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Abstract

In this paper we consider the problem of incremental mining of sequential patterns when new
transactions or new customers are added to an original database. We present a new algorithm for
mining frequent sequences that uses information collected during an earlier mining process to cut
down the cost of finding new sequential patterns in the updated database. Our test shows that the
algorithm performs significantly faster than the naive approach of mining on the whole updated
database from scratch. The difference is so pronounced that this algorithm could be useful for
mining sequential patterns, since in many cases it is faster to apply our algorithm than mining
sequential patterns with a classical algorithm, when the database is broken down into an original
database with an increment.

1 Introduction

Most research into data mining has concentrated on the problem of mining association rules
[1, 2,4, 7,8, 11, 12, 14]. Although sequential patterns are of great practical importance (e.g. alarms
in a telecommunication network, identifying plan failures, analysis of Web access databases, etc.) they
have received relatively little attention [3, 13, 16]. First introduced in [3], where an efficient algorithm
called AprioriAll was proposed, the problem of mining sequential patterns is to discover temporal
relations between facts embedded in the database. Considered facts are merely characteristics of
individuals, or observations of individual behavior. For example, in a transactional database, a
sequential pattern could be “95% of customers bought ’Star Wars and The Empire Strikes Back’, then
‘Return of the Jedi’, and then 'The Phantom Menace’ ”. In [13], the problem definition is extended
by handling time constraints and taxonomies (is-a hierarchies) and a new algorithm, called GSP, that
outperformed AprioriAll by up to 20 times is proposed.

As databases evolve the problem of maintaining sequential patterns over a significantly long period of
time becomes essential, since a large number of new records may be added to a database. To reflect
the current state of the database where previous sequential patterns would become irrelevant and
new sequential patterns might appear, there is a need for efficient algorithms to update, maintain
and manage the information discovered [5]. Several efficient algorithms for maintaining association
rules have been developed [5, 6, 15|. Nevertheless the problem of maintaining sequential patterns is
much more complicated than maintaining association rules, since transaction cutting and sequence
permutation has to be taken into account. In order to illustrate the problem, let us consider an
original and an incremental database. Then, to compute the set of sequential patterns embedded
in the updated database, we have to discover all sequential patterns which were not frequent in the
original database but become frequent with the increment. We also have to examine all transactions in
the original database which can be extended to become frequent. Furthermore, old frequent sequences



may become invalid when adding customer. The challenge is thus to discover all frequent patterns
in the updated database with far greater efficiency than the naive method of mining sequential
patterns from scratch. To the best of our knowledge, not much effort has been spent on maintaining
sequential patterns. In [10], the authors propose an incremental mining algorithm, based on the
SPADE approach [16], which can update the sequential patterns in a database when new transactions
and new customers are added to the database. It is based on an increment sequence Lattice consisting
of all the frequent sequences and all sequences in the negative border in the original database. This
negative border is the collection of all sequences that are not frequent but both of whose generating
sub-sequences are frequent. Furthermore, the support of each member is kept in the Lattice too. The
main idea of this algorithm is that when incremental data arrives, the incremental part is scanned
once to incorporate the new information into the Lattice. Then new data is combined with the
frequent sequences and negative border in order to determine the portions of the original database
that need to be re-scanned. Even this approach is very efficient, maintaining negative border is very
memory consuming and not well adapted for very large databases [10].

In this paper, we propose an efficient algorithm, called ISE (Incremental Sequence Extraction), for
computing the frequent sequences in the updated database when new transactions and new customers
are added to the original database. ISE minimizes computational costs by re-using the minimal
information from the old frequent sequences, i.e. the support of frequent sequences. The main novelty
of ISE is that the set of candidate sequences to be tested is substantially reduced. Furthermore, some
optimization techniques for improving the approach are also discussed.

Empirical evaluations have been conducted to analyze the performance of ISE and compare it against
cases where GSP is applied to the updated database from scratch. Experiments showed that ISE
significantly outperforms the GSP algorithm by a factor of 4 to 6. Indeed the difference is so
pronounced that our algorithm may be useful for mining sequential patterns as well as incremental
mining, since in many cases, instead of mining the database with the GSP algorithm, it is faster to
extract an increment from the database, then apply our approach considering that the database is
broken down in an original database with an increment. Our experimental results show a factor of 2
to 5 improvement in performance in the comparison.

The rest of this paper is organized as follows. In section 2, the problem is stated and illustrated. The
algorithm ISE is described in section 3. Section 4 presents the detailed experiments and performance
results obtained are interpreted. Finally section 5 concludes the paper with future directions.

2 Problem statement

In this section we give the formal definition of the incremental sequential patterns mining problem.
First, however, we formulate the concept of sequence mining summarizing the formal description of
the problem introduced in [3] and extended in [13]. A brief overview of the GSP algorithm is also
provided. Second we look at the incremental update problem in detail.

2.1 Mining of sequential patterns

Let DB be a set of customers’ transactions where each transaction 7' consists of customer-id,
transaction time and a set of items involved in the transaction.

Let I = {i1,42,...,im} be a set of literals called items. An itemset is a non empty set of items. A
sequence s is a set of itemsets ordered according to their time stamp. It is denoted by < s1s9...8, >
where s;, j € 1..n, is an itemset. A k-sequence is a sequence of k-items (or of length k). For example,
let us consider that a given customer purchased items 1,2, 3,4, 5, according to the following sequence:
s =< (1) (2, 3) (4) (5)>. This means that apart from 2 and 3 that were purchased together, i.e.



during a common transaction, items in the sequence were bought separately. s is a 5-sequence.

A sequence < $189...8p, > Is a sub-sequence of another sequence < s s)...s,, > if there exist integers
i1 < iy < ... <ip such that s; C 5,80 C 8} ,...,5, C sgn. For example, the sequence s’ = < (2) (5) >
is a sub-sequence of s because (2) C (2, 3) and (5) C (5). However < (2) (3) > is not a sub-sequence
of s since items were not bought during the same transaction.

All transactions from the same customer are grouped together and sorted in increasing order and are
called a data sequence. A support value (supp(s)) for a sequence gives its number of actual occurrences
in DB'. In other words, the support of a sequence is defined as the fraction of total data sequences
that contain s. A data sequence contains a sequence s if s is a sub-sequence of the data sequence.
In order to decide whether a sequence is frequent or not, a minimum support value (minSupp) is

specified by user, and the sequence is said frequent if the condition supp(s) > minSupp holds.

Given a database of customer transactions the problem of sequential pattern mining is to find all
sequences whose support is greater than a specified threshold (minimum support). Each of which
represents a sequential pattern, also called a frequent sequence.

The task of discovering all frequent sequences in large databases is quite challenging since the search
space is extremely large (e.g. with m attributes there are O(m*) potentially frequents sequences of
length k) [16]. To the best of our knowledge, the problem of mining sequential patterns according to
the previous definitions has received relatively little attention. Closer to the problem definition is the
SPADE approach [16] where a very efficient Lattice based algorithm is proposed.

We now briefly review the GSP algorithm. Basically, exhibiting frequent sequences requires firstly
retrieving all data sequences satisfying the minimum support. These sequences are considered as
candidates for being patterns. The support of candidate sequences is then computed by browsing the
database. Sequences for which the minimum support condition does not hold are discarded. The result
is the set of frequent sequences.

For building up candidate and frequent sequences, the GSP algorithm makes multiple passes over the
database. The first step aims to compute the support of each item in the database. When completed,
frequent items (i.e. satisfying the minimum support) are discovered. They are considered as frequent 1-
sequences (sequences having a single itemset, itself being a singleton). The set of candidate 2-sequences
is built according to the following assumption: candidate 2-sequences could be any couple of frequent
items, embedded in the same transaction or not. Frequent 2-sequences are determined by counting the
support. From this point, candidate k-sequences are generated from frequent (k-1)-sequences obtained
in pass-(k-1). The main idea of the candidate generation is to retrieve, among (k-1)-sequences, couples
of sequences (s, s') such that discarding the first element of the former and the last element of the
latter results in two sequences fully matching. When such a condition holds for a couple (s, '), a new
candidate sequence is built by appending the last item of s’ to s. The supports for these candidates
are then computed and those with minimum support become frequent sequences. The process iterates
until no more candidate sequences are formed.

2.2 Incremental mining on discovered sequential patterns

Let DB be the original database and minSupp the minimum support. Let db be the increment
database where new transactions or new customers are added to DB. We assume that each transaction
on db has been sorted on customer-id and transaction time. U = DB U db is the updated database
containing all sequences from DB and db.

Let L”B be the set of frequent sequences in DB. The problem of incremental mining of sequential
patterns is to find frequent sequences in U, noted LY, with respect to the same minimum support.

1A sequence in a data sequence is taken into account only once to compute the support even if several occurrences
are discovered.



Cust-Id Itemsets
C1 10 20 | 20 | 50 70 Itemsets
C2 10 20 | 30 40 50 60 70 | 80 100
C3 10 20 | 40 30 50 60 80 90
C4 60 90
(DB) (db)

Figure 1: An original database (DB) and an increment database with new transactions (db)

Cust-Id Itemsets
Cl1 10 20 | 20 | 50 70 Itemsets
C2 10 20 | 30 40 50 60 70 | 80 100
C3 10 20 | 40 30 50 60 80 90
C4 60 90
C5 10 40 70 80
(DB) (ab)

Figure 2: An original database (DB) and an increment database with new transactions and new
customers (db)

Furthermore, the incremental approach has to take advantage of previously discovered patterns in
order to avoid re-running mining algorithms when the data is updated.

First, we consider the problem when new transactions are appended to customers already existing
in the database. In order to illustrate this problem, let us consider the base DB given in figure 1,
reporting facts about a population reduced to a mere four customers. Each transaction is ordered
according to its time-stamp. For instance, the sequence of customer C3 is < (10 20) (40) (30) >.
Let us assume that the minimum support value is 50%, thus to be considered as frequent a sequence
must be observed for at least two customers. The set of frequent sequences embedded in the database
is the following: LPB = {< (10 20) (30) >, < (10 20) (40) >}. After some update activities, let
us consider the increment database db (described in figure 1) where new transactions are appended
to customers C2 and C3. Assuming that the support value is the same, the two following data
sequences < (60) (90) > and < (10 20) (50 70) > become frequent after database update since they
have sufficient support. Let us consider the first one. The sequence is not frequent in DB since the
minimum support does not hold (it only occurs for the last customer). With the increment database,
this sequence becomes frequent since it appears in the sequences of the customer C3 and C4. The
sequence < (10 20) > could be detected for customers C'1, C2 and C3 in the original database. By
introducing the increment database the new frequent sequence < (10 20) (50 70) > is discovered be-
cause it matches with transactions of C'l and C2. Furthermore new frequent sequences are discovered:
< (10 20) (30) (50 60) (80) > and < (10 20) (40) (50 60) (80) >. < (50 60) (80) > is a frequent
sequence in db and when scanning DB we find that the frequent sequences in LP? were its predecessor.

Let us now consider the problem when new customers and new transactions are appended to the original
database (figure 2). Let us consider that the minimum support value is still 50%, thus to be considered
as frequent a sequence must now be observed for at least three customers since a new customer C5
has been added. According to this constraint the set of frequent sequences embedded in the database
becomes LPB = {< (10 20) >} since the sequences < (10 20) (30) > and < (10 20) (40) > occur
only for customers C2 and C3. Nevertheless, the sequence < (10 20) > is frequent since it appears
in the sequences of customer C'1, C2 and C3. By introducing the increment database, the set of



LPB Frequent sequences in the original database.

L‘f” Frequent 1-sequences embedded in db and validated on U.
candEzt | Candidate sequences generated from db.
freqExt | Frequent sequences obtained from candFEzt and validated on U.
freqSeed | Frequent sub-sequences of L”P extended with items of L.
candInc | Candidate sequences generated by appending sequences of
freqExt to sequences of fregSeed.
freqInc | Frequent sequences obtained from candInc and validated on U.
v Frequent sequences in the updated database.

Table 1: Notation for Algorithm

frequent sequences in the updated database is LY = {< (10 20) (50) >, < (10) (70) >, < (10) (80) >,
< (40) (80) >, < (60) >}. Let us have a closer look to the sequence < (10 20) (50) >. This
sequence could be detected for customer C1 in the original database but it is not a frequent sequence.
Nevertheless, as the item 50 becomes frequent with the increment database, this sequence also matches
with transactions of C2 and C3. In the same way, the sequence < (10) (70) > becomes frequent since,
with the increment, it appears in C'1, C2 and the new customer C5.

3 ISE algorithm

In this section we introduce the ISE algorithm for computing frequent sequences in the updated
database. First we describe our method for efficiently mining new frequent sequences using infor-
mation collected during an earlier mining process. Then we present our algorithm. Optimization
techniques are also addressed.

3.1 An overview

Basically we solve the problem of incremental mining of frequent sequences using information previously
discovered. Let us consider that k stands for the length of the longest frequent sequences in DB. We
decompose the problem into the two following sub-problems:

1. Find all new frequent sequences of size 7 < (k + 1). During this phase three kinds of frequent
sequences are considered. First, sequences embedded in DB could become frequent since they
have sufficient support with the incremental database, i.e. sequences similar to sequences embed-
ded in the original database appear in the increment. Next, new frequent sequences embedded in
db but not appearing in the original database. Finally, sequences of DB might become frequent
when adding items of db.

2. Find all frequent sequences of size j > (k+ 1).

The second sub-problem can be solved in a straightforward manner since we are provided with
frequent all (k + 1)-sequences discovered in the previous phase. Applying a GSP-like approach at the
(k + 1)** step, we can generate candidate (k 4 2)-sequences and repeat the process until all frequent
sequences are discovered. At the end of this phase all frequent sequences embedded in U are found.
Hence, the problem of incremental mining of sequential patterns is reduced to the problem of finding
frequent sequences of size j < (k + 1).

We summarize in Table 1 the notation used in the algorithm.

To discover frequent sequences of size j < (k + 1), the ISE algorithm executes iteratively. Since the
main consequence of adding new customers is to verify the support of the frequent sequences in LP5,



in the following we first illustrate iterations through examples mainly concerning added transactions
to existing customers. Finally, example 6 illustrates the behavior of ISE when new transactions and
new customers are added to the original database.

3.1.1 First iteration

In the first pass on db, we count the support of individual items and we are provided with 1-candExt
standing for the set of items occurring at least once in db. Considering the set of items embedded in
DB we determine which items of db are frequent in U. This seed set is called L{°.

At the end of this pass, we prune out frequent sequences in LPZ no more verifying the minimum
support.

Example 1 Let us consider the increment database of figure 1. When scanning db we find the support
of each individual item during the pass over the data: {(< (50) >, 2), (< (60) >, 2), (< (70) >,
1), (< (80) >, 2), (< (90) >, 1), (< (100) >, 1)}. Let us consider that during a previous mining on
DB we are provided with the items embedded in DB with their support:

item | 10| 20 | 30 | 40 | 50 | 60 | 70 | 90
support | 3 | 3 | 2 | 2 |1 | 1|1 1

Combining these items with the result of the scan on db, we obtain the set of frequent 1-sequences which
are embedded in db and frequent in U: L = {< (50) >, < (60) >, < (70) >, < (80) >, < (90) >}.

We use the frequent 1-sequences in db to generate new candidates. The candidate generation operates
by joining L% with L and yields the set of candidate 2-sequences. We scan on db and obtain the
2-sequences embedded in db. Such a set is called 2-candFzt. This phase is quite different from the
GSP approach since we do not consider the support constraint. We assume, according to Lemma, 2
(Cf. Section 3.2), that a candidate 2-sequence is in 2-candEzt if and only if it occurs at least once in
db. The main reason is that we do not want to provide the set of all 2-sequences, but rather to obtain
the set of potential extensions of items embedded in db. In other words, if a candidate 2-sequence does
not occur in db it cannot of necessity be an extension of an original frequent sequence of DB, and then
cannot give a frequent sequence for U. In the same way, if a candidate 2-sequence occurs in db, this
sequence might be an extension of previous sequences in DB.

Next, we scan U to find out frequent 2-sequences from 2-candExt. This seed set is called freqFExt and
it is achieved by discarding from 2-candFzt, 2-sequences not verifying the minimum support.

Example 2 Let us consider LY in the previous exzample. From this set, we can generate the following
sequences < (50 60) >, < (50) (60) >, < (50 70) >, < (50) (70) >, ..., < (80) (90) >. To discover 2-
candExt in the updated database, we only have to consider if an item occurs at least once. For instance,
since the candidate < (50) (60) > does not appear in db, it is no more considered when scanning U.
At the end of the scan on U with remaining candidates, we are thus provided with the following set of
frequent 2-sequences, 2-freqExt = {< (50 60) >, < (50) (80) >, < (50 70) >, < (60) (80) >}.

An additional operation is performed on the items discovered frequent in db. Based on the following
property and Lemma 2 (Cf. Section 3.2) the main idea is to retrieve in DB the frequent sub-sequences
of LPB preceding, according to the timewise order, items of db.

Property 1 If A C B for sequences A, B then supp(A) > supp(B) because all transactions in DB
that support B necessarily support A also.

In order to efficiently find frequent sub-sequences preceding an item we create for each frequent
sub-sequence an array that has as many elements as the number of frequent items in db. When
scanning U, for each data sequence and for each frequent sub-sequence we check whether it is contained



in the data sequence. In such a case, the support of each item following the sub-sequence is incremented.

During the scan for finding out 2-freqFxt, we also obtain the set of frequent sub-sequences preceding
items of db. From this set, by appending the items of db to the frequent sub-sequences we obtain a
new set of frequent sequences of size j < (k + 1). This set is called fregSeed. In order to illustrate
how this new set of frequent sequences is obtained, let us consider the following example.

‘ Items ‘ Frequent sub-sequences ‘

50 | < (10) > (20) < (30) > < (40) >
< (10) (3 ) (10) (40) >o < (20) (3 ) 2 < (20) (40) >2 < (10 20) >

< (10 20) (3 ) >9 < (10 20) (40) >4

60 | < (10) >9 (20) < (30) >2 < (40) >
< (10) (30) >2 (10) (40) >2 < (20) (3 ) >9 < (20) (40) >2 < (10 20) >o
< (10 20) (30) >2 < (10 20) (40) >9

70 | < (10) >2 < (2())
< (10 20) >

80 | < (10) > (20) < (30) >2 < (40) >
< (10) (30) >2 < ( )( 0) >2 < (20) (3 )>2 < (20) (40) >2 < (10 20) >2
< (10 20) (30) >2 < (10 20) (40) >4

90 -

Figure 3: Frequent sub-sequences occurring before items of db

Example 3 Let us consider the item 50 in L. For customer C1, 50 is preceded by the following
frequent sub-sequences: < (10) >, < (20) > and < (10 20) >. If we now consider customer Co with
the updated transaction, we are provided with the following set of frequent sub-sequences preceding 50:
< (10) >, < (20) >, < (30) >, < (40) >, < (10 20) >, < (10) (30) >, < (10) (40) >, < (20) (30) >
< (20) (40) >, < (10 20) (30) > and < (10 20) (40) >. The process is repeated until all transactions
are examined. We report in figure 8 the frequent sub-sequences as well as their support in U.

Let us now examine item 90. Even if the sequence < (60) (90) > could be detected for Cs and Cy, it is
not considered since 60 was not frequent in the original database, i.e. 60 ¢ LPB. In fact, this sequence
will be discovered as frequent in the next phases of the algorithm.

The set freqSeed is obtained by appending to each item of L% its associated frequent sub-sequences.
For example, if we consider item 70, then the following sub-sequences are inserted into freqSeed:
< (10) (70) >, < (20) (70) > and < (10 20) (70) >

At the end of the first scan on U, we are thus provided with a new set of frequent 2-sequences (in
2-freqExt) as well as a new set of frequent sequences having a length lower or equal to k+1 (in fregSeed).
In subsequent iterations we are led to discover frequent sequences not yet embedded in fregSeed and
2-freqExt. In fact, for generating (k + n)-sequences, with n > 1, we need all frequent (k + 1)-sequences.
For instance, if we want to show that < (10 20) (40) (50 60) > is a frequent sequence it must
be generated as a candidate. According to the GSP generation, this can only be done if we are
provided with the two following frequent sequences: < (20) (40) (50 60) > and < (10 20) (40) (50) >
Nevertheless, with the previous step we only obtain the last one.

3.1.2 ;' iteration (with j < (k +1))

Let us assume that we are at the j** pass with j < k + 1. In these subsequent iterations, we start
by generating new candidates from the two seed sets found in the previous pass. The main idea of
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Figure 4: maximal frequent sequences such as j < (k + 1)

the candidate generation is to retrieve among sequences of freqSeed and j-freqFrt, two sequences
(s € freqSeed, s' € j-freqgExt) such as an item i € L% is the last item of s and the first item of s'.
When such a condition holds for a couple (s,s'), a new candidate sequence is built by dropping the
last item of s and appending s’ to the remaining sequence. Furthermore, an additional operation is
performed on j-freqkExt, we generate, using the same candidate generation algorithm as in GSP, new
candidate (j+1)-sequences from j-freqEzt. Candidates occurring at least once in db, are inserted in
the (j + 1)-candExt set. The supports for all candidates are then obtained by scanning U and those
with minimum support become frequent sequences. The two seed sets become respectively freqlnc
and (j + 1)-freqEzt. These two sets are then used to generate new candidates. The process iterates
until all frequent sequences are discovered or j = k + 1.

At the end of this phase, LUk+1  the set of all frequent sequences having a size lower or equal to k + 1,
is obtained from LP® and maximal sequences from fregSeed ] freqInc|]) freqExt.

Example 4 Considering our example, we know that k = 3, i.e. the longest size of the frequent
sequences in LPB. We can thus generate from freqExt a new candidate sequence < (50 60) (80) >
since its size is equal to k.

Let us now consider how new frequent sequences are generated from freqSeed and 2-freqFExt. Let us
consider the sequence s =< (20) (40) (50) > from freqSeed and s' =< (50 60) > from 2-freqExt.
The new candidate sequence < (20) (40) (50 60) > is obtained by dropping 50 from s and appending s'
to the remaining sequence.

The mazximal frequent sequences such as j < (k + 1) are listed in figure 4.

3.1.3 ;' iteration (with j > (k +1))

Now, as all frequent sequences of size 7 < (k4 1) are discovered, we find the new frequent j-sequences
in LY where j > k + 1. First we extract from the three seed sets (freqSeed, freqExt and freqInc)
the frequent (k+1)-sequences. New candidate (k+2)-sequences are then generated applying a GSP like
approach and the process iterates until no more candidates are generated.

Pruning out non maximal sequences, we are provided with LV the set of all frequent sequences in the
updated database.



Example 5 From the frequent (k-+1)-sequences discovered in the previous exzample, we can generate the
following candidates: < (10 20) (30) (50 60) >, < (10 20) (40) (50 60) >, < (20) (30) (50 60) (80) >
and < (20) (40) (50 60) (80) >. As they are frequent in U, they can be used to generate candidates
for the next step, and at the end of the process we are provided with the two frequent sequences:
< (10 20) (30) (50 60) (80) > and < (10 20) (40) (50 60) (80) >.

For easy understanding, we graphically describe in figure 5 processes in the first and ;% (with j <

(k + 1)) iterations.
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Figure 5: Processes in the first and j** (with j < (k + 1)) iterations of ISE

In order to illustrate how new customers are also taken into account in the ISE algorithm, let us
consider the following example.

Example 6 Let us now consider figure 2 when a new customer as well as new transactions are added
to the original database. When scanning db we find the support of each individual item during the pass
over the data: {(< (10 >, 1), (< (40) >,1), (< (50) >,2), (< (60) >,2),(< (70) >,2),(< (80) >,3), (<
(90) >,1),(< (100),1) >}. Combining these items with LPB, we obtain LI = {< (10) >, < (40) >
, < (50) >, < (60) >, < (70) >, < (80) >}. As one customer is added, to be frequent, a sequence must
appear in at least three transactions. Let us now consider LPB. The set LPB becomes : {(< (10),4 >
), (< (20) >,3),(< (40) >,3). That is to say that the item 30 is pruned out from LPB since it is no
more frequent. According to Property 1, the set LYP is reduced to {(< (10 20),3 >) and LY is pruned
out because the minimum support constraint does not hold anymore. We can now generate from L‘lib
new candidates in 2-candExt: {< (10 40) >, < (10) (40) >, < (10 50) >,... < (70) (80) >}. When
scanning db, we prune out candidates not occurring in the increment and we are provided with candidate
2-sequences occurring at least once in db. Next we scan U for verifying 2-candidates and sequences
of the updated LPB preceding, according to the timewise order, sequences of L‘lﬂ’. There is only three



candidate sequences verifying the support: 2-freqExt = {< (10) (70) >, < (10) (80) > < (40) (80)}.
Let us now have a closer look to frequent sequences occurring before items of LE:

‘ Items ‘ Frequent sub-sequences ‘

10 | < (10) > < (20) >¢ < (10 20) >¢
40 | < (10) >2 < (20) >2 < (10 20) >,
50 | < (10) >3 < (20) >3 < (10 20) >3
60 | < (10) >2 < (20) >2 < (10 20) >,
70 | < (10) >2 < (20) >2 < (10 20) >9
80 | < (10) >2 < (20) >2 < (10 20) >9

The minimum support constraint holds only for sequences preceding item 50. Then, we have:
freqgSeed = {< (10 20) (50) >}. Since, we cannot generate new candidates from freqSeed
and 2-freqExt, the process complete and all mazimal frequent sequences are stored into LV = {<
(10 20) (50) >, < (10) (70) >, < (10) (80) >, < (40) (80) >, < (60) >}.

3.2 The ISE Algorithm

Based on the above discussion, the ISE algorithm is presented.

Algorithm ISE

Input: DB the original database, LP? the set of frequent sequences in DB, the support of each item
embedded in DB, db the increment database, minSupp the minimum support threshold and k the
size of the maximal sequences in LPB.

Output: The set LY of all frequent sequences in U = DB U db

Method:

//First Iteration
L« 0
foreach ¢ € db do
if (supportppas(i) > minSupp) then L« LY {i};
enddo

Prune out from LPB

sequences no more verifying the minimum support;
2-candExt < generate candidate 2-sequences by joining L% with L%;
// find sequences occurring in db
scan db for 2-candFExt;
generate from LB the set of frequent sub-sequences;
Scan U to validate candidates of 2-candExt and frequent sub-sequences occurring before
items of L;
freqSeed < frequent sub-sequences occurring before items of L‘lﬂ’ and appended with the item;
2-freqExt < frequent sequences from 2-candExt;

// it Iteration (with §j < (k+ 1))
=2
While (j-freqEzt!=0 AND j < (k+1)) do
candInc < generate candidates from freqSeed and j-freqFExt;
I+
j-candExt < Generate candidate j-sequences from j-freqFExt;
// find sequences occurring in db
scan db for j-candFExt;
if (j-candEzt!=0 OR candInc!=0)then
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Scan U for j-candExt and candInc;
endif
j-freqExt < frequent j-sequences;
freqgInc < freqlnc + candidates from candInc verifying the support on U;
enddo
LY « LPB |J {maximal frequent sequences in freqSeed |J freqInc ) freqExt};

// i Iteration (with j > (k+ 1))
For each k + 1-sequence found apply GSP until all frequent sequences are discovered;

LY « LY |J {maximal frequent sequences obtained from the previous step};
end Algorithm ISE

To prove that ISE provides the set of frequent sequences embedded in U, we first show in the two
following lemmas that every new frequent sequence can be broken down in two sub-sequences. The
former is a frequent sequence into the original database while the latter occurs at least once in the
updated data.

Lemma 1 Let F be a frequent sequence on U such that F does not appear in LPB. Then F is such
that its last itemset occurs at least once in db.

Proof:

e case |F| = 1: Since F ¢ LPB, F contains an itemset occurring at least once in db, thus F ends
with a single itemset occurring at least once in db.

e case |F| > 1 Let S denote a frequent sequence on U, that Iis,
S=< < A > < B > > with A and B sequences such that 0 < |4| < |F|, 0 < |B| < |F|,
|A| + |B| = |F| and B ¢ db. Let Mp be the set of all data sequences containing B. Let Map
be the set of all data sequences containing F. We know that if |Mpg| = n and |Mag| = m then
o < m < n. Furthermore Myp € DB (since B ¢ db and transactions are ordered by time) then
<< A >< B > >isfrequent on DB and S € LPB. Thus if a sequence F does not appear
in LPB_ F ends with an itemset occurring at least once in db O

Lemma 2 Let F = < <D > < 8> >, where D and S are two sequences verifying |D| > 0, |S| > 1,
be a frequent sequence in U such that F does not appear in LPB, then S occurs at least once in db and
D s included in (or is) a frequent sequence from LPB.

Proof:

e case |S| = |F|: thus [D| =0 and D € LPB.

e case 1 < |S| < |F|: that is, D =< (i1)(42)-.(¢j—1) > and S =< (i;)..(iz) > where S is the
maximal sub-sequence ending F' and occurring at least once in db (from Lemma 1 we know that
|S| > 1). Let M be the set of all data sequences containing F' and time,, the update time stamp.
Vse M,s=<<A><B>> /Vie A, time; < time,, VYj € B, time; > time,, we have
< (ij-1)(45)..(it) >¢ B (since S is the maximal sub-sequence ending F' and occurring at least
once in db). Thus, since Vi, M; contains F, and since transactions in the database are ordered
by increasing transaction-time, < (i1)(42)..(¢j—1) >C A. Thus Vs € M, 3JA a sub-sequence
beginning s such that A € DB, D C A. Thus D € LP? O

Considering the two sub-sequences of a new frequent sequence, we show that the latter is generated as
a candidate extension by ISE.
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Lemma 3 Let F be a frequent sequence on U such that F does not appear in LPB and |F| < k+1. F
can be written as < < D > < S > > where D and S are two sequences verifying |D| > 0 and |S| > 1,
S occurs at least once in db, D is included in (or is) a frequent sequence from LPB and S is included
in candFExt.

Proof: Thanks to Lemma 2, we only have to show that S is occurring in candFExt.

e case S is a one transaction sequence, reduced to a single item: S is thus found at the first scan
on db and added to 1-candExt.

e case S contains more than one item: candFExt is built 'a la GSP’ from all frequent items in db
and is thus a superset of all frequent sequences on U occurring in db and having length < k + 1
a

The following Theorem guarantees the correctness of the ISE approach at the (k + 1) step. Then,
a GSP-like approach is applied based on the maximal frequent sequences obtained from fregSeed |J
freqInec | freqExt.

Theorem 1 Let F be a frequent sequence on U such that F does not appear in LPP and |F| < k + 1.
Then F is generated as a candidate by ISE.

Proof: From Lemma 2 let us consider different possibilities for S.
e case S = F: Thus S will be generated in candExzt (Lemma 3) and added to freqExt.
e cases S # F:

— case S is a one transaction sequence, reduced to a single item i: Thus < < D > < () > >
will be considered in the association made by freqSeed.

— case S contains more than one item: Let us consider 41, the first item from the first itemset of
S. i1, is frequent on db, thus < < D > < (i1,) > > will be generated in fregSeed. According
to Lemma 3, S is occurring in freqFExt and will be used by ISE to build < < D > < § > >
in candInc and added to freqlinc O

3.3 Optimizations

In order to speed up the performance of the ISE algorithm we consider two optimization techniques
for generating candidates.

As the speed of algorithm for mining association rules, as well as sequential patterns, depends very
much on the size of the candidate set, we first improve performance by using information on items
embedded in L%, i.e. frequent items in db. The optimization is based on the following lemma:

Lemma 4 Let us consider two sequences (s € freqSeed,s' € freqExt) such as an item i € L is the
last item of s and the first item of s'. We do not generate a new candidate by appending s' to s if there
exists an item j € L% such as j is in s’ and j is not preceded by s.

proof: If s is not followed by j, then < s j > is not frequent. Hence < s s’ > is not frequent since
there exists a not frequent sub-sequence of < s s’ >.

Using this lemma, at the j%* iteration, with j < (k+1), we can reduce the number of candidates signif-
icantly. In our experiments, the number of candidates was reduced by nearly 40%. The only additional
cost is to find for each item occurring in the second sequence whether there is a frequent sub-sequence
matching the first one. As we are provided with an array storing for each frequent sub-sequence
the items occurring after the sequence, the additional cost of this optimization is relatively inexpensive.

In order to illustrate this optimization, let us consider the following example.
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ID| | Number of customers (size of Database)

|C| | Average number of transactions per Customer

|T| | Average number of items per Transaction

IS| | Average length of maximal potentially large Sequences

[T | Average size of Itemsets in maximal potentially large sequences
Ng | Number of maximal potentially large Sequences

N7 | Number of maximal potentially large Itemsets

N | Number of items

I~ | Number of itemsets removed from U in order to build db

D% | Percentage of updated transactions in U

C% | Percentage of customers removed from U in order to build db

Table 2: Parameters

Example 7 Let us consider the frequent sequence s € 2-freqExt such as s =< (50 70) >. We have
found in freqSeed the following frequent sequence < (10) (30) (50) >. According to the previous
generation phase, we would generate < (10) (30) (50 70) >. Nevertheless, the sequence < (10) (30) >
is never followed by 70. So, we can conclude that < (10) (30) (70) > is not frequent. This sequence is
a sub-sequence of < (10) (30) (50 70) >, thus before generating we know that < (10) (30) (50 70) > is
not frequent. Hence, this last sequence is not generated.

The main concern of the second optimization is to avoid generating candidate sequences that were
already found frequent in a previous phase. In fact, when generating a new candidate by appending a
sequence of freqFExt to a sequence of freqSeed we first test if this candidate was not already discovered
frequent in the freqSeed set. In this case the candidate is no longer considered. Asillustration, consider
that < (30) (40) > is a frequent sequence in 2- freqEzt. Let us now assume that < (10 20) (30) (40) >
and< (10 20) (30) > are frequent in freqSeed. From the last sequence the generation would provide
the following candidate < (10 20) (30) (40) > which was already found frequent. This optimization
reduces the number of candidates before scanning U at a negligible cost.

4 Experiments

In this section, we present the performance results of our ISE algorithm and the GSP algorithm. All
experiments were performed on an Enterprise 2 (Ultra Sparc) Station with a CPU clock rate of 200
MHz, 256M Bytes of main memory, UNIX System V Release 4 and a non local 9G Bytes disk drive
(Ultra Wide SCSI).

4.1 Datasets

We used synthetic datasets to study the algorithm performance. The synthetic datasets were first
generated using the same techniques as introduced in [13]2. The generation of DB and db was performed
as follows. As we would like to model very well real life updates, like in [5], we first generated all the
transactions from the same statistical pattern, then databases of size |U|=|D B+db| were first generated.
In order to assess the relative performance of ISE when new transactions were appended to customers
already existing in DB, we removed itemsets from the database U using the user defined parameter
I~. The number of transactions which were modified was provided by the parameter D% standing for
the percentage of transactions modified. The transactions embedding removed itemsets were randomly
chosen according to D”. Finally, removed transactions were stored in the increment database db while
remaining transactions were stored in the database DB. In the same way, in order to investigate the

*The synthetic data generation program is available at the following URL (http://www.almaden.ibm.com/cs/quest).
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Name |C|
C9-I4-N1K-D50K 9
(C9-14-N2K-D100K 9
C12-12-N2K-D100K | 12
C12-14-N1K-D50K 12
C13-13-N20K-D500K | 13
C15-14-N30K-D600K | 15
C20-I4-N2K-D800K | 20

N D]
1,000 | 50,000
2,000 | 100,000
2,000 | 100,000
1,000 | 50,000

20,000 | 500,000
30,000 | 600,000
2,000 | 800,000

A | o i Do | T

Table 3: Parameter values for synthetic datasets

behavior of ISE when adding new customers, the number of removed customers from U was provided
by the parameter C%.

Table 2 gives the list of the parameters used in the data generation method and Table 3 shows the
databases used and their properties. For experiments we first investigate the behavior of ISE when
adding new transactions. For these experiments, I~ was set to 4 and D% was set to 90%. Finally
when studying the performance of our algorithm with new customers C% was set to 10% and 5%.

4.2 Comparison of ISE with GSP

In this section, we compare the naive approach, i.e. using GSP for mining the updated database
from scratch, and our incremental algorithm. We also test its scale up as the number of transactions
increases. Finally, we have carried out experiments for analyzing the performance of the ISE algorithm
according to the size of updates.

4.2.1 Naive vs. ISE algorithm

Figure 6 shows experiments conducted on the different datasets using different minimum support
ranges to get meaningful response times. Note the minsupport thresholds are adjusted to be as low
as possible while retaining reasonable execution times. The label “Incremental Mining” corresponds
to the ISE algorithm while “GSP” stands for GSP used for mining the updated database from scratch.
“Mining from scratch” will be explained in Section 4.3.

Figure 6 clearly indicates that the performance gap between the two algorithms increases with decreas-
ing minimum support. We can observe that ISE is 3,5 to 4 times faster than running GSP from scratch.
It can also be noticed that ISE outperforms GSP for small support as well as large support value: ISE
is still 2,5 to 3 times faster for large support. The same results are found even if the number of itemsets
is large. For instance, the last graph in figure 6 reports an experiment conducted for investigating the
effect of the number of itemsets on the performance. When the support is lower the GSP algorithm
provides the worst performance.

The reason is that the number of candidates generated for mining j-sequences with 7 < k + 1 is sub-
stantially reduced since candidate generation is based on items embedded in the increment database,
i.e. candidate sequences which do not have sufficient supports relative to db are pruned out before they
are verified by DB and are not used for generating sequences for candFExt. We will study in Section
4.3.1 the correlation between execution times and the number of candidates.

4.2.2 Performance in scaled-up databases

We examined how ISE behave as the number of total transactions is increased. We would expect the
algorithm to have near linear scaleup. This is confirmed by figure 7 which shows that ISE scales up
linearly as the number of transactions is increased ten-fold, from 0.1 million to 1 million. Experiments
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Figure 6: Execution times

were performed on the C12-14-N1K-D50K dataset with three levels of minimum support (2%, 1.5% and
1%). During our evaluation, the size of the increment database was always proportional (D% = 90%
and I~ = 4) to the number of new added transactions. The execution times are normalized with
respect to the time for the 0.1 million dataset.

4.2.3 Varying the size of added transactions

We have carried out some experiments for analyzing the performance of the ISE algorithm according
to the size of updates. We used the databases C13-I3-N20K-D500K and C12-12-N2K-D100K for ex-
periments with a threshold of respectively 0.6% and 0.4%. From these databases, we investigated the
performance of ISE when varying the number of itemsets removed from the generated database as well
as the number of clients. Transactions deleted were stored in the increment database db while the
remaining transactions were stored in the database DB. We first ran GSP for mining L”® and then
ran ISE on the updated database. Figure 8 shows the result of this experiment when considering the
time for ISE.

For the first one, we can observe that ISE is very efficient from 1 to 6 itemsets removed. The frequent
sequences in LY are obtained in less than 110 seconds. As the number of removed transactions increas-
es, the amount of time taken by ISE increases. For instance, when 10 itemsets are deleted from the
original database, ISE takes 180 seconds for 30% of transactions to 215 seconds if the items were deleted
from all the transactions. The main reason is that the amount of changes to the original database are
so numerous that the result obtained during an earlier mining are not helpful. Interestingly, we also

15



Relative Time
11
10

100 250 600 10!
Number of transactions (’000s)

Figure 7: Scale-up: Number of total transactions

(C13-13-N20K-D500K C12-12-N2K-D100K

Ttemsets

Figure 8: Size of updates

noticed that the time taken by the algorithm does not depend very much on the number of updated
transactions.

Let us consider the second surface, the algorithm takes more and more time as the number of itemsets
removed grows. Nevertheless, when 3 itemsets are removed from the generated database, ISE takes
only 30 seconds for discovering the set of all sequential patterns.

4.2.4 Varying the number of added customers

We assume, since it is realistic and well adapted to real applications, that the average size of the added
sequences is at most equal to the average size of the sequences embedded in the original database.
A first intuition could be to study the behavior of ISE when increasing the amount of new customers
added to the database. In fact, this naive idea could not be a significant indicator. This is because
when the number of new customers increase, then the number of occurrences of a sequence must also
be increased for verifying the minimum support constraint. Obviously, as at the beginning of the ISE
algorithm, we prune out from LPP frequent sequences not verifying anymore the support, so the more
of cutomers are added, the more of previous frequent sequences are pruned out. The main consequence
is that the number of frequent sequences decreases as well as the execution times.
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A much more interesting approach for evaluating ISE performance is to carry out experiments for
comparing execution times of GSP vs. ISE on different datasets when varying the minimum support.
We report in figure 9 experiments conducted on two datasets C9-14-N2K-D100K and C20-14-N2K-
D800K where respectively 10% and 5% of customers have been added. We can observe that ISE is very
efficient and even when adding customers it is nearly twice faster than applying GSP from scratch.

C9-14-N2K-D100K C20-I14-N2K-D800K
1800 20000
1600 GSP 17500 o ‘
1400 /
15000
1200
@ 12500
o 1000 Z
E 2 10000
800 i
600 7800 ISE
ISE
400 5000
200 2500
0 = i 0 —
08 079 078 077 0.76 075 0.74 0.73 0.72 071 0.7 R R R R R R R
Support (%) Support (%)

Figure 9: Execution times when 10% and 5% of customers are added to the original database

4.3 ISk for mining sequential patterns

In this section we investigate the performance of ISE for mining sequential patterns.

We have designed some experiments to analyze the performance of ISE when mining sequential patterns
using the same datasets as in Section 4.2.1. Nevertheless we performed the following operation on each
dataset. First we removed 6 items to 60% of transactions in order to provide the increment database.
Second we ran GSP for mining the k-frequent sequences in DB. Finally we ran ISE. Figure 6 shows the
result of the experiments and the label “Mining from scratch” corresponds to ISE for mining sequential
patterns. We can observe that ISE is 1,7 to 3 faster than GSP for mining sequential patterns. The
main reason for the performance gain is the reduction in the number of candidates. We study this
effect in the next section. As expected, we also can observe that using ISE for incremental mining
instead of mining from scratch is still efficient since the incremental mining is nearly twice faster than
mining from scratch.

4.3.1 Candidate Sets

In order to explain correlation between the number of candidates and the execution times we compared
the number of candidate sets generated by GSP and our algorithm. Results are depicted in figure 10.
As we can see, the number of candidates for GSP is nearly twice the number for ISE. Let us have a
closer look at low support. In the first graph, GSP generates more than 7000 candidates while ISE
generates only 4000 candidates. The same result is obtained in the second graph where GSP generates
more than 14000 while 8000 candidates are generated by our algorithm.

We have also designed some experiments to analyze the time spent in each phase of the algorithm.
Figure 11 shows the result of this experiment. Even if ISE is more efficient than using GSP from
scratch, we can see that finding sequential patterns at step &+ 1 is very time consuming. For instance,
at low level support, 0.22%, we spent nearly 400 seconds finding frequent sequences. Despite this delay,
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Figure 11: Time spent in each phase

obtaining frequent sequences at k + 1 is twice as fast as running GSP. Furthermore, as expected, the
time spent for finding frequent sequences at the next step, i.e. when 57 > K + 1 is the same for GSP
and ISE.

4.3.2 Varying the size of updates

Finally, in order to analyze the performance of ISE algorithm according to the size of updates, we
have carried out some experiments. Experiments were conducted on datasets C12-12-N2K-D100K and
C13-13-N20K-D500K with a threshold of 0.4%.

Let us consider the first surface in Figure 12. The best results are obtained when 5 itemsets are deleted
from the database. All frequent sequences are then obtained in less than 17 seconds. The algorithm is
still very efficient from 2 to 7 itemsets deleted but when 5 itemsets are deleted to 10 % of customer,
ISE is less efficient.

In the second surface of Figure 12, the performance of ISE is quite similar and best results are obtained
when 9 itemsets are removed from 80% of customers.
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5 Conclusion

In this paper we present the ISE approach for incremental mining of sequential patterns in a large
database. This method is based on the discovery of frequent sequences by only considering frequent
sequences obtained by an earlier mining. Our performance results show that the ISE method is very
efficient since it performs much better than re-run discovery algorithms when data is updated. We
found during empirical evaluations that the proposed approach was so efficient that it was quicker to
extract an increment from the original database then apply ISE for mining sequential patterns than
use the GSP algorithm.

Future work on incremental mining will be done in various directions. First, even if the incremetal
approach is applicable to the databases which allow frequent updates when new transactions or new
customers are added to an original database, many domains such as electronic commerce or web usage
mining impose that deletion or modification must be taken into account in order to save storage space
or because the information is out of interest or becomes invalid. We are currently investigating how to
manage these operations in the ISE algorithm.

Second, we are currently studying how to improve the whole process of incremental mining. According
to experiments we would like to find out some measures which can suggest to us when ISE should be
applied to find out the new frequent sequences in the updated database. In other context [9], such
an approach is proposed and is based on a sampling technique in order to estimate the difference
between the old and new association rules. We are currently investigating if when analysing the data
distribution of the original database we could find out other measures.
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