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Abstract

Gradual rules allow users to be provided with rules describing the
ordering correlations among attributes. Such a rule is for instance
given by the higher the salary and the lower the number of cars, the
higher the number of tourist travels. Previously intensively used in
fuzzy command systems, these rules were manually provided to the
system. More recently, they have received attention from the data
mining community and methods have been defined to automatically
extract and maintain gradual rules from numerical databases. How-
ever, no method has been shown to be able to handle data streams, as
no method is scalable enough to manage the high rate which stream
data arrive at. In this paper, we thus propose an original approach to
mine data streams for gradual rules. Our method is based on B-Trees
and OWA (Ordered Weighted Aggregation) operator in order to speed
up the process. B-Trees are used to store already-known gradual rules
in order to maintain the knowledge over time, while OWA operators
provide a fast way to discard non relevant data.

Keywords: Data Streams, Gradual Rules, OWA operators.

1 Introduction

Nowadays, data streams are gaining more attention as they are one of the
most used ways of managing data such as sensor data that cannot be fully
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stored. Such data, used in many domains such as telecoms, health, or sys-
tem supervision (e.g. web logs), require novel approaches for analysis. Some
methods have been defined to analyze this data, mainly based on sampling,
for extracting relevant patterns [5, 10]. They have to tackle the problem of
handling the high data rate, and the fact that data cannot be stored and
has thus to be treated in a one pass manner [1]. For instance, recently new
approaches were defined in order to extract association rules and sequen-
tial patterns over streams (e.g. [6, 24]). However, these methods do not
allow users to be provided with the gradual rules that can be found in the
data continuously arriving. Such rules point out the correlations between
attribute orderings, and are thus referred to as multidimensional statistical
correlations. For instance, such a rule could be of the form the higher the
salary and the lower the number of cars, the higher the number of tourist
travels, coming from the fact that for most of the data in the database, when
the salary increases and the number of cars decreases, then the number of
travels increases. The number of tuples from the database that assess this
rule is considered as being the support, and can be computed by several
manners [3, 17, 18].
It should be noted that extracting such rules is a very difficult task, as the
search space grows exponentially. When mining data streams, this com-
plexity is increased as the data must be handled on the fly and can be seen
only once. In order to speed up the mining process, we thus propose to
consider aggregation functions [32]. These functions are well-known tech-
niques for data summarization, decision making, data mining, etc. In the
context of gradual rule mining, we use them in order to reduce the num-
ber of attributes to consider. In a first approximation, we aggregate all the
attribute values into a single datum using OWA (Ordered Weighted Aver-
aging) operators [38, 39], which contrary to the arithmetic mean, allow us
to weight the values as needed by the application (e.g. large values are more
important than small ones). This fact is very important in our scenario be-
cause each attribute of the data stream has the same importance. By using
OWA operators, it is possible to adjust the final aggregated value by taking
into account the data distribution of each attribute. OWA operators have
been used in many other scenarios where attribute correlations have a great
impact on the final result of the data mining process. For instance, OWA op-
erators have been applied to record linkage without common attributes [33]
or schema matching [31].
After applying the OWA operator to reduce the number of attributes to be
considered, tuples supporting a gradual rule are stored in a B-Tree struc-
ture to be retrieved very efficiently (the search cost is O(log(n)) where n
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is the number of elements stored in the B-Tree). By using such B-Trees
for ordering the tuples considering the aggregated OWA value as the key,
we accelerate the process. Managing every new piece of data arriving on
the stream indeed amounts to only look at the previous and next tuple in
the B-Tree. From this operation, we can decide if a new tuple supports a
given gradual rule (represented by the B-Tree) and must thus be inserted.
Note that the insertion cost is also very low (O(log(n))). Furthermore, in
order to maintain n as small as possible, i.e. in order that n could be stay
in main memory, we use a well-known technique, called tilted-time window
frames [20], for pruning the old B-Tree elements (tuples), thus, accelerating
the B-Tree operations.
The rest of the paper is organized as follows. Section 2 recalls the problem
statement by defining gradual rules (Section 2.1) and data streams (Section
2.2). Section 3 is devoted to the related work. Following in Section 4,
we give some details about aggregation functions showing the reasons why
OWA operators are the most suitable candidate. Then in Section 5, we
provide a complete description of our approach. Experiments are described
in Section 6, highlighting the relevance of our proposal. Finally, Section 7
draws some conclusions and describes some lines for future work.

2 Problem Statement

This section is devoted to the two main basic concepts that will be used in
this paper: gradual rules and data streams.

2.1 Gradual Rules

Gradual rules allow us to define correlations between attribute orderings
[16, 17]. Gradual rules are very close to action rules firstly introduced by
Ras et al. in [26] and extended in [34, 35] in order to reclassify objects
with respect to some distinguished atttribute (called a decision attribute).
Intervention [11] or information changes [27] are also comparable to this
framework. All these approaches could be useful in order to extract rules
such as: the higher the salary, the higher the number of cars. They are
defined over several attributes which are provided with an ordering relation.
Each attribute is defined over a domain of values (mainly numerical, e.g.
salary in euros) and a gradual item is defined as a pair (A, d) where A
is the name of an attribute and d is the direction of the ordering. For
instance (Salary, +) stands for the gradual item the higher the salary. Then,
a gradual itemset is defined as a set of gradual items {(A1, d1), . . . , (Ak, dk)}.
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ID Salary Cars
t1 2000 2
t2 3000 3
t3 3500 4
t4 2500 4
t5 1000 1
t6 4000 3

Table 1: Database to be Mined: An Example

A gradual rule is given by a pair (s1, s2) referred to as s1 → s2 where s1 and
s2 are gradual itemsets.
The importance of a gradual itemset s is given by its support which is
computed as the proportion of tuples from the database that support the
gradualness. Supporting the gradualness means here that for every item
(a, d) from s, for every pair of tuples (t, t′) supporting s, t.a ≥ t′.a holds if
d = + and t.a ≤ t′.a holds if d = −. In this context, as shown in Section 3,
many algorithms have been defined. It should be noted that, from a single
database (set of tuples), several subsets of tuples can be found that support
the gradualness. The support is thus defined as the maximal cardinality
of the subsets: Let DB be the database, constituted of a set of n tuples
T = {T1, . . . , Tn} (|DB| = n), the support of a gradual itemset s is defined
as supp(s) = |Ts|

|DB| where Ts ⊆ T is the maximal subset of tuples supporting
s.
For instance, considering Table 1, the support of the itemset {(Salary, +)
(Cars,+)} is 4/6 as tuples (t1, t2, t3 and t5) can be ordered so as to keep
the increasing slope for both Salary and Number of Cars.

2.2 Data Streams

As data streams cannot be fully stored, one of the most important challenges
is to find an efficient way for summarizing them. For this purpose, several
methods have been proposed, mainly based either on data mining (associa-
tion rules or sequential patterns [5, 10, 13]) or on sampling and aggregation
(wavelets [12, 28], sketches [2, 4, 7], or sampling [37]).
When considering data mining approaches, the support computation is not
the same as in the static context as it is not possible to divide by the total
number of transactions since the stream is potentially infinite. The support
of an itemset I is thus defined for every window W in the stream and is
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denoted by suppW (I). More formally, suppW (I) = DI
|W | where DI is the

number of transactions in W where I occurs and |W | is the size of the
window W . Similarly to the static environment, an itemset l is frequent if
suppW (l) ≥ minSupp where minSupp is a user-defined parameter.
When mining data streams, three criteria must hold to ensure the quality
of the data stream summary:

1. The construction and update time of the summary must be faster than
the stream rate.

2. The closer the summary is compared to what a decision maker would
retain from the stream, the better it is.

3. The memory consumption has to be bounded.

As explained in Section 1, the data mining community has recently paid at-
tention to data the stream scenario. However, no method has been proposed
for gradual rule mining in data stream due to scalability problems. For this
reason, in this paper, we thus propose a very efficient gradual rule mining
approach, and we show that it is scalable enough to fulfill the data stream
criteria described above.

3 Related Work

Gradual itemset mining can be seen as a particular case of frequent pattern
mining. However, the search space of gradual itemsets is larger than other
frequent pattern mining scenarios, such as association rules. For this reason,
most of the literature related to mining frequent patterns over the stream
has been focused on mining frequent itemsets disregarding the concept of
gradualness.
For instance, the first approach for finding frequent itemsets was proposed
by [20] where they study the landmark model where patterns support is cal-
culated from the start of the data stream. They also define the first single-
pass algorithm for data streams based on the anti-monotonic property. Li
et al. [19] use an extended prefix-tree-based representation and a top-down
frequent itemset discovery scheme. In [29], authors propose a regression-
based algorithm to find frequent itemsets in sliding windows. Chi et al. [8]
consider closed frequent itemsets and propose the closed enumeration tree
(CET) to maintain a dynamically selected set of itemsets. In [14], authors
consider an FP-tree-based algorithm to mine frequent itemsets at multi-
ple time granularities by a novel logarithmic tilted-time window technique.
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More recently new approaches have been defined in order to extract more
complex patterns such as sequential patterns over the stream. For instance,
in [24], the authors propose a new approach, called Speed (Sequential Pat-
terns Efficient Extraction in Data streams), to identify maximal sequential
patterns over a data stream. The main originality of this mining method is
that a novel data structure is used to maintain frequent sequential patterns
coupled with a fast pruning strategy. In [21], another approach is proposed,
based on sequence alignment for mining approximate sequential patterns
data streams.
Tree structures [9] are very common structures in association rule mining.
It is well-known that B-tree [22, 23] and other structures as FP-tree [15], T-
Tree or P-tree [36] achieve a good time performance when they are applied
to compute the support of a set of association rules. However, to the best
of our knowledge, they have never been applied to gradual rule mining in
order to speed mining up and maintaining processes.
The research related to mining gradual itemsets has focused on the static
databases environment. For instance, in [16] it is assumed that the entire
database is known in advance. In [17] the database has to be sorted several
times (once per attribute), making this approach unfeasible for real time
scenarios. To the best of our knowledge, there is no related literature about
mining gradual itemsets in data streams due to the high complexity of this
problem and the strong requirements of data streams: algorithms has to
be executed in real time scenarios and data has to be summarized over the
time. Therefore, in the remaining of this paper we will provide some details
about aggregation functions and their utility for our scenario, as well as a
methodology for maintaining gradual itemsets in data stream scenarios.

4 Aggregation Functions

Aggregation functions [32] are functions used for information fusion. They
typically combine N data values supplied by N data sources into a single
datum. The simplest and most widely used aggregation functions are the
arithmetic and the weighted mean. In [38], Yager introduced another func-
tion, the OWA operator, to model aggregation in intelligent systems. The
definitions of these functions are given below. As they require a weight-
ing vector, firstly we provide such definition. All definitions in this section
assume that a1, . . . , aN are the N values to be fused.

Definition 1 A vector v = (v1, . . . , vN ) is a weighting vector of dimension
N if vi ∈ [0, 1] and

∑N
i=1 1.
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Figure 1: Graphical representation of Yager α-quantifiers.

Definition 2 A mapping AM: RN → R is an arithmetic mean of dimension
N if AM(a1, . . . , aN ) = (1/N)

∑N
i=1 ai.

Definition 3 Let p be a weighting vector of dimension N . A mapping
WM: RN → R is a weighted mean of dimension N if WM(a1, . . . , aN ) =∑N

i=1 piai.

Definition 4 Let w be a weighting vector of dimension N . A mapping
OWA: RN → R in an ordered weighting average of dimension N if OWA
(a1, . . . , aN ) =

∑N
i=1 wiaσ(i), where σ is a permutation such that ∀i ∈ [1, N−

1]aσ(i) ≥ aσ(i+1).

While WM aggregates values considering the importance (or reliability) of
the data sources, OWA operators permit the user to aggregate the values
giving importance to large (or small) values. This fact is very important in
our scenario because each attribute of the data stream has the same impor-
tance. But by using the weighting vector of OWA operators, it is possible to
adjust the final aggregated value taking into account the data distribution
of each attribute. Of course, it could be possible to get a scenario where
each attribute of the data stream has different importance. We can model
this scenario using the WOWA operator [30], a linear combination of the
WM and OWA.
Another important drawback of WM is that a different weighting vector
must be defined for each gradual itemset to mine. Of course, with the OWA
definition provided above we have the same problem, i.e. we have to define
a weighting vector for mining gradual itemset of two attributes, another
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for three attributes, and so on. However, as OWA operator is symmetric,
we can define it in a different way when the number of data sources is not
known in advance. This definition is based on fuzzy quantifiers.

Definition 5 A function Q : [0, 1] → [0, 1] is a regular monotonically non-
decreasing fuzzy quantifier (non-decreasing fuzzy quantifiers for short) if it
satisfies: (i) Q(0) = 0; (ii) Q(1) = 1; (iii) x > y implies Q(x) ≥ Q(y).

An example of family of fuzzy quantifiers Q is given below. Such family
corresponds to Yager α-quantifiers.

Qα(x) = xα for α > 0

A graphical representation of this fuzzy quantifier is given in Figure 1 for
some particular α (α ∈ 0.2, 0.4, . . . , 1.8, 2.0). We can observe that for small
α values, the function increases quickly near x = 0, whereas the increase
is smoother for larger values of α. In the former case, the quantifier gives
a larger importance to the small values and thus it is more sensitivity to
changes in such values. On the contrary, in the latter case, the quantifier
gives more importance to the large values and its sensitivity increases for
such values.
Using fuzzy quantifiers, the OWA operator [39] is defined as follows.

Definition 6 Let Q be a non-decreasing fuzzy quantifier, then OWAQ: RN →
R is an Ordered Weighted Averaging (OWA) operator if OWAQ (a1, ..., aN ) =∑N

i=1(Q(i/N) − Q((i − 1)/N))aσ(i) where σ is a permutation such that
aσ(i) ≥ aσ(i+1).

In our experiments we will use this latter OWA definition with the Yager
α-quantifiers.

5 Mining Gradual Rules Over Data Streams

In this section, we firstly give an overview of our approach focusing on the
requirements needed in a data stream mining scenario. Following, we explain
in detail the gradual rule mining algorithms used in our approach. Finally,
we provide the complexity of the most costly algorithm.
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ID Salary Cars OWA (B-Tree Key)
t1 0.4 0.4 0.4
t2 0.6 0.6 0.6
t3 0.7 0.8 0.75
t4 0.5 0.8 0.65
t5 0.2 0.2 0.2
t6 0.8 0.6 0.7

Table 2: Normalized Database (min Salary=0, max Salary=5,000,
min Cars=0, max Cars=5), and OWA value.

5.1 Basic Idea

We consider databases such as described in Table 1 where attribute values
have been normalized in [0, 1], as shown by Table 2. For this purpose, we
consider a minimum and maximum value for every attribute1.
In order to have a global idea of each tuple for ordering them, we compute a
summary using an OWA operator. Note that it is very easy to manage both
increasing and decreasing gradualness. Indeed, as OWA weights give impor-
tance to small or large values, it is not the same to mine a gradual itemset like
{(Salary, +)(Cars,+)} or {(Salary, +)(Cars,−)}. For the former case, we
have to compute the OWA value as OWAQ(asalary, acars), whereas, for the
latter one, we have to compute the OWA value as OWAQ(asalary, (1−acars)).
For instance, the last column of the Table 2 reports the value computed by
giving the same weight to every attribute value. Example 1 shows the pro-
cess for mining the gradual itemset {(Salary, +)(Cars,+)}.

Example 1 Consider each attribute of the normalized database of Table
2 as the data coming from the data stream, and suppose that the gradual
itemset to mine is GI: {(Salary, +)(Cars,+)}. At the beginning the cor-
responding B-Tree for GI is empty. At time ts1, the tuple t1 arrives and
OWAQ(t1) is computed. As the B-Tree is empty, t1 is inserted in the B-Tree
root node, this is illustrated in Figure 2.(a). At time ts2, the tuple t2 arrives
and OWAQ(t2) is computed. As OWAQ(t1) ≤ OWAQ(t2), we have to check
that t1.Salary ≤ t2.Salary and t1.Cars ≤ t2.Cars hold. As both conditions
are fulfilled t2 is inserted in the B-Tree (as it is shown in Figure 2.(b)).
This process is repeated at time ts3 with tuple t3 checking that t3 attributes

1If a tuple has an attribute lower or higher than the minimum or maximum value
predefined, such value can be normalized as 0 (for the minimum) or 1 (for the maximum).
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T1:0.4, Null

(a)
T2:0.6, Null

T1:0.4, Null T3:0.75, Null

(c)

T1:0.4, T2:60

(b)
T2:0.6, Null

T5:0.2, T1:0.4 T3:0.75, Null

(d)

Figure 2: B-Tree Insertion Example.

are larger than t2 attributes (Figure 2.(c)). Then, at time ts4, the tuple t4
arrives and the OWAQ(t4) is computed. As OWAQ(t2) ≤ OWAQ(t4) ≤
OWAQ(t3), we have to check that t2.Salary ≤ t4.Salary ≤ t3.Salary and
t2.Cars ≤ t4.Cars ≤ t3.Cars hold. As t2.Salary = 0.6 and t4.Salary = 0.5
the first condition does not hold and tuple t4 cannot be inserted in the B-Tree.
After that, tuple t5 is inserted at time ts5 because OWAQ(t5) ≤ OWAQ(t1)
and t5.Salary ≤ t1.Salary and t5.Cars ≤ t1.Cars hold, this is depicted in
Figure 2.(d). Finally, at time ts6 tuple t6 is discarded in a similar way as
t4.

The key idea of our approach is based on the property reported below.

Property 1 Let s be a gradual itemset, b be the B-Tree containing tuples
from the data stream holding s. Let Q be the fuzzy quantifier used in the
OWA operator. Let tnew be a new tuple arriving on the stream. Let pos be the
insertion position of tnew in b considering the OWA summary of tnew. Then,
whatever the OWA weights, if t and t′ are previous and subsequent tuples
stored in b respectively, such that OWAQ(t) ≤ OWAQ(tnew) ≤ OWAQ(t′),
we have: if there exists a ∈ s such that t.a ≤ tnew.a ≤ t′.a does not hold, then
there does not exist pos′ in b that tnew can support s considering the relative
order established by b. Therefore, tnew can be discarded. This property holds
due to the fact that all attributes of the tuples stored in the B-Tree are sorted
in a non-decreasing order to hold s.

Proof 1 Let o be the OWAQ(tnew) summary for the tuple tnew. Let t and
t′ be previous and subsequent tuples stored in b. Now, let us assume that
tnew can be inserted in b. Then, o gives us the unique possible position in
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Figure 3: Tilted-Time Window Frames.

the B-Tree order for the tuple tnew. To prove this, let us imagine the most
difficult case, where t and t’ attributes are equal to tnew except one that has
to be smaller (larger) for t (t’). As we are computing the OWA summaries
using the same weights, we have OWAQ(t) ≤ OWAQ(tnew) ≤ OWAQ(t′)
because there is at least one attribute in t (or t’) smaller (or larger) than
tnew. Moreover, we can ensure that tnew can only be inserted between t and
t’. Note that, if tnew cannot be inserted in the provided position by the OWA
summary, then tnew cannot be inserted in any other place because the order
of the B-Tree tuples. This statement holds due to the order inside the B-
Tree, i.e. the previous tuple of t has at least one attribute smaller than t,
and of course, smaller than tnew. The same reasoning can be applied to the
subsequent tuple of t’. However, this proof only holds if all OWA weights
are different from 0.

Thanks to Property 1, we know that if the ordering among the new tuple and
the previous and subsequent one does not hold for at least one item, the tuple
can be immediately discarded, thus speeding up the process. Otherwise, the
tuple can be inserted in the B-Tree. The complexity of our proposal is
related with the cost of the B-Tree operations, because the cost of such
operations depend on the number of tuple whereas the complexity of the
OWA summary depends on the number of attributes (much smaller than
the number of tuples). For this reason, we can consider the OWA summary
cost as a constant value. Then, as B-Tree operations have a cost equal to
O(log(n)) for each gradual itemset to mine. We can say that this process is
very efficient and it can be affordable in a real time scenario. Therefore, the
first stream mining requirement holds.
As explained in Section 2.2, we have to ensure that our approach is able
to manage every new tuple faster than the stream rate using a bounded
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amount of memory and maintaining in memory a detailed information of
the most recent tuples. Yet, if we repeat this process a large number of
times, the number of tuples stored in the B-Trees will grow and we will need
a large amount of memory. In order to avoid this fact, B-Trees are pruned by
compressing old tuples. Such a compression is done computing an attribute
wise summarization using an OWA operator. This summary is inserted
in the B-Tree and it will be preserved over the time. This compression
technique, also known as tilted-time window, was proposed by [20] and it has
been used in many other works as [8, 14, 25] using different summarization
procedures. Figure 3 shows a tilted-time windows table: the most recent
tuples are preserved, then, in another level of granularity, the last week, the
last month and the last year are summarized. Based on this model, one can
compute data analysis in the last week with a maximum precision, in the
last month with the precision of a week, and so on.
The rationale of this process is that old tuples are removed from the B-Trees,
saving memory space, but partial information of those tuples is preserved
in the compressed tuple. Using this technique, we ensure that the amount
of memory needed for our approach is bounded and the most recent tuples
are preserved in the B-Trees. Therefore, using this compression technique,
the second and the third stream mining requirements are also hold.
It should be noted that, in a stream mining scenario, it may be the case that
we accept a tuple arriving at the stream that complies with the previous
tuples although it would be better to discard it because in the future we
will have to discard a large amount of tuples decreasing in this way the final
support. For this reason, the approach used to compute the support has to
be considered as a heuristic.

5.2 Algorithm Definition

In this section, we provide the algorithms and all the details of our proposal.
We assume that tuples coming from the stream are already normalized.
Algorithm 1 is in charge of initializing the gradual itemsets and B-Trees
lists (lines 2-3). Basically, such initialization consists in creating all the
possible gradual itemsets taking into account the number of attributes of
tuples, and creating for each one an empty B-Tree. Following, we have to
compute when the first pruning process will be executed (line 6). As we
are interested in maintaining in memory all tuples belonging to a certain
period of time (the most recent frame of the tilted-time window), we have
to prune the B-Trees for the first time when we have in memory tuples of
two window frames. In the main loop of Algorithm 1, we process the data
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Algorithm 1: Data Stream Mining
Data: s: Stream, q: Quantifier, w: Window
begin1

g = Gradual itemset list;2

b = B-Tree list;3

InitializeGradualRule(g);4

InitializeBTree(b);5

np = now() + 2w;6

while (!s.empty()) do7

GradualRuleProcessing(g,b,s,q);8

if (now() ≤ np) then9

BTreePruning(b,w);10

np = now() + w;11

end12

stream (line 8) and every tilted-time window frame we execute the B-Tree
pruning process (line 9-11). This last part of this algorithm is also used to
recompute the next period of time when B-Trees will be pruned again (line
11).
Algorithm 2 manages the gradual rule mining process. Initially, it reads the
data stream, storing in the array a all attribute values (line 3). Next, for
each gradual itemset to mine we have to do the following process: Firstly, we
have to reverse all attribute values corresponding to the case (ai, -), i.e. we
have to compute the value ai = 1− ai. Then, OWAq(a) is computed using
the fuzzy quantifier q (line 6), such quantifier is a user parameter and it has
to be selected based on data stream value distribution as we have explained
in Section 4. Afterwards, the previous and the subsequent B-Tree nodes are
recovered (lines 7-8) and, as we have explained in Property 1, each attribute
the of new tuple is checked with the previous and subsequent tuples (line
9). Then, if the new tuple can be added in the B-Tree, it is added and the
gradual itemset support is updated (line 11), if not it is discarded.
Finally, Algorithm 3 is devoted to the B-Tree pruning process, it is executed
at each tilted-time window frame. In this algorithm, for each tuple, if it is
out-of-date of the current window frame (line 4), the corresponding B-Tree
node is removed. If not it is preserved until the next pruning process.
The most costly algorithm is the Algorithm 2. The complexity of this algo-
rithm is related to the number of gradual itemsets (s) and to the number
of tuples that we have to process in a window frame (n). B-Tree operations
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Algorithm 2: Gradual Rule Processing
Data: g: Gradual itemset list, b: B-Tree list, s: Stream, q:

Quantifier
begin1

while (!s.empty()) do2

a=read(s);3

for i ← 1 to g.Size do4

ReverseValues(g.get(i), a);5

o = ComputeOWA(a, q);6

prev = PreviousNodeSearch(o, b.get(i));7

susbseq = SubsequentNodeSearch(o, b.get(i));8

if (checkRule(g.get(i), b.get(i), a, prev, subseq)) then9

b.get(i).addNode(o, a, timestamp);10

UpdateSupport(g.get(i));11

end12

used in this algorithm (search and insertion) have a complexity equal to
O(log (n)). In the worst scenario, for each new tuple, we have to execute
two B-Tree operations (one search and one insertion) for each gradual item-
set to mine. Therefore, the complexity of this algorithm is equal to O(2s
log (n)). As Algorithm 2 has a sub-linear complexity and the tilted-time
window technique allows us to keep n as small as possible, we argue that it
is affordable for most of real time scenarios.

6 Experiments

In this section we describe the experiments that we have been carried out
to test the efficiency of our approach.

6.1 Dataset and Parameter Description

In our experiments, we have used a dataset coming from a train sensor
network installed in some trains of a national railway company. We consider
here that each sensor provides a new value every 100 miliseconds (i.e. 10
new values per second), in total we manage more than 80,000 tuples. In
the experiments, three subsets of 5, 8 and 10 temperature sensors installed
in the bogie wheels have been selected. The number of gradual itemsets
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Algorithm 3: B-Tree Pruning
Data: b: B-Tree List, w: Window
begin1

for i ← 1 to b.size do2

for j ← 1 to b.get(i).size do3

if (b.get(i).get(j).timestamp ≤ now() - w) then4

RemoveNode(b.get(i), j);5

end6

5 sensors 8 sensors 10 sensors
116 3,272 29,512

Table 3: Number of gradual itemsets for each experiment.

that we mine in each case is depicted in Table 3. We have normalized the
values provided by each sensor within the [0, 1] interval. Usually, the values
provided by the temperature sensors are small, and only when the brakes are
working they increase their value. Therefore, we are interested in having a
very low granularity in the small values, because they are the most frequent
ones. For this reason, we have used in our experiments a Yager α-quantifier
with a low α, Q0.5(x). Of course, other α values can be considered, for
instance, we can consider a quantifier with a large α (Q2(x)). In this case
the OWA summary will be very sensitive to small changes in large values,
but such values are infrequent in our data, then the support of the gradual
itemsets will be underestimated.
In our software, all algorithms are implemented as independent threads.
Therefore, in our experiments, we have simulated a real time environment
where tuples are arriving at a high rate and gradual rule mining and B-Trees
pruning processes are executed in the same processor at the same time.

6.2 Results Analysis and Discussion

In this section, we present a complete analysis of the experiments carried out
in this work, as well as, a short discussion about why the results obtained
show that our approach is suitable for the stream mining scenario. The
experiments were performed using a Sun Java Virtual Machine and a Debian
Linux operating system in a Dell Precision 390 workstation with only one
32 bits CPU and one giga of RAM memory.
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Figure 4: (a) CPU usage. (b) Memory usage.

All the charts presented in this section were calculated in the same way.
After processing each new tuple the following statistics were computed: the
total CPU usage for mining all the graduals itemsets (Figure 4.(a)), the
total number of nodes stored in the B-Trees (Figure 4.(b)), the average size
of B-Trees (Figure 5.(a)) and the average support of five more supported
itemsets (Figure 5.(b)). As we have obtained a very large log file, we have
computed a smaller one computing the average of these values in groups of
100 elements. The group number is shown in the horizontal axis of all the
charts, this gives us a time reference.
If we observe in detail the results presented in Figure 4.(a), we can see that
the CPU time is constant over the time, then it is clear that our approach
is able to work in real time scenario. The peaks are due to the B-Tree
pruning process executed regularly following the tilted-time window frames,
of course, as we have accelerated the stream rate this process is repeated
more frequently. The highest peak in the 10-attribute scenario is produced
at the beginning, just when the first pruning process is executed. This is
produced because at the beginning all B-Trees are empty and most of new
tuples are kept. Once B-Trees contain a higher number of nodes the insertion
of a new tuple is more difficult and B-Tree growth is kept under control. We
can see this fact in more detail in Figure 4.(b).
In Figure 4.(b) we show the amount of memory needed by our software.
Of course, when the amount of attributes increases, the number of gradual
itemsets and therefore the number of B-Trees also increase. This is the rea-
son why the 10-attribute scenario uses more memory than the other two. As
we can see, at the beginning of the stream the amount of memory needed
increases very fast, but after the first pruning the amount of necessary mem-
ory is bounded. Obviously, it increases over the time but it is reduced in
each pruning process. Therefore, we can say that our approach is able to
work in scenarios where memory is a limited resource, as usual in most of
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Figure 5: (a) B-Tree average size. (b) Average support of five most sup-
ported itemsets.

the stream mining applications.
In Figure 5.(a) we present the average B-Tree size evolution over the time.
As in the previous chart, at the beginning all B-Trees increase their size very
fast, but after some pruning processes, the average B-Tree size is bouned.
Again, the 10-attribute scenario has higher memory consumption than 5 and
8 attributes scenarios, this fact is related with the support values shown in
Figure 5.(b). The higher the number of attributes, the easier the obtention
of gradual itemsets having high support. If the support of the itemsets is
high, the average B-Tree size will be also large.
Finally, in Figure 5.(b) we can observe the average support of five most
supported gradual itemsets. At the beginning, the support is unstable since
we have processed few tuples. However, when the number of tuples processed
increases the support becomes stable. The support values provided in this
last chart are consistent with the statement explained before: the more
attributes we have, the higher the support of the most supported itemsets,
because we are mining more gradual itemsets and the chances of finding
gradual itemsets with high support increase.
It is important to note that the results obtained in the dynamic scenario do
not vary in any kind of static scenario. This statement holds because the
most supported rules in a static scenario are always the same and the time
needed to process all the possible gradual rules is more or less constant. Of
course, we have to prune the b-trees over the time, if not both, time and
memory performances measures, will increase due to the large amount of
tuples stored inside the b-trees.
With these results we can say that our approach is able to work with a real
dataset in a real environment with strong resource constraints. We recall
that we have used a workstation with a single 32 bits processor and only
with one giga of main memory. Note that, nowadays most of servers or
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workstations have more than one CPU and a larger amount of available
memory. In this section, we have shown that under these strong constrains
we are able to mine in real time (10 new values per second) a high number of
gradual itemsets, specifically, in the 10-attribute scenario we manage 29,512
gradual itemsets.

6.3 Static Gradual Rule Mining Comparison

In order to study the efficiency obtained by our new approach, we compare
the results obtained in the previous section with some others obtained by the
static algorithm defined in [17]. Such algorithm works as follows: Firstly,
the dataset is sorted by all the a attributes in the dataset, then we obtain
a different versions of the dataset. After that, the algorithm computes for
each tuple a conflicting list, such list is a set of discarded tuples if the tuple
is included in the list of tuples supporting a given gradual rule. Finally,
tuples not supporting the gradual rule are discarded taking into account the
size of the conflicting list, the larger the conflicting list, the earlier the tuple
is discarded.
As such algorithm is defined only for static datasets, we have applied it over
a bounded sliding window of 100 tuples. The CPU usage of this algorithm is
depicted in Figure 6. If we observe the time results obtained for the scenario
where we mine 10 attributes, we can see that the static version processes
one tuple each 600 milliseconds, whist our new algorithm only spends 80
millieconds, one magnitude order less. These results show the improvement
obtained by the application of the OWA operator, such application avoids
the multiple sorting step needed in the static algorithm. Also using the
Property 1 defined in the Section 5.1, we can omit the conflicting list com-
putation step because we only need to check the previous and subsequent
record in the B-tree to discard or maintain a tuple in the list of supporting
tuples.
Unluckily, the support values obtained by both approaches are not so easy
to compare. Whereas, the support in our approach is computed dividing the
B-tree size supporting a gradual rule by the number of processed tuples, the
support computation for the static algorithm has to be calculated by mixing
the results of all the window processed at a certain period of time. This last
computation is unfeasible for a very large number of tuples. For this reason,
we have only compared the support values obtained in each window for both
algorithms. The support values obtained by the static approach are slightly
better, around 2.3%-8% better depending on the considered gradual rule.
This fact can be easily explained: the static algorithm sorts the dataset

18



!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

#
"

%
$
"

(
%
"

)
&
"

#
$
'
"

#
'
(
"

#
*
+
"

$
#
*
"

$
&
)
"

$
*
!
"

%
#
#
"

%
&
$
"

%
+
%
"

&
!
&
"

&
%
'
"

&
(
(
"

&
)
+
"

'
$
*
"

'
'
)
"

'
)
!
"

(
$
#
"

(
'
$
"

(
*
%
"

+
#
&
"

+
&
'
"

+
+
(
"

,-./0"'" ,-./0"*" ,-./0"#!"

Figure 6: CPU usage of the static gradual rule mining algorithm

in the most convenient way for the support calculation, while the dynamic
algorithm processes the tuples in the order they arrive at. However, we
should say that the most supported rules are exactly the same in both cases.
For this reason, we really believe that such difference is not significative
considering the time improvement we obtain.

7 Conclusions

In this paper, we define an original method to mine data streams for gradual
rules. Gradual rules are indeed of great interest to get knowledge from the
databases managed by decision makers. However data streams, even if they
become more and more present in the context of data management, are
difficult to cope with as they are transmitted continuously at a potentially
very high rate. Our approach is thus based on OWA operators and B-Trees
so as to speed up the process. Our approach is shown to be efficient both
in terms of time and memory consumption.
Future work include the possibility of selecting gradual rules. Moreover, we
aim at further comparing the tree structures that may be used and their
properties (either to speed up the insertion, or the initialization, etc.). Also,
we would like to study the application of this algorithm to a very large static
database because traditional methods cannot be applied in this case.
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