/sparql11-overview/
2http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

org/resource/isPartOf> is written as ‘x:isPartOf’), whereas
a literal is always written with double quotes (e.g., “90000”).
While a subject s and a predicate p are always an IRI, an
object o is either an IRI or a literal.

RDF data can also be represented as a directed graph
where, given a triple <s, p, o>, the subject s and the object
o can be treated as vertices and the predicate p forms a
directed edge from s to o, as depicted in Figure 1b. Further,
to underline the di↵erence between an IRI and a literal, we
use standard rectangles and arc for the former while we use
beveled corner and edge (no arrows) for the latter.

2.1.1 Data Multigraph Representation

Motivated by the graph representation of RDF data (Fig-
ure 1b), we take a step further by transforming it to a data
multigraph G, as shown in Figure 1c.

Let us consider an RDF triple <s, p, o> from the RDF
tripleset <S,P,O>. Now to transform the RDF tripleset
into data multigraph G, we set four protocols: we always
treat the subject s as a vertex; a predicate p is always treated
as an edge; we treat the object o as a vertex only if it is an
IRI (e.g., vertex v2 corresponds to object ‘x:London’); when
the object is a literal, we combine the object o and the cor-
responding predicate p to form a tuple <p, o> and assign it
as an attribute to the subject s (e.g., <‘y:hasCapacityOf’,
“90000”> is assigned to vertex v4). Every vertex is assigned
a null value {-} in the attribute set. However, to realize this
in the realms of graph management techniques, we main-
tain three di↵erent dictionaries, whose elements are a pair
of ‘key’ and ‘value’, and a mapping function that links them.
The three dictionaries depicted in Table 2 are: a vertex dic-
tionary (Table 2a), an edge-type dictionary (Table 2b) and
an attribute dictionary (Table 2c). In all the three dictio-
naries, an RDF entity represented by a ‘key’ is mapped to a
corresponding ‘value’, which can be a vertex/edge/attribute
identifier. Thus by using the mapping functions - Mv, Me,
and Ma for vertex, edge-type and attribute mapping respec-
tively, we obtain a directed, vertex attributed data multi-

http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/


graph G (Figure 1c), which is formally defined as follows.

Definition 1. Directed, Vertex Attributed Multigraph.
A directed, vertex attributed multigraph G is defined as a
4-tuple (V,E, LV , LE) where V is a set of vertices, E ✓
V ⇥V is a set of directed edges with (v, v0) 6= (v0, v), LV is a
labelling function that assigns a subset of vertex attributes A
to the set of vertices V , and LE is a labelling function that
assigns a subset of edge-types T to the edge set E.

To summarise, an RDF tripleset is transformed into a data
multigraph G, whose elements are obtained by using the
mapping functions as already discussed. Thus, the set of ver-
tices V = {v0, . . . , vm} is the set of mapped subject/object
IRI, and the labelling function LV assigns a set of vertex at-
tributes A = {-, a0, . . . , an} (mapped tuple of predicate and
object-literal) to the vertex set V . The set of directed edges
E is a set of pair of vertices (v, v0) that are linked by a pred-
icate, and the labelling function LE assigns the set of edge
types T = {t0, . . . , tp} (mapped predicates) to these set of
edges. The edge set E maintains the topological structure of
the RDF data. Further, mapping of object-literals and the
corresponding predicates as a set of vertex attributes, results
in a compact representation of the multigraph. For exam-
ple (in Fig. 1c), all the object-literals and the corresponding
predicates are reduced to a set of vertex attributes.

2.2 SPARQL Query
A SPARQL query usually contains a set of triple patterns,

much like RDF triples, except that any of the subject, pred-
icate and object may be a variable, whose bindings are to
be found in the RDF data 3. In the current work, we ad-
dress the SPARQL queries with ‘SELECT/WHERE’ option,
where the predicate is always instantiated as an IRI (Fig-
ure 2a). The SELECT clause identifies the variables to appear
in the query results while the WHERE clause provides triple
patterns to match against the RDF data.

2.2.1 Query Multigraph Representation

In any valid SPARQL query (as in Figure 2a), every triplet
has at least one unknown variable ?X, whose bindings are to
be found in the RDF data. It should now be easy to observe
that a SPARQL query can be represented in the form of
a graph as in Figure 2b, which in turn is transformed into
query multigraph Q (as in Figure 2c).
In the query multigraph representation, each unknown

variable ?Xi is mapped to a vertex ui that forms the ver-
tex set U component of the query multigraph Q (e.g., ?X6

is mapped to u6). Since a predicate is always instantiated
as an IRI, we use the edge-type dictionary in Table 2b, to
map the predicate to an edge-type identifier ti 2 T (e.g.,
‘isMarriedTo’ is mapped as t8). When an object oi is a lit-
eral, we use the attribute dictionary (Table 2c), to find the
attribute identifier ai for the predicate-object tuple <pi, oi>
(e.g., {a0} forms the attribute for vertex u4). Further, when
a subject or an object is an IRI, which is a not a variable, we
use the vertex dictionary (2a), to map it to an IRI -vertex
uiri
i (e.g., ‘x:United States’ is mapped to uiri

0 ) and maintain
a set of IRI vertices R. Since this vertex is not a variable
and a real vertex of the query, we portray it di↵erently by a
shaded square shaped vertex. When a query vertex ui does

3http://www.w3.org/TR/2008/
REC-rdf-sparql-query-20080115/

s/o M
v

(s/o)
x:Music Band v0

x:Amy Winehouse v1

x:London v2

x:England v3

x:WembleyStadium v4

x:United States v5

x:Blake Fielder-Civil v6

x:Christopher Nolan v7

x:Dark Knight Trilogy v8

(a) Vertex Dictionary

p M
e

(p)
y:isPartOf t0

y:hasCapital t1

y:hasStadium t2

y:livedIn t3

y:diedIn t4

y:wasBornIn t5

y:wasFormedIn t6

y:wasPartOf t7

y:wasMarriedTo t8

(b) Edge-type Dictionary

<p, o> M
a

(<p, o>)
<y:hasCapacityOf, “90000”> a0

<y:wasFoundedIn, “1994”> a1

<y:hasName, “MCA Band”> a2

(c) Attribute Dictionary

Table 2: Dictionary look-up tables for vertices, edge-types
and vertex attributes

not have any vertex attributes associated with it (e.g., u0,
u1, u2, u3, u6), a null attribute {-} is assigned to it. On
the other hand, an IRI -vertex uiri

i 2 R does not have any
attributes. Thus, a SPARQL query is transformed into a
query multigraph Q.

In this work, we always use the notation V for the set of
vertices of G, and U for the set of vertices of Q. Conse-
quently, a data vertex v 2 V , and a query vertex u 2 U .
Also, an incoming edge to a vertex is positive (default), and
an outgoing edge from a vertex is labelled negative (‘-’).

2.3 SPARQL Querying by Adopting
Multigraph Homomorphism

As we recall, the problem of SPARQL querying is ad-
dressed by finding the solutions to the unknown variables
?X, that can be bound with the RDF data entities, so that
the relations (predicates) provided in the SPARQL query
are respected. In this work, to harness the transformed
data multigraph G and the query multigraph Q, we reduce
the problem of SPARQL querying to a sub-multigraph ho-
momorphism problem. The RDF data is transformed into
data multigraph G and the SPARQL query is transformed
into query multigraph Q. Let us now recall that finding
SPARQL answers in the RDF data is equivalent to finding
all the sub-multigraphs of Q in G that are homomorphic.
Thus, let us now formally introduce homomorphism for a
vertex attributed, directed multigraph.

Definition 2. Sub-multigraph Homomorphism. Given
a query multigraph Q = (U,EQ, LU , L

Q
E) and a data multi-

graph G = (V,E, LV , LE), the sub-multigraph homomor-
phism from Q to G is a surjective function  : U ! V
such that:

1. 8u 2 U,LU (u) ✓ LV ( (u))

2. 8(um, un) 2 EQ, 9 ( (um), (un)) 2 E, where (um, un)
is a directed edge, and LQ

E(um, un) ✓ LE( (um), (un)).

Thus, by finding all the sub-multigraphs in G that are
homomorphic to Q, we enumerate all possible homomorphic
embeddings of Q in G. These embeddings contain the solu-
tion for each of the query vertex that is an unknown variable.
Thus, by using the inverse mapping function M�1

v (vi) (in-
troduced already), we find the bindings for the SPARQL

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/


SELECT  ?X0 ?X1  ?X2  ?X3  ?X4  ?X5  ?X6  WHERE  { 
?X0 y:livedIn ?X1 .
?X1 y:isPartOf ?X2 . 

?X2 y:hasCapital ?X1 . 

?X1 y:hasStadium ?X4 .
?X3 y:wasBornIn ?X1 .

?X3 y:diedIn ?X1 .
?X3 y:isMarriedTo ?X6 .

?X3 y:wasPartOf ?X5 .
?X5 y:wasFormedIn ?X1 .

?X4 y:hasCapacity “90000” .

?X5 y:hasName “MCA_Band” .
?X5 y:foundedIn “1934” . 
?X3 y:livedIn x:United States . }

(a) SPARQL Query
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(b) Graph representation of SPARQL
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(c) Equivalent Multigraph Q

Figure 2: (a) SPARQL query representation; (b) graph representation (c) attributed multigraph Q

query. The decision problem of subgraph homomorphism
is NP-complete. This standard subgraph homomorphism
problem can be seen as a particular case of sub-multigraph
homomorphism, where both the labelling functions LE and
LQ

E always return the same subset of edge-types for all the
edges in both Q and G. Thus the problem of sub-multigraph
homomorphism is at least as hard as subgraph homomor-
phism. Further, the subgraph homomorphism problem is a
generic scenario of subgraph isomorphism problem where,
the injectivity constraints are slackened [11].

3. AMBER: A SPARQL QUERYING ENGINE
We now present an overview of our proposal - AMbER

(Attributed Mulitgraph Based Engine for RDF querying).
AMbER contains two di↵erent stages: (i) an o✏ine stage
during which, RDF data is transformed into multigraph G
and then a set of index structures I is constructed that cap-
tures the necessary information contained inG; (ii) an online
stage during which, a SPARQL query is transformed into a
multigraph Q, and then by exploiting the subgraph match-
ing techniques along with the already built index structures
I, the homomorphic matches of Q in G are obtained.

Given a multigraph representation Q of a SPARQL query,
AMbER decomposes the query vertices U into a set of core
vertices Uc and satellite vertices Us. Intuitively, a vertex
u 2 U is a core vertex, if the degree of the vertex is more
than one; on the other hand, a vertex u with degree one is a
satellite vertex. For example, in Figure 2c, Uc = {u1, u3, u5}
and Us = {u0, u2, u4, u6}. Once decomposed, we run the
sub-multigraph matching procedure on the query structure
spanned only by the core vertices. However, during the pro-
cedure, we also process the satellite vertices (if available)
that are connected to a core vertex that is being processed.
For example, while processing the core vertex u1 , we also
process the set of satellite vertices {u0, u2, u4} connected to
it; whereas, the core vertex u5 has no satellite vertices to
be processed. In this way, as the matching proceeds, the
entire structure of the query mulitgraph Q is processed to
find the homomorphic embeddings in G. The set of indexing
structures I are extensively used during the process of sub-
multigraph matching. The homomorphic embeddings are
finally translated back to the RDF entities using the inverse
mapping function M�1

v as discussed in Section 2.

4. INDEX CONSTRUCTION
Given a data multigraph G, we build the following three

di↵erent indices: (i) an inverted list A for storing the set
of data vertex for each attribute in ai 2 A (ii) a trie index
structure S to store features of all the data vertices V (iii)
a set of trie index structures N to store the neighbourhood
information of each data vertex v 2 V . For brevity of rep-
resentation, we ensemble all the three index structures into
I := {A,S,N}.

During the query matching procedure (the online step),
we access these indexing structures to obtain the candidate
solutions for a query vertex u. Formally, for a query vertex
u, the candidate solutions are a set of data vertices Cu =
{v|v 2 V } obtained by accessing A or S or N , denoted as
CA

u , CS
u and CN

u respectively.

4.1 Attribute Index
The set of vertex attributes is given by A = {a0, . . . , an}

(Section 2), where a data vertex v 2 V might have a subset
of A assigned to it. We now build the vertex attribute index
A by creating an inverted list where a particular attribute
ai has the list of all the data vertices in which it appears.

Given a query vertex u with a set of vertex attributes
u.A ✓ A, for each attribute ai 2 u.A, we access the index
structure A to fetch a set of data vertices that have ai. Then
we find a common set of data vertices that have the entire
attribute set u.A. For example, considering the query vertex
u5 (Fig. 2c), it has an attribute set {a1, a2}. The candidate
solutions for u5 are obtained by finding all the common data
vertices, in A, between a1 and a2, resulting in CA

u5
= {v0}.

4.2 Vertex Signature Index
The index S captures the edge type information from the

data vertices. For a lucid understanding of this indexing
schema we formally introduce the notion of vertex signature
that is defined for a vertex v 2 V , which encapsulates the
edge information associated with it.

Definition 3. Vertex signature. For a vertex v 2 V ,
the vertex signature �v is a multiset containing all the di-
rected multi-edges that are incident on v, where a multi-edge
between v and a neighbouring vertex v0 is represented by
a set that corresponds to the edge types. Formally, �v =S

v02N(v) LE(v, v
0) where N(v) is the set of neighbourhood

vertices of v, and [ is the union operator for multiset.



Data vertex Signature Synopses
v �v f+

1 f+
2 f+

3 f+
4 f�

1 f�
2 f�

3 f�
4

v0 {{�t6}, {t7}} 1 1 -7 7 1 1 -6 6
v1 {{�t3}, {�t7}, {�t8}, {�t4,�t5}} 0 0 0 0 2 5 -3 8
v2 {{�t0}, {t1}, {�t2}, {t5}, {t6}, {t4, t5}} 2 4 -1 6 1 2 0 2
v3 {{t0}, {t3}, {�t1}} 1 2 0 3 1 1 -1 1
v4 {{t2}} 1 1 -2 2 0 0 0 0
v5 {{t3}, {t3}} 1 1 -3 3 0 0 0 0
v6 {{t8}, {�t3}} 1 1 -8 8 1 1 -3 3
v7 {{�t0}, {�t3}, {�t5}} 0 0 0 0 1 3 0 5
v8 {{t0}} 1 1 0 0 0 0 0 0

Table 3: Vertex signatures and the corresponding synopses for the vertices in the data multigraph G (Figure 1c)

The index S is constructed by tailoring the information
supplied by the vertex signature of each vertex in G. To ex-
tract some interesting features, let us observe the vertex sig-
nature �v2 as supplied in Table 3. To begin with, we can rep-
resent the vertex signature �v2 separately for the incoming
and outgoing multi-edges as �+

v2 = {{t1}, {t5}, {t6}, {t4, t5}}
and ��

v2 = {{�t0}{�t2}} respectively. Now we observe that
�+
v2 has four distinct multi-edges and ��

v2 has two distinct
multi-edges. Now, lets think that we want find candidate
solutions for a query vertex u. The data vertex v2 can be a
match for u only if the signature of u has at most four in-
coming (‘+’) edges and at most two outgoing (‘-’) edges; else
v2 can not be a match for u. Thus, more such features (e.g.,
maximum cardinality of a set in the vertex signature) can be
proposed to filter out irrelevant candidate vertices. Thus, for
each vertex v, we propose to extract a set of features by ex-
ploiting the corresponding vertex signature. These features
constitute a synopses, which is a surrogate representation
that approximately captures the vertex signature informa-
tion.

The synopsis of a vertex v contains a set of features F ,
whose values are computed from the vertex signature �v. In
this background, we propose four distinct features: f1 - the
maximum cardinality of a set in the vertex signature; f2 -
the number of unique dimensions in the vertex signature;
f3 - the minimum index value of the edge type; f4 - the
maximum index value of the edge type. For f3 and f4, the
index values of edge type are nothing but the position of the
sequenced alphabet. These four basic features are replicated
separately for outgoing (negative) and incoming (positive)
edges, as seen in Table 3. Thus for the vertex v2, we obtain
f+
1 = 2, f+

2 = 4, f+
3 = �1 and f+

4 = 7 for the incoming
edge set and f�

1 = 1, f�
2 = 2, f�

3 = 0 and f�
4 = 2 for the

outgoing edge set. Synopses for the entire vertex set V for
the data multigraph G are depicted in Table 3.
Once the synopses are computed for all data vertices, an

R-tree is constructed to store all the synopses. This R-tree
constitutes the vertex signature index S. A synopsis with
|F | fields forms a leaf in the R-tree.
When a set of possible candidate solutions are to be ob-

tained for a query vertex u, we create a vertex signature
�u in order to compute the synopsis, and then obtain the
possible solutions from the R-tree structure.
The general idea of using an R-tree is as follows. A

synopsis F of a data vertex spans an axes-parallel rectan-
gle in an |F |-dimensional space, where the maximum co-
ordinates of the rectangle are the values of the synopses

fields (f1, . . . , f|F |), and the minimum co-ordinates are the
origin of the rectangle (filled with zero values). For example,
a data vertex represented by a synopses with two features
F (v) = [2, 3] spans a rectangle in a 2-dimensional space in
the interval range ([0, 2], [0, 3]). Now, if we consider synopses
of two query vertices, F (u1) = [1, 3] and F (u2) = [1, 4], we
observe that the rectangle spanned by F (u1) is wholly con-
tained in the rectangle spanned by F (v) but F (u2) is not
wholly contained in F (v). Thus, u1 is a candidate match
while u2 is not.

Lemma 1. Querying the vertex signature index S con-
structed with synopses, guarantees to output at least the en-
tire set of candidate solutions.

Proof. Consider the field f±
1 in the synopses that rep-

resents the maximum cardinality of the neighbourhood sig-
nature. Let �u be the signature of the query vertex u and
{�v1 , . . . ,�v

n

} be the set of signatures on the data vertices.
By using f1 we need to show that CS

u has at least all the
valid candidate matches. Since we are looking for a superset
of query vertex signature, and we are checking the condition
f±
1 (u)  f±

1 (vi), where vi 2 V , a vertex vi is pruned if it
does not match the inequality criterion since, it can never
be an eligible candidate. This analogy can be extended to
the entire synopses, since it can be applied disjunctively.

Formally, the candidates solutions for a vertex u can be
written as CS

u = {v|8i2[1,...,|F |]f
±
i (u)  f±

i (v)}, where the
constraints are met for all the |F |-dimensions. Since we
apply the same inequality constraint to all the fields, we
negate the fields that refer to the minimal index value of the
edge type (f+

3 and f�
3 ) so that the rectangular containment

problem still holds good. Further to respect the rectangular
containment, we populate the synopses fields with ‘0’ val-
ues, in case, the signature does not have either positive or
negative edges in it, as seen for v1, v3, v4, v5 and v7.

For example, if we want to compute the possible candi-
dates for a query vertex u0 in Figure 2c, whose signature is
�u0 = {�t5}, we compute the synopsis which is [0 0 0 0 1
1 5 5]. Now we look for all those vertices that subsume this
synopsis in the R-tree, whose elements are depicted in Ta-
ble 3, which gives us the candidate solutions CS

u0
= {v1, v7},

thus pruning the rest of the vertices.
The S index helps to prune the vertices that do not re-

spect the edge type constraints. This is crucial since this
pruning is performed for the initial query vertex, and hence
many candidates are cast away, thereby avoiding unneces-
sary recursion during the matching procedure. For example,



for the initial query vertex u0, whose candidate solutions are
{v1, v7}, the recursion branch is run only on these two start-
ing vertices instead of the entire vertex set V .

4.3 Vertex Neighbourhood Index
The vertex neighbourhood index N captures the topologi-

cal structure of the data multigraph G. The index N com-
prises of 1-neighbourhood trees built for each data vertex
v 2 V . Since G is a directed multigraph, and each vertex
v 2 V can have both the incoming and outgoing edges, we
construct two separate index structures N+ and N� for in-
coming and outgoing edges respectively, that constitute the
structure N .
To understand the index structure, let us consider the data

vertex v2 from Figure 1c, shown separately in Figure 3a. For
this vertex v2, we collect all the neighbourhood information
(vertices and multi-edges), and represent this information by
a tree structure, built separately for incoming (‘+’) and out-
going (‘-’) edges. Thus, the tree representation of a vertex v
contains the neighbourhood vertices and the corresponding
multi-edges, as shown in Figure 3b, where the vertices of the
tree structure are represented by the edge types.
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Figure 3: Building Neighbourhood Index for data vertex v2

In order to construct an e�cient tree structure, we take
inspiration from [14] to propose the structure - Ordered Trie
with Inverted List (OTIL). To construct the OTIL index as
shown in Figure 3b, we insert each ordered multi-edge that
is incident on v at the root of the trie. Consider a data
vertex vi, with a set of n neighbourhood vertices N(vi).
Now, for every pair of incoming edge (vi, N

j(vi)), where
j 2 {1, . . . , n}, there exists a multi-edge {ti, . . . , tj}, which
is inserted into the OTIL structure N+. Similarly for every
pair of outgoing edge (N j(vi), vi), there exists a multi-edge
{tm, . . . , tn}, which is inserted into the OTIL structure N�

maintaining two OTIL structures that constitute N . Each
multi-edge is ordered (w.r.t. increasing edge type indexes),
before inserting into the respective OTIL structure, and the
order is universally maintained for all data vertices. Further,
for every edge type ti, we maintain a list that contains all
the neighbourhood vertices N+(vi)/N

�(vi), that have the
edge type ti incident on them.

To understand the utility of N , let us consider an illus-
trative example. Considering the query multigraph Q in
Figure 2c, let as assume that we want to find the matches
for the query vertices u1 and u0 in order. Thus, for the ini-
tial vertex u1, let us say, we have found the set of candidate
solutions which is {v2}. Now, to find the candidate solutions
for the next query vertex u0, it is important to maintain the
structure spanned by the query vertices, and this is where
the indexing structure N is accessed. Thus to retain the
structure of the query multigraph (in this case, the struc-
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Figure 4: Decomposing the query multigraph into core and
satellite vertices

ture between u1 and u0), we have to find the data vertices
that are in the neighbourhood of already matched vertex v2
(a match for vertex u1), that has the same structure (edge
types) between u1 and u0 in the query graph. Thus to fetch
all the data vertices that have the edge type t5, which is
directed towards v2 and hence ‘+’, we access the neighbour-
hood index trie N+ for vertex v2, as shown in Figure 3.
This gives us a set of candidate solutions CN

u0
= {v1, v7}. It

is easy to observe that, by maintaining two separate index-
ing structures N+ and N�, for both incoming and outgoing
edges, we can reduce the time to fetch the candidate solu-
tions.

Thus, in a generic scenario, given an already matched data
vertex v, the edge direction ‘+’ or ‘-’, and the set of edge
types T 0 ✓ T , the index N will find a set of neighbourhood
data vertices {v0|(v0, v) 2 E ^ T 0 ✓ LE(v

0, v)} if the edge
direction is ‘+’ (incoming), while N returns {v0|(v, v0) 2
E ^ T 0 ✓ LE(v, v

0)} if the edge direction is ‘-’ (outgoing).

5. QUERY MATCHING PROCEDURE
In order to follow the working of the proposed query match-

ing procedure, we formalize the notion of core and satellite
vertices. Given a query graph Q, we decompose the set of
query vertices U into a set of core vertices Uc and a set of
satellite vertices Us. Formally, when the degree of the query
graph �(Q) > 1, Uc = {u|u 2 U ^ deg(u) > 1}; however,
when �(Q) = 1, i.e, when the query graph is either a vertex
or a multiedge, we choose one query vertex at random as a
core vertex, and hence |Uc|= 1. The remaining vertices are
classified as satellite vertices, whose degree is always 1. For-
mally, Us = {U \ Uc}, where for every u 2 Us, deg(u) = 1.
The decomposition for the query multigraph Q is depicted
in Figure 4, where the satellite vertices are separated (ver-
tices under the shaded region in Fig. 4a), in order to obtain
the query graph that is spanned only by the core vertices
(Fig. 4b).

The proposed AMbER-Algo (Algorithm 3) performs re-
cursive sub-multigraph matching procedure only on the query
structure spanned by Uc as seen in Figure 4b. Since the en-
tire set of satellite vertices Us is connected to the query
structure spanned by the core vertices, AMbER-Algo pro-
cesses the satellite vertices while performing sub-multigraph
matching on the set of core vertices. Thus during the re-
cursion, if the current core vertex has satellite vertices con-
nected to it, the algorithm retrieves directly a list of possible
matching for such satellite vertices and it includes them in



the current partial solution. Each time the algorithm exe-
cutes a recursion branch with a solution, the solution not
only contains a data vertex match vc for each query vertex
belonging to Uc, but also a set of matched data vertices Vs

for each query vertex belonging to Us. Each time a solu-
tion is found, we can generate not only one, but a set of
embeddings through the Cartesian product of the matched
elements in the solution.

Since finding SPARQL solutions is equivalent to finding
homomorphic embeddings of the query multigraph, the ho-
momorphic matching allows di↵erent query vertices to be
matched with the same data vertices. Recall that there is
no injectivity constraint in sub-multigraph homomorphism
as opposed to sub-multigraph isomorphism [11]. Thus dur-
ing the recursive matching procedure, we do not have to
check if the potential data vertex has already been matched
with previously matched query vertices. This is an advan-
tage when we are processing satellite vertices: we can find
matches for each satellite vertex independently without the
necessity to check for a repeated data vertex.

Before getting into the details of the AMbER-Algo, we
first explain how a set of candidate solutions is obtained
when there is information associated only with the vertices.
Then we explain how a set of candidate solutions is obtained
when we encounter the satellite vertices.

5.1 Vertex Level Processing
To understand the generic query processing, it is necessary

to understand the matching process at vertex level. When-
ever a query vertex u 2 U is being processed, we need to
check if u has a set of attributes A associated with it or any
IRI s are connected to it (recall Section 2.2).

Algorithm 1: ProcessVertex(u,Q,A,N )

1 if u.A 6= ; then

2 C

A

u

= QueryAttIndex(A, u.A)

3 if u.R 6= ; then

4 C

I

u

=
T

u

iri

i

2u.R

( QueryNeighIndex(N , L

Q

E

(u, uiri

i

), uiri

i

) )

5 CandAtt

u

= C

A

u

\ C

I

u

/* Find common candidates */
6 return CandAtt

u

To process an arbitrary query vertex, we propose a proce-
dure ProcessVertex, depicted in Algorithm 1. This algo-
rithm is invoked only when a vertex u has at least, either a
set of vertex attributes or any IRI associated with it. The
ProcessVertex procedure returns a set of data vertices
CandAttu, which are matchable with u; in case CandAttu
is empty, then the query vertex u has no matches in V .

As seen in Lines 1-2, when a query vertex u has a set
of vertex attributes i.e., u.A 6= ;, we obtain the candidate
solutions CA

u by invoking QueryAttIndex procedure, that
accesses the index A as explained in Section 4.1. For exam-
ple, the query vertex u5 with vertex attributes {a1, a2}, can
only be matched with the data vertex v0; thus C

A
u5

= {v0}.
When a query vertex u has IRI s associated with it, i.e.,

u.R 6= ; (Lines 3-4), we find the candidate solutions CI
u by

invoking the QueryNeighIndex procedure. As we recall
from Section 2.2, a vertex u is connected to an IRI vertex
uiri
i through a multi-edge LQ

E(u, u
iri
i ). An IRI vertex uiri

i

always has only one data vertex v, that can match. Thus,
the candidate solutions CI

u are obtained by invoking the
QueryNeighIndex procedure, that fetches all the neigh-
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Figure 5: A star structure in the query multigraph Q

bourhood vertices of v that respect the multi-edge LQ
E(u, u

iri
i ).

The procedure is invoked until all the IRI vertices u.R are
processed (Line 4). Considering the example in Figure 2c,
u3 is connected to an IRI -vertex uiri

0 , which has a unique
data vertex match v5, through the multi-edge {�t3}. Using
the neighbourhood index N , we look for the neighbourhood
vertices of v5, that have the multi-edge {�t3}, which gives
us the candidate solutions CI

u3
= {v1}.

Finally in Line 5, the merge operator \ returns a set of
common candidates CandAttu, only if u.A 6= ; and u.R 6= ;.
Otherwise, CA

u or CI
u are returned as CandAttu.

5.2 Processing Satellite Vertices
In this section, we provide insights on processing a set

of satellite vertices Usat ✓ Us that are connected to a core
vertex uc 2 Uc. This scenario results in a structure that
appears frequently in SPARQL queries called star structure
[8, 10].

A typical star structure depicted in Figure 5, has a core
vertex uc = u1, and a set of satellite vertices Usat = {u0, u2, u4}
connected to the core vertex. For each candidate solution
of the core vertex u1, we process u0, u2, u4 independently of
each other, since there is no structural connectivity (edges)
among them, although they are only structurally connected
to the core vertex u1.

Lemma 2. For a given star structure in a query graph,
each satellite vertex can be independently processed if a can-
didate solution is provided for the core vertex uc.

Proof. Consider a core vertex uc that is connected to
a set of satellite vertices Usat = {u0, . . . , us}, through a
set of edge-types T 0 = {t0, . . . , ts}. Let us assume vc is
a candidate solution for the core vertex uc, and we want
to find candidate solutions for ui 2 Usat and uj 2 Usat,
where i 6= j. Now, the candidate solutions for ui and uj

can be obtained by fetching the neighbourhoods of already
matched vertex vc that respect the edge-type ti 2 T 0 and
tj 2 T 0 respectively. Since two satellite vertices ui and uj

are never connected to each other, the candidate solutions
of ui are independent of that of uj . This analogy applies to
all the satellite vertices.

Given a core vertex uc, we initially find a set of candidate
solutions Candu

c

, by using the index S. Then, for each
candidate solution vc 2 Candu

c

, the set of solutions for all
the satellite vertices Usat that are connected to uc are re-
turned by the MatchSatVertices procedure, described in
Algorithm 2. The set of solution tuple Msat defined in Line
1, stores the candidate solutions for the entire set of satel-
lite vertices Usat. Formally, Msat = {[us, Vs]}|Usat

|
s=1 , where

us 2 Usat and Vs is a set of candidate solutions for us.
In order to obtain candidate solutions for us, we query the



Algorithm 2: MatchSatVertices(A,N , Q, Usat, vc)

1 Set: M

sat

= ;, where M

sat

= {[u
s

, V

s

]}|U
sat

|
s=1

2 for all u
s

2 U

sat

do

3 Cand

u

s

= QueryNeighIndex(N , L

Q

E

(u
c

, u

s

), v
c

)
4 Cand

u

s

= Cand

u

s

\ ProcessVertex(u
s

, Q,A,N )
5 if Cand

u

s

6= ; then

6 M

sat

= M

sat

[ (u
s

, Cand

u

s

) /* Satellite solutions */

7 else

8 return M

sat

:= 0 /* No solutions possible */

9 return M

sat

/* Matches for satellite vertices */

neighbourhood index N (Line 3); the QueryNeighIndex
function obtains all the neighbourhood vertices of already
matched vc, that also considers the multi-edge in the query
multigraph LQ

E(uc, us). As every query vertex us 2 Usat

is processed, the solution set Msat that contains candidate
solutions grows until all the satellite vertices have been pro-
cessed (Lines 2-8).

In Line 4, the set of candidate solutions Candu
s

are re-
fined by invoking Algorithm 1 (VertexProcessing). After
the refinement, if there are finite candidate solutions, we up-
date the solution Msat; else, we terminate the procedure as
there can be no matches for a given matched vertex vc. The
MatchSatVertices procedure performs two tasks: firstly,
it checks if the candidate vertex vc 2 Candu

s

is a valid
matchable vertex and secondly, it obtains the solutions for
all the satellite vertices.

5.3 Arbitrary Query Processing
Algorithm 3 shows the generic procedure we develop to

process arbitrary queries.
Recall that for an arbitrary query Q, we define two dif-

ferent types of vertexes: a set of core vertices Uc and a set
of satellite vertices Us. The QueryDecompose procedure
in Line 1 of Algorithm 3, performs this decomposition by
splitting the query vertices U into Uc and Us, as observed
in Figure 4.
To process arbitrary query multigraphs, we perform recur-

sive sub-mulitgraph matching procedure on the set of core
vertices Uc ✓ U ; during the recursion, satellite vertexes con-
nected to a specific core vertex are processed too. Since the
recursion is performed on the set of core vertices, we propose
a few heuristics for ordering the query vertices.
Ordering of the query vertices forms one of the vital steps

for subgraph matching algorithms [11]. In any subgraph
matching algorithm, the embeddings of a query subgraph
are obtained by exploring the solution space spanned by the
data graph. But since the solution space itself can grow
exponentially in size, we are compelled to use intelligent
strategies to traverse the solution space. In order to achieve
this, we propose a heuristic procedure VertexOrdering
(Line 2, Algorithm 3) that employs two ranking functions.
The first ranking function r1 relies on the number of satel-

lite vertices connected to the core vertex, and the query ver-
tices are ordered with the decreasing rank value. Formally,
r1(u) = |Usat|, where Usat = {us|us 2 Us ^ (u, us) 2 E(Q)}.
A vertex with more satellite vertices connected to it, is rich
in structure and hence it would probably yield fewer can-
didate solutions to be processed under recursion. Thus, in
Figure 4, u1 is chosen as an initial vertex. The second rank-
ing function r2 relies on the number of incident edges on
a query vertex. Formally, r2(u) =

Pm
j=1 |�(u)

j |, where u

has m multiedges and |�(u)j | captures the number of edge
types in the jth multiedge. Again, Uord

c contains the ordered
vertices with the decreasing rank value r2. Further, when
there are no satellite vertices in the query Q, this ranking
function gets the priority. Despite the usage of any rank-
ing function, the query vertices in Uord

c , when accessed in
sequence, should be structurally connected to the previous
set of vertices. If two vertices tie up with the same rank,
the rank with lesser priority determines which vertex wins.
Thus, for the example in Figure 4, the set of ordered core
vertices is Uord

c = {u1, u3, u5}.

Algorithm 3: AMbER-Algo (I, Q)

1 QueryDecompose: Split U into U

c

and U

s

2 U

ord

c

= VertexOrdering(Q,U

c

)

3 u

init

= u|u 2 U

ord

c

4 CandInit = QuerySynIndex(u
init

, S)
5 CandInit = CandInit \ ProcessVertex(u

init

, Q,A,N )

6 Fetch: U

sat

init

= {u|u 2 U

s

^ (u
init

, u) 2 E(Q)}
7 Set: Emb = ;
8 for v

init

2 CandInit do

9 Set: M = ;,M
s

= ;,M
c

= ;
10 if U

sat

init

6= ; then

11 M

sat

= MatchSatVertices(A,N , Q, U

sat

init

, v

init

)
12 if M

sat

6= ; then

13 for [u
s

, V

s

] 2 M

sat

do

14 Update: M

s

= M

s

[ [u
s

, V

s

]

15 Update: M

c

= M

c

[ [u
init

, v

init

]

16 Emb = Emb [ HomomorphicMatch(M, I, Q, U

ord

c

)

17 else

18 Update: M

c

= M

c

[ (u
init

, v

init

)

19 Emb = Emb [ HomomorphicMatch(M, I, Q, U

ord

c

)

20 return Emb /* Homomorphic embeddings of query multigraph */

The first vertex in the set Uord
c is chosen as the initial ver-

tex uinit (Line 3), and subsequent query vertices are chosen
in sequence. The candidate solutions for the initial query
vertex CandInit are returned by QuerySynIndex proce-
dure (Line 4), that are constrained by the structural prop-
erties (neighbourhood structure) of uinit. By querying the
index S for initial query vertex uinit, we obtain the can-
didate solutions CandInit 2 V that match the structure
(multiedge types) associated with uinit. Although some can-
didates in CandInit may be invalid, all valid candidates are
present in CandInit, as deduced in Lemma 1. Further, Pro-
cessVertex procedure is invoked to obtain the candidates
solutions according to vertex attributes and IRI informa-
tion, and then only the common candidates are retained.

Before getting into the algorithmic details, we explain how
the solutions are handled and how we process each query
vertex. We define M as a set of tuples, whose ith tuple is
represented as Mi = [mc,Ms], where mc is a solution pair
for a core vertex, and Ms is a set of solution pairs for the
set of satellite vertices that are connected to the core vertex.
Formally mc = (uc, vc), where uc is the core vertex and vc
is the corresponding matched vertex; Ms is a set of solution
pairs, whose jth element is a solution pair (us, Vs), where
us is a satellite vertex and Vs is a set of matched vertices.
In addition, we maintain a set Mc whose elements are the
solution pairs for all the core vertices. Thus during each
recursion branch, the size of M grows until it reaches the
query size |U |; once |M |= |U |, homomorphic matches are
obtained.

For all the candidate solutions of initial vertex CandInit,



we perform recursion to obtain homomorphic embeddings
(lines 8-19). Before getting into recursion, for each initial
match vinit 2 CandInit, if it has satellite vertices connected
to it, we invoke the MatchSatVertices procedure (Lines
10-11). This step not only finds solution matches for satellite
vertices, if there are, but also checks if vinit is a valid can-
didate vertex. If the returned solution set Msat is empty,
then vinit is not a valid candidate and hence we continue
with the next vinit 2 CandInit; else, we update the set of
solution pairs Ms for satellite vertices and the solution pair
Mc for the core vertex (Lines 12-15) and invoke Homomor-
phicMatch procedure (Lines 17). On the other hand, if
there are no satellite vertices connected to uinit, we update
the core vertex solution set Mc and invoke Homomorphic-
Match procedure (Lines 18-19).

Algorithm 4: HomomorphicMatch(M, I, Q, Uord
c )

1 if |M |= |U | then
2 return GenEmb(M)

3 Emb = ;
4 Fetch: u

nxt

= u|u 2 U

ord

c

5 N

q

= {u
c

|u
c

2 M

c

} \ adj(u
nxt

)
6 N

g

= {v
c

|v
c

2 M

c

^ (u
c

, v

c

) 2 M

c

}, where u

c

2 N

q

7 Cand

u

nxt

=
T|N

q

|
n=1 (QueryNeighIndex(N , L

Q

E

(u
n

, u

nxt

), v
n

))
8 Cand

u

nxt

= Cand

u

nxt

\ ProcessVertex(u
nxt

, Q,A,N )
9 for each v

nxt

2 Cand

u

nxt

do

10 Fetch: U

sat

nxt

= {u|u 2 V

s

^ (u
nxt

, u) 2 E(Q)}
11 if U

sat

nxt

6= ; then

12 M

sat

= MatchSatVertices(A,N , Q, U

sat

nxt

, v

nxt

)
13 if M

sat

6= ; then

14 for every [us

, V

s] 2 M

sat

do

15 Update: M

s

= M

s

[ [us

, V

s]

16 Update: M

c

= M

c

[ (u
nxt

, v

nxt

)

17 Emb = Emb [ HomomorphicMatch(M, I, Q, U

ord

c

)

18 else

19 Update: M

c

= M

c

[ (u
nxt

, v

nxt

)

20 Emb = Emb [ HomomorphicMatch(M, I, Q, U

ord

c

)

21 return Emb

In the HomomorphicMatch procedure (Algorithm 4),
we fetch the next query vertex from the set of ordered core
vertices Uord

c (Line 4). Then we collect the neighbourhood
vertices of already matched core query vertices and the cor-
responding matched data vertices (Lines 5-6). As we recall,
the set Mc maintains the solution pair mc = (uc, vc) of each
matched core query vertex. The set Nq collects the already
matched core vertices uc 2 Mc that are also in the neigh-
bourhood of unxt, whose matches have to be found. Fur-
ther, Ng contains the corresponding matched query vertices
vc 2 Mc. As the recursion proceeds, we find those match-
able data vertices of unxt that are in the neighbourhood of
all the matched vertices v 2 Ng, so that the query structure
is maintained. In Line 7, for each un 2 Nq and the corre-
sponding vn 2 Ng, we query the neighbourhood index N ,
to obtain the candidate solutions Candu

nxt

, that are in the
neighbourhood of already matched data vertex vn and have
the multiedge LQ

E(un, unxt), obtained from the query multi-
graph Q. Finally (line 7), the set of candidates solutions that
are common for every un 2 Nq are retained in Candu

nxt

.
Further, the candidate solutions are refined with the help

of ProcessVertex procedure (Line 8). Now, for each of the
valid candidate solution vnxt 2 Candu

nxt

, we recursively call
the HomomorphicMatch procedure. When the next query
vertex unxt has no satellite vertices attached to it, we update

the core vertex solution set Mc and call the recursion pro-
cedure (Lines 19-20). But when unxt has satellite vertices
attached to it, we obtain the candidate matches for all the
satellite vertices by invoking the MatchSatVertices pro-
cedure (Lines 11-12); if there are matches, we update both
the satellite vertex solution Ms and the core vertex solution
Mc, and invoke the recursion procedure (Line 17).

Once all the query vertices have been matched for the
current recursion step, the solution set M contains the so-
lutions for both core and satellite vertices. Thus when all
the query vertices have been matched, we invoke the Gen-
Emb function (Line 2) which returns the set of embeddings,
that are updated in Emb. The GenEmb function treats
the solution vertex vc of each core vertex as a singleton
and performs Cartesian product among all the core vertex
singletons and satellite vertex sets. Formally, Embpart =

{v1c}⇥ . . .⇥ {v|Uc

|
c }⇥V 1

s ⇥ . . .⇥V
|U

s

|
c . Thus, the partial set

of embeddings Embpart is added to the final result Emb.

6. RELATED WORK
The proliferation of semantic web technologies has influ-

enced the popularity of RDF as a standard to represent
and share knowledge bases. In order to e�ciently answer
SPARQL queries, many stores and API inspired by rela-
tional model were proposed [7, 3, 13, 5]. x-RDF-3X [13],
inspired by modern RDBMS, represent RDF triples as a big
three-attribute table. The RDF query processing is boosted
using an exhaustive indexing schema coupled with statistics
over the data. Also Virtuoso[7] heavily exploits RDBMS
mechanism in order to answer SPARQL queries. Virtuoso
is a column-store based systems that employs sorted multi-
column column-wise compressed projections. Also these sys-
tems build table indexing using standard B-trees. Jena
[5] supplies API for manipulating RDF graphs. Jena ex-
ploits multiple-property tables that permit multiple views
of graphs and vertices which can be used simultaneously.

Recently, the database community has started to inves-
tigate RDF stores based on graph data management tech-
niques [6, 16, 11]. The work in [6] addresses the problem of
supporting property graphs as RDF, since majority of the
graph databases are based on property graph model. The
authors introduce a property graph to RDF transformation
scheme and propose three models to address the challenge
of representing the key/value properties of property graph
edges in RDF. gStore [16] applies graph pattern match-
ing techniques using filter-and-refinement strategy to answer
SPARQL queries. It employs an indexing schema, named
VS⇤-tree, to concisely represent the RDF graph. Once the
index is built, it is used to find promising subgraphs that
match the query. Finally, exact subgraphs are enumerated
in the refinement step. Turbo Hom++ [11] is an adapta-
tion of a state of the art subgraph isomorphism algorithm
(TurboISO[9]) to the problem of SPARQL queries. Exploit-
ing the standard graph isomorphism problem, the authors
relax the injectivity constraint to handle the graph homo-
morphism, which is the RDF pattern matching semantics.

Unlike our approach, TurboHom++ does not index the
RDF graph, while gStore concisely represents RDF data
through VS⇤-tree. Another di↵erence between AMbER and
the other graph stores is that our approach explicitly man-
ages the multigraph induced by the SPARQL queries while
no clear discussion is supplied for the other tools.



7. EXPERIMENTAL ANALYSIS
In this section, we perform extensive experiments on the

three RDF benchmarks. We evaluate the time performance
and the robustness of AMbER w.r.t. state-of-the-art com-
petitors by varying the size, and the structure of the SPARQL
queries. Experiments are carried out on a 64-bit Intel Core
i7-4900MQ @ 2.80GHz, with 32GB memory, running Linux
OS - Ubuntu 14.04 LTS. AMbER is implemented in C++.

7.1 Experimental Setup
We compare AMbER with the four standard RDF en-

gines: Virtuoso-7.1 [7], x-RDF-3X [13], Apache Jena [5] and
gStore [16]. For all the competitors we employ the source
code available on the web site or obtained by the authors.
Another recent work TurboHOM++ [11] has been excluded
since it is not publicly available.

For the experimental analysis we use three RDF datasets
- DBPEDIA, YAGO and LUBM. DBPEDIA constitutes the
most important knowledge base for the Semantic Web com-
munity. Most of the data available in this dataset comes
from the Wikipedia Infobox. YAGO is a real world dataset
built from factual information coming from Wikipedia and
WordNet semantic network. LUBM provides a standard
RDF benchmark to test the overall behaviour of engines.
Using the data generator we create LUBM100 where the
number represents the scaling factor.

Dataset # Triples # Vertices # Edges # Edge types

DBPEDIA 33 071 359 4 983 349 14 992 982 676
YAGO 35 543 536 3 160 832 10 683 425 44
LUBM100 13 824 437 2 179 780 8 952 366 13

Table 4: Benchmark Statistics

The data characteristics are summarized in Table 4. We
can observe that the benchmarks have di↵erent character-
istics in terms of number of vertices, number of edges, and
number of distinct predicates. For instance, DBPEDIA has
more diversity in terms of predicates (⇠700) while LUBM100
contains only 13 di↵erent predicates.

The time required to build the multigraph database as
well as to construct the indexes are reported in Table 5.
We can note that the database building time and the cor-
responding size are proportional to the number of triples.
Regarding the indexing structures, we can underline that
both building time and size are proportional to the number
of edges. For instance, DBPEDIA has the biggest number
of edges (⇠15M) and, consequently, AMbER employs more
time and space to build and store its data structure.

Dataset Database Index I

Building Time Size Building Time Size

DBPEDIA 307 1300 45.18 1573
YAGO 379 2400 29.1 1322
LUBM100 67 497 18.4 1057

Table 5: O✏ine stage: Database and Index Construction
time (in seconds) and memory usage (in Mbytes)

7.2 Workload Generation
In order to test the scalability and the robustness of the

di↵erent RDF engines, we generate the query workloads con-
sidering a similar setting as in [8, 1, 9]. We generate the
query workload from the respective RDF datasets, which
are available as RDF tripleset. In specific, we generate two
types of query sets: a star-shaped and a complex-shaped
query set; further, both query sets are generated for varying
sizes (say k) ranging from 10 to 50 triplets, in steps of 10.

To generate star-shaped or complex-shaped queries of size
k, we pick an initial-entity at random from the RDF data.
Now to generate star queries, we check if the initial-entity
is present in at least k triples in the entire benchmark, to
verify if the initial-entity has k neighbours. If so, we choose
those k triples at random; thus the initial entity forms the
central vertex of the star structure and the rest of the en-
tities form the remaining star structure, connected by the
respective predicates. To generate complex-shaped queries
of size k, we navigate in the neighbourhood of the initial-
entity through the predicate links until we reach size k. In
both query types, we inject some object literals as well as
constant IRI s; rest of the IRI s (subjects or objects) are
treated as variables. However, this strategy could choose
some very unselective queries [8]. In order to address this
issue, we set a maximum time constraint of 60 seconds for
each query. If the query is not answered in time, it is not
considered for the final average (similar procedure is usually
employed for graph query matching [9] and RDF workload
evaluation [1]). We report the average query time and, also,
the percentage of unanswered queries (considering the given
time constraint) to study the robustness of the approaches.

7.3 Comparison with RDF Engines
In this section we report and discuss the results obtained

by the di↵erent RDF engines. For each combination of query
type and benchmark we report two plots by varying the
query size: the average time and the corresponding percent-
age of unanswered queries for the given time constraint. We
remind that the average time per approach is computed only
on the set of queries that were answered.

The experimental results for DBPEDIA are depicted in
Figure 6 and Figure 7. The time performance (averaged
over 200 queries) for Star-Shaped queries (Fig. 6a), a�rm
that AMbER clearly outperforms all the competitors. Fur-
ther the robustness of each approach, evaluated in terms
of percentage of unanswered queries within the stipulated
time, is shown in Figure 6b. For the given time constraint,
x-RDF-3X and Jena are unable to output results for size 20
and 30 onwards respectively. Although Virtuoso and gStore
output results until query size 50, their time performance
is still poor. However, as the query size increases, the per-
centage of unanswered queries for both Virtuoso and gStore
keeps on increasing from ⇠0% to 65% and ⇠45% to 95%
respectively. On the other hand AMbER answers >98%
of the queries, even for queries of size 50, establishing its
robustness.

Analyzing the results for Complex-Shaped queries (Fig.
7), we underline that AMbER still outperforms all the com-
petitors for all sizes. In Figure 7a, we observe that x-RDF-
3X and Jena are the slowest engines; Virtuoso and gStore
perform better than them but nowhere close to AMbER.
We further observe that x-RDF-3X and Jena are the least
robust as they don’t output results for size 30 onwards (Fig. 7b);



(a) Time performance (b) % Unanswered queries

Figure 6: Evaluation of (a) time performance and
(b) robustness, for Star-Shaped queries on DBPEDIA.

(a) Time performance (b) % Unanswered queries

Figure 7: Evaluation of (a) time performance and
(b) robustness, for Complex-Shaped queries on DBPEDIA.

on the other hand AMbER is the most robust engine as it
answers >85% of the queries even for size 50. The percent-
age of unanswered queries for Virtuoso and gStore increase
from 0% to ⇠80% and 25% to ⇠70% respectively, as we
increase the size from 10 to 50.

The results for YAGO are reported in Figure 8 and Fig-
ure 9. For the Star-Shaped queries (Fig. 8), we observe
that AMbER outperforms all the other competitors for any
size. Further, the time performance of AMbER is 1-2 or-
der of magnitude better than its nearest competitor Vir-
tuoso (Fig. 8a), and the performance remains stable even
with increasing query size (Fig. 8b). x-RDF-3X, Jena are
not able to output results for size 20 onwards. As observed
for DBPEDIA, Virtuoso seems to become less robust with
the increasing query size. For size 20-40, time performance
of gStore seems better than Virtuoso; the reason seems to
be the fewer queries that are being considered. Conversely,
AMbER is able to supply answers most of the time (>98%).

Coming to the results for Complex-Shaped queries (Fig. 9),
we observe that AMbER is still the best in time perfor-
mance; Virtuoso and gStore are the closest competitors.
Only for size 10 and 20, Virtuoso seems robust thanAMbER.
Jena, x-RDF-3X do not answer queries for size 20 onwards,
as seen in Figure 9b.

The results for LUBM100 are reported in Figure 10 and
Figure 11. For the Star-Shaped queries (Fig. 10), AMbER
always outperforms all the other competitors for any size
(Fig. 10a). Further, the time performance of AMbER is

(a) Time performance (b) % Unanswered queries

Figure 8: Evaluation of (a) time performance and
(b) robustness, for Star-Shaped queries on YAGO.

(a) Time performance (b) % Unanswered queries

Figure 9: Evaluation of (a) time performance and
(b) robustness, for Complex-Shaped queries on YAGO.

2-3 orders of magnitude better than its closest competitor
Virtuoso. Similar to the YAGO experiments, x-RDF-3X,
Jena are not able to manage queries from size 20 onwards;
the same trend is observed for gStore too. Further, Virtuoso
always looses its robustness as the query size increases. On
the other hand, AMbER answers queries for all sizes.

Considering the results for Complex-Shaped queries (Fig. 11),
we underline that AMbER has better time performance as
seen in Figure 11a. x-RDF-3X, Jena and gStore did not sup-
ply answer for size 30 onwards (Fig. 11b). Further, Virtuoso
seems to be a tough competitor for AMbER in terms of ro-
bustness for size 10 and 20. However, for size 30 onwards
AMbER is more robust.

To summarise, we observe that Virtuoso is enough robust
for Complex-Shaped smaller queries (10-20), but fails for big-
ger (>20) queries. x-RDF-3X fails for queries with size big-
ger than 10. Jena has reasonable behavior until size 20, but
fails to deliver from size 30 onwards. gStore has a reasonable
behavior for size 10, but its robustness deteriorates from size
20 onwards. To summarize, AMbER clearly outperforms, in
terms of time and robustness, the state-of-the-art RDF en-
gines on the evaluated benchmarks and query configuration.
Our proposal also scales up better than all the competitors
as the size of the queries increases.

8. CONCLUSION
In this paper, a multigraph based engine AMbER has



(a) Time performance (b) % Unanswered queries

Figure 10: Evaluation of (a) time performance and
(b) robustness, for Star-Shaped queries on LUBM100.

(a) Time performance (b) % Unanswered queries

Figure 11: Evaluation of (a) time performance and
(b) robustness, for Complex-Shaped queries on LUBM100.

been proposed in order to answer complex SPARQL queries
over RDF data. The multigraph representation has be-
stowed us with two advantages: on one hand, it enables
us to construct e�cient indexing structures, that ameliorate
the time performance of AMbER; on the other hand, the
graph representation itself motivates us to exploit the valu-
able work done until now in the graph data management
field. Thus, AMbER meticulously exploits the indexing
structures to address the problem of sub-multigraph homo-
morphism, which in turn yields the solutions for SPARQL
queries. The proposed engine AMbER has been extensively
tested on three well established RDF benchmarks. As a re-
sult, AMbER stands out w.r.t. the state-of-the-art RDF
management systems considering both the robustness re-
garding the percentage of answered queries and the time per-
formance. As a future work, we plan to extend AMbER by
incorporating other SPARQL operations and, successively,
study and develop a parallel processing version of our pro-
posal to scale up over huge RDF data.

9. ACKNOWLEDGMENTS
This work has been funded by Labex NUMEV (NUMEV,

ANR-10-LABX-20).

10. REFERENCES
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