
Multidimensional Data Streams Summarization Using Extended
Tilted-Time Windows

Yoann Pitarch� Anne Laurent� Marc Plantevit�� Pascal Poncelet�

�Montpellier Laboratory of Computer Science, Robotics, and Microelectronics
University of Montpellier II - CNRS

161 rue Ada 34392 Montpellier Cedex 5 France
{first name.name}@lirmm.fr

��GREYC - CNRS - UMR 6072, University of Caen
Campus Cte de Nacre, F-14032 Caen Cedex France

{first name.name}@info.unicaen.fr

Abstract

Nowadays, servers register more and more log entries. Mon-

itoring, analyzing and exctracting knowledge from networks and

web servers is crucial for a lot of applications. Indeed, logs

can be useful for describing the activity by means of several di-

mensions. But logs arrive at an intensive rate and are observ-

able at a low level of granularity which make it unrealistic to

store the whole log history and leads us considering logs as data

stream. Moreover, as logs are composed by several fields which

can be considered as multiple levels of granularity, it would be

interresting to provide an on-line analytical processing on such

data stream. So, a natural question is “it is possible to perform

a multi-level and multidimensional analysis by building a cube

supplied by a data stream?”. A choice has to be done in order

selecting the most useful information. We tackle this problem by

exploiting user’s preferences. Generaly, users consult the recent

history at fine levels of granularity. Then, this need of precision

decreases when the age of the data increases. To this end, we

introduce precision functions. Their combination lead to a com-

pact data cube framework which can answer to most of queries.

Experiments conduced on both synthetic and real data set show

that our approach can be applied to data stream context.

1. Introduction

With the rapid development of the World Wide Web
the volume of data registered by a web server may
be huge. But monitoring, analyzing and exctracting
knowledge from networks and web servers is crucial
for a lots of applications: performance improvement,
web sites improvements, ads placement, ... Indeed,
logs can be useful for describing the activity of a web
site. But two technical matters have to be tackled to

allowing such on-line analysis. Firstly, logs arrive at
an intensive rate. As a consequence, the volume of
data is huge and it is impossible to store the whole
history. Secondly, data registered are too specific to
be relevant. For instance, storing the whole history of
consulted web pages is not really interresting and a web
site administrator would prefer storing the history of
most popular sections. Those two characteristics natu-
rally lead us considering logs as data stream. Indeed a
stream can be defined as a potentially infinite sequence
of data residing at a rather low level and arriving at
an intensive rate. Moreover, web logs are composed by
several dimensions. For instance a web log server reg-
isters visitor’s IP, the date, the status code, ... In most
of cases, every dimension can be considered at multiple
granularity levels. For instance, status code can also
be considered by categories (informational, successfull,
redirection, ...). The success of OLAP technology nat-
urally leads to its possible extension from static data
to data produced on dynamic environments. So the
question is “it is possible to build a datacube and per-

form on-line analysis on web server logs?”.
To the best of our knowledge, the approach proposed
in [4] is the first one proposing to tackle this problem.
But even if this approach is promising, two facts have
to be taken into account. Firstly, logs are supposed
to fit in memory. Secondly, the data cube is built on
static data. As a consequence, this approach cannot
be applied to the data stream context.

More recently, StreamCube approach [2] introduces
a method to perform multi-dimensional, multi-level,
on-line analysis of data streams. This proposition is
based on the so-called tilted time frame [1] in order to
compress the temporal dimension. This model consists

1



in considering time at multiple levels of granularity and
will be more described in Section 2.2. Since it is im-
possible to store all the cuboids, authors propose to
store some of them. This choice is led by expert do-
main knowledge, query history and statistical analysis
of the sizes of intermediate cuboids. Even if [2] presents
an interesting architecture, two aspects of this propo-
sition are enhanceable. Firstly, data are systematically
propagated along of the stored cuboids. This increases
the time required to insert an element in the structure.
Secondly, this approach keep a track of the old history
of the fine granularity levels. This is not necessary be-
cause in practice, the fine granularity levels almost are
not queried for the whole history of the data stream.

In this paper, we improve the StreamCube approach
by taking into account its two major drawbacks. The
three main contributions of this work are:

• Fine levels of granularity are mostly queried for
the recent history. So, we propose to material-
ize only the required parts of the history for each
level of granularity. For example, if a level has
never been queried after the most recent month,
it is useless to keep a track of it for the rest of the
history. Thus, the storage cost per dimension is
much more reduced and Precision functions for-
mulate this idea.

• Then, we combine these functions to pro-
pose a compact framework, which allows multi-
dimensional, multi-level, efficient and on-line anal-
ysis of data streams.

• Our experiments conducted on both synthetic and
real datasets show the effectiveness and the effi-
ciency of our approach.

The rest of the paper is organized as follows. In Sec-
tion 2, we define the basic concepts and introduce the
problem statement. In Section 3 we propose a frame-
work for on-line analysis of stream data by introducing
the precision functions as well as their combining. Our
experiments and performance studies are presented in
Section 4. Future work and conclusion are formulated
in Section 5.

2. Problem Statement

In this Section, we introduce the basic concepts re-
lated to data cubes and streams. Then, the ongoing
challenge is defined.

Figure 1: A natural tilted-time window model

2.1. Data Cube

Originally, data cubes were introduced to facili-
tate multi-dimensional and multi-level analysis of large
data sets. Let DB be a set of tuples defined on a set
of n dimensions denoted by D. This set is called the
base table of a cube. The set of all attributes A in
D are partitioned in two subsets, the dimensional at-
tributes DIM and the measures attributes M. Note
that DIM ∪M = A and DIM ∩M = ∅. Every dimen-
sion Di ∈ DIM can be considered at multiple levels
of granularities. We call these levels and the way they
are organized the hierarchy of the dimension Di with
the following notations: maxi is the number of levels
of the hierarchy with Dmaxi

i the finest level and D1
i the

coarsest. Note that for every dimension Di ∈ DIM we
consider a wild-card value * which can be defined as
all the values in Di. With these notations, a tuple t is
defined as t = (d1, ..., dn, m1, ..,mk) such that for ev-
ery i = 1...m and li = 1...maxi, di ∈ Dom(Dli

i ) ∪ {∗},
Di ∈ DIM . The measure attributes (m1, ..,mk) func-
tionally depend on the dimensional attributes in DB

and are defined in the context of data cubing using
some typical aggregate functions.

2.2. Data Stream

A data stream S = B0, B1, ..., Bn is an infinite
sequence of batches, where each batch is associated
with a timestamp t, i.e. Bt, and n is the identifier of
the most recent batch Bn. A batch Bi is defined as a
set of tuples appearing over the stream at the ith time
unit.

The volume of data generated by data streams is too
huge to be totally materialized. In stream data analy-
sis, people are usually interested in recent changes at a
fine granularity, but long term changes at coarse scale.
Thus, the literature proposes a model which takes in-
spiration of this: the tilted-time window model [1]. In
fact, time can naturally be registered at different levels
of granularity. The most recent time is registered at
the finest granularity and the more distant time is reg-
istered at coarser granularity. The level of coarseness
depends on the application requirements and on how
old the time point is from the current time. Figure 1
provides an example of tilted-time windows.

2



2.3. The Ongoing Challenge

On the one hand data cubes require a huge amount
of space and on the other both space and time are crit-
ical aspects in data stream applications. Our task is
to accommodate these constraints in order to support
efficient, high-level, on-line, multi-dimensional analy-
sis of data streams. For example, such analysis may
enable to discover trends and exceptions according to
users’ preferences. This may involve the construction
of a data cube in order to facilitate such on-line and
flexible analysis.

2.4. Motivating Example

In order to illustrate our previous definitions and
our proposition, we consider a stream representing logs
registered by a web server. To facilitate the compre-
hension, we consider that each log contains only two
dimensions, Geographic and File. Their respective lev-
els of granularity (excluding the highest level ’*’) are
(Country, City, IP) and (file type, file name). Suppose
that a web site administrator wants to keep track of
the log history in a compact way but the tilted time

model shown in Figure 1 is not sufficient. In order to
provide a space-saving framework, the statistics dis-
played on Table 1 are used. This table provides the
query rate per level, depending on the tilted-time win-

dow intervals. For example, IP level is only requested
on [now; t−1]. As a consequence, it is useless to ma-
terialize its history after t−1. Since fine granularity
levels are less consulted for the old history, we propose
a method materializing only the part of the history
which is necessary for users’ queries.

Using this toy example, we show how user’s pref-
erences can be exploited to produce a space-saving
framework compared to the StreamCube approach [2]:
it is unnecessary to materialize data which is never
queried. To this end, we introduce precision func-
tions and their combination in order to propose a save-
spacing data structure which allows efficient, multi-
dimensional and multi-level analysis.

3. Contribution

We start this Section by introducing precision func-
tions which consider that levels of each dimension are
not queried for all the history. Then, the combination
of these functions leads to a compact and interesting
cube model.

Table 1: Statistics on level request according to the
time

Level Interval Frequency

GEOGRAPHIC DIMENSION

IP
[now; t−1] 98%
[t−1; t−2] 2%

City

[now; t−1] 25%
[t−1; t−2] 40%
[t−2; t−3] 34%
[t−3; t−4] 1%

Country [t−3; t−4] 100%

FILE DIMENSION

file name [now; t−1] 100%

file type
[t−1; t−2] 70%
[t−2; t−3] 20%
[t−3; t−4] 10%

3.1. Precision Function

Let us consider Table 1. We see that the level
IP is never queried after t−2. Thus, it is useless to
keep a track of web server logs at IP granularity
level after t−2. To this end, we introduce for each
granularity level l a value endl which means data are
not stored at the granularity level l after endl. Here,
we have endIP = t−2. Let Dp

i a level of granularity
of a dimension Di. In order to define when Dp

i is
no more queried, we introduce the notation endi

p

(endp if there is no ambiguity on the dimension), with
endp ∈ t−1, ..., t−k and end1 = t−k. Note that (1) if p�

is a finer level than p, we have endp� < endp and (2)
endALL is never defined.
The second limit is that data are systematically
propagated along of the stored cuboids. It is useless
and costly because it introduces redundancy in the
framework. For example, if endIP is set to t−2, it is
unnecessary to store the stream history before t−2

for the level City. Indeed, the visitors localisation
per cities and countries can be computed thanks
to the OLAP roll-up operator. Thus, for a level of
granularity Dp

i , we introduce the notation begini
p

(beginp if there is no ambiguity on the dimension)
defined as begini

p = endi
p+1 with 1 ≤ p < maxi and

beginmaxi = t0.

Now that we have defined beginp and endp for ev-
ery level of granularity Dp

i , we can introduce precision

3



functions as follows:

Prec(Dp
i ) = [beginp; endp]

In other words, Prec(Dp
i ) is the minimal interval

required to both satisfy users’ queries and avoid storing
computable data. We note that {Prec(Dp

i ), 0 ≤ p ≤
maxi} forms a partition of T .

Example 1 Figure 2 displays precision functions used

in the example. If we consider Prec(City) we note

that:

1. Since Prec(City) = [t−2; t−3], web server logs at

the city granularity level are physically stored.

2. It is impossible to get a precise information on web

site visits per IP between t−2 and t−3.

3. On the contrary, visits made beetween t−2 and t−3

per country may be obtained by using roll-up op-

erator

Figure 2: Graphic representation of precision functions

A good definition of the precision functions is cru-
cial for our model in order to minimize imprecise an-
swers. For example, let us imagine that the level City

of the geographic dimension is only stored on the first
interval, [now; t−1]. This could be critical since 75% of
queries relating to this level cannot be answered. As
a consequence, users have to define themselves these
functions. We present here two solutions for this prob-
lem.

3.2. Combining Precision Functions

We have defined above precision functions for each
dimension. Since data are multidimensional, we have
to propose a method to combine those functions. A
simple and efficient way for performing this is to use
intersection. To this end, we define the function Ma-

terialize.
Let C = Dp1

1 Dp2
2 ..Dpk

k be a cuboid (with 1 ≤ k ≤ n
and 0 ≤ pi ≤ Pmaxi for 1 ≤ i ≤ k). We define the
Materialize function as follows:

Materialize(C) =

�
∅, if k �= n
�k

i=1 Prec(Dpi
i ), otherwise

We describe the way to insert values in the frame-
work. Let us examine Figure 3. While a window is
not full and the next window is materialized on the
same cuboid, the insertion process is the same than the
classical tilted-time window ’s one. The difference takes
place when a window is full and the next one is mate-
rialized on a upper cell. As shown in Figure 3, a dual
aggregation is done. The first aggregation is classical.
Then, all the aggregated values of cells which share the
same upper cell are aggregated. In the example, the
lowest upper cell of (123.123.123.123, map.jpg) and
(123.125.127.129, bob.gif) is (Paris, image). Thus,
combined values of both cells are aggregated. In this
example, we consider a batch representing daily logs.
In the cell (123.125.127.129, bob.gif), the value 10
means the visitor with IP equals to 123.125.127.129

consulted 10 times the file bob.gif yesterday. The re-
sult is displayed on Figure 3.

Figure 3: Insertion

4. Performance Study

4.1. Experimental Method

We performed an extensive evaluation on both real
and synthetic datasets. Our results show that the Ran-
dom Access Memory and computation time taken by
our method are small and bounded. As a consequence,
it is realistic to compute and update such a cube in a
stream context.

In a first time, performance studies conducted on
web server logs coming from a french laboratory web
server are reported. Then, performance studies on
a real data set that gathered from TCP/IP network
traffic at the University of Montpellier are displayed.

4



Figure 4: Time consumption results on TCP/IP haed-
ers dataset

 0

 5

 10

 15

 20

 0  50  100  150  200

Se
co

nd
s

idBatch

Finally, studies were conducted on difficult synthetic
dataset in order to show empirically the robustness of
our method.

Notice that all the experiments are conduced in
a static environment as a simulation of the on-line
stream processing. All experiments were conducted on
a 2GHz Pentium PC with 2GB main memory, running
GNU/Linux Ubuntu 7.10. All the methods were im-
plemented using Perl 5 and we use a MySQL database
to store cube cells.

4.2. Experimentation on TCP/IP network

We performed a test on a real data set that gath-
ered from TCP/IP network traffic at the University of
Montpellier. The size of batches is limited to 20000
tuples and performances on 200 batches are evaluated.
In fact, a TCP/IP network can be seen as a very dense
multidimensional stream. Our data set is composed
of 13 dimensions. Half of them can be seen as multi-
ple levels of precisions (2 or 3). Figure 4 depicts the
computational time taken by our algorithm to insert a
batch in the framework. We see that it does not exceed
15 seconds. The RAM usage is unchanging to 8Mo.
This behavior is the same for all our experiments.

4.3. Synthetic data experimentation

Now we report our performance studies with
synthetic data streams of various characteristics.
The data stream is generated by a multidimensional
random data generator designed for testing cube
computation and data mining algorithms on data
streams. The convention for the data sets is as follows:
D4L3C5B100T20 means there are 4 dimensions, each
dimension contains 3 levels, the node fan-out factor
(cardinality) is 5 (i.e., 5 children per node), and there
are 100 batches of each 20K tuples. In a first time,
we compare the materialization cost (e.g the number
of materialized windows) beetween the StreamCube

approach and ours. Then, we present the time
consumption for inserting each batch. Due to lack of
place, we present only the results of experiments con-
ducted on the influence of the number of dimensions.

Figure 5 shows the number of materialized windows
for the two approaches when increasing the number of
dimensions. The dataset used is C5L3B50T1. This pa-
rameter is important because it is strongly correlated
with the number of cuboids materialized. Results show
that the number of dimensions has a big impact on the
number of materialized windows by StreamCube. So,
we see that our approach materializes much less win-
dows than StreamCube while conserving a good ex-
pressiveness.

Figure 5: Materialization comparison with [2]: influ-
ence of number of dimensions (D5L3C5B250T20)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 3  4  5  6  7  8  9  10

M
at

er
ia

liz
ed

 W
in

do
w

s

Number of dimensions

StreamCube
WindowCube

Figure 6: Time vs. 15 dimensions (L3C5B250T20)

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250

Se
co

nd
s

idBatch

Figure 6 shows the influence of the number of di-
mensions. In our context, it is natural to extensively
test this parameter. The data set is L3C5B250T20
and we used balanced precision functions. On account
of the small number of cells, computational time for
the first fifty batches is small and quite unchanging.
Then, we observe sudden changes due to aggregations.
Last, we see that the computational time per batch is
limited to 60 seconds.

In conclusion of these experiments on synthetic data
sets, two conclusions can be drawn. Firstly, the RAM
consumption is very low and limited. Secondly, com-
putational time per batch tends to stabilize to a satis-

5



factory value after 50 batches. These two results attest
the effectiveness and the efficiency of our proposed ap-
proach.

5. Conclusion

In this paper we were interested in the on-line anal-
ysis of logs coming at an intensive rate. We proposed
an adaptation of OLAP technologies to a very dynamic
environment (data streams). A compact framework
which allows an efficient, multi-dimensional and multi-
level analysis was presented. We proposed precision
functions in order to materialize only the useful part
of the stream history. Precision functions extended the
tilted-time framework and were combined in a compact
architecture. Our experiment study showed that our
model is efficient in both critical aspects in such con-
text: time and space. Indeed, we saw that (1) main
memory usage is static and low and (2) computational
time was bounded to about 60 seconds. These good re-
sults allow to consider numerous possible extensions.

First, the way to query this framework is not trivial
and a promising approach would be to extend Peder-
sen’s works [3] to our context.

Finally, in most of applications, OLAP analysis is
not sufficient for decision makers. So, we are convinced
that an important direction for our work is to develop
some data mining techniques based on our framework.

References

[1] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining frequent
patterns in data streams at multiple time granularities, 2002.

[2] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang, and
Y. D. Cai. Stream cube: An architecture for multi-dimensional
analysis of data streams. Distrib. Parallel Databases, 18(2),
2005.

[3] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Supporting im-
precision in multidimensional databases using granularities. In
SSDBM ’99: Proceedings of the 11th International Conference
on Scientific on Scientific and Statistical Database Manage-
ment, page 90, Washington, DC, USA, 1999. IEEE Computer
Society.

[4] O. R. Zaiane, M. Xin, and J. Han. Discovering web access pat-
terns and trends by applying olap and data mining technology
on web logs. In in Advances in Digital Libraries, page pages,
1998.

6


