Web Usage Mining: How to Efficiently Manage
New Transactions and New Clients

F. Masseglia!”?, P. Poncelet?, and M. Teisseire?

! Laboratoire PRiSM, Univ. de Versailles, 45 Avenue des Etats-Unis, 78035 Versailles
Cedex, France
2 LIRMM UMR CNRS 5506, 161 Rue Ada, 34392 Montpellier Cedex 5, France
E-mail: {massegli, poncelet, teisseire}@lirmm.fr

Abstract. With the growing popularity of the World Wide Web
(Web), large volumes of data such as user address or URL requested
are gathered automatically by Web servers and collected in access log
files. Exhibiting relationships and global patterns that exist in these
large files, but are hidden among the vast amounts of data is usually
called Web usage mining. Recently, many interesting works have been
published in this context. Nevertheless, the large amount of input data
poses a maintenance problem. In fact, maintening global patterns is
a non-trivial task after access log file update because new data may
invalidate old client behavior and creates new ones. In this paper we
address the problem of incremental web usage mining, i.e. the problem
of mining user patterns when new transactions or new clients are added
to the original access log file.

keywords: data mining, Web usage mining, sequential patterns,
incremental mining.

1 Introduction

With the growing popularity of the World Wide Web (Web), large
volumes of data such as address of users or URLs requested are gathered
automatically by Web servers and collected in access log files. Analysis
of server access data can provide significant and useful information
for performance enhancement, restructuring a Web site for increased
effectiveness, and customer targeting in electronic commerce. Discovering
relationships and global patterns that exist in large access log files, but
are hidden among the vast amounts of data is usually called Web usage
mining [6].

Recently, many interesting works have been published in this context and
very efficient approaches have been proposed for mining user patterns
[11,6,14,16,4,9]. For instance, by analyzing informations from Web

servers, we are provided with interesting relationships such as: 60 % of
clients who wvisited /jdkl.1.6/docs/api/Package-java.io.html and
/jdkl.1.6/docs/api/java.io.BufferedWriter.html in the same trans-
action, also accessed /jdkl.1.6/docs/relnotes/deprecatedlist.html
within 30 days or 34 % of clients visited
/relnotes/deprecatedlist.html within the 20th September and
the 30th October.

Nevertheless, the access log file is not a static file because new updates are
constantly being applied on it: new records are frequently added to record
client behaviors. The issue of maintening such user patterns becomes
essential because new transactions or new clients may be updated over
time. In this case, some existing user patterns would become invalid after
database while some new user patterns might appear. To the best of
our knowledge not much effort has been spent on maintening such user
pattern in the Web usage mining context.

In this paper we address the problem of incremental Web usage mining,
i.e. the problem of maintening user patterns over a significantly long
period of time. We propose an efficient approcah, called ISEWUM (Incre-
mental Sequence Extraction for Web usage mining), for maintaining user
patterns either when new transactions are added to the access log files or
when new visitors access the Web server.

The rest of this paper is organized as follows. In section 2, the problem
is stated and illustrated. Our proposal is described in section 3. Relat-
ed work, presented in section 4, is mainly concerned with mining user
patterns and incremental patterns mining approaches. Finally section 5
concludes the paper with some empirical evaluations and presents future
directions.

2 Problem statement

In this section we give the formal definition of the incremental Web usage
mining problem. First, however, we formulate the concept of Web usage
mining summarizing the formal description proposed in [11]. Second we
look at the incremental update problem in detail. A concrete example is
also provided.

2.1 User patterns in the Web Mining context

An input in the file log generally respects the Common Log Format spec-
ified by the CERN and the NCSA [5], an entry is described as follows
[12]:

(4

host user authuser [date:time] ¢‘request’’ status bytes

The entry parameters are listed in Table 1.

Variable |Meaning

host The name or IP address of the visitor.

user Any information returned by identd for this visitor (default value: “-”).
authuser|The visitor identifier if available (default value: “-”).

date Date (where date has the form Day/Month/Year).

time Time (in the form hh:mm:ss).

request |The first line of the HTTP request made by the visitor

(e.g. PUT or GET followed by the name of the requested URL).
status |The code yielded by the server in response to this request
(default value: “-”).

bytes The total number of sent bytes (without counting HT'TP header)
(default value: “-”).

Table 1. Entry parameters

Unlike the “market-basket” problem [1,2], where transaction is defined as
a set of items bought by a customer in a single purchase, each log entry
in the Web mining is a separate transaction. Like in [11], we propose to
cluster together entries, sufficiently close over time by using a maximum
time gap (At) specified by user.

Definition 1 Let Log be a set of server access log entries. Let T be
a set of all temporal transactions. A temporal transaction ¢, t € T, is
a triple t =< ip, timey, {UT1,UTs,...,UT,} > where for 1 < i < n,
UT,; is defined by UT; = ([lt.url,lt .time]...[It, url, It time]), such that
for 1 <k <m, l}fc € Log, lltc.ip = ipy, l,tc.url must be unique in UTy,
l,’fﬁ_l.tz’me - l};.time < At, timey = mawlggmlf.time.

From temporal transactions, data sequences are defined as follows:

! Without loss of generality, we assume in the following that a log entry is merely
reduced to the IP address which originates the request, the URL requested and a
time stamp.

Definition 2 A UT-sequence is a list of UTs ordered according to trans-
action times. In other words, given a set TV = {t; € T|1 < ¢ < k} of
transactions, a UT-sequence S for T' is: S =< UTy, ... UT;, >, where
timey; < timey,,,, for 1 <i <k —1. A k-UT-sequence, or k-sequence for
brevity, is a sequence of k¥ URLs (or of length k).

A UT-sequence, S¢, for a visitor ¢ is called a data-sequence or a user
pattern and is defined by: S, =< ip., UTy, UTy, ... UT;, > where, for
1<i<n,t; €T, and T, stands for the set of all temporal transactions
involving ¢, i.e. T, = {t € T|ip; = ip.}. The database, DB, consists of a
number of such data-sequences.

As a comparison with “market-basket” problem, UT-sequences are made
up of itemsets where each item is an URL accessed by a client in a trans-
action.

Definition 3 A UT-sequence S =< UTy,UTs,...,UT, > is a sub-
sequence of another UT-sequence S’ =< UT{,UTs,...,UT! >, noted
S < §', if there exist integers 4; < io < ... < i, such that UTy C UTj,
UT, CUT., ..., UTy C UTY..

Example 1 Let us consider the following URLs accessed by a visitor c:
AN Bt ot D2 EB the UT-sequence of ¢ is s =< (A) (B C) (D) (E)>.
This means that apart from B and C which were accessed together, i.e.
during a common transaction, URLs in the sequence were visited sepa-
rately.

The UT-sequence s’ = < (B) (E) > is a sub-sequence of s because (B) C
(B C) and (E) C (E). However < (B) (C) > is not a sub-sequence of s
since URLs were not accessed during the same transaction.

For aiding efficiently decision making, the aim is discarding non typical
behaviours according to end user’s viewpoint. Performing such a task
requires providing data sub-sequence s in the DB with a support value
(supp(s)) giving its number of actual occurrences in the DB2. In order
to decide whether a UT-sequence is frequent or not, a minimum support
value (minSupp) is specified by user, and the UT-sequence s is said
frequent if the condition supp(s) > minSupp holds.

From the problem statement presented so far, discovering user patterns
or sequential patterns resembles closely to mining association rules.

ZA sequence in a data-sequence is taken into account only once to compute the support
of a frequent sequence even if several occurrences are discovered.

However, elements of handled sequences are set of URLs (itemsets) and
not URLs (items), and a main difference is introduced with time concerns.

In order to describe how such a problem can be solved we now briefly
review the GSP algorithm [15] which is one the more efficient algorithm
for mining such patterns. Basically, exhibiting frequent sequences requires
firstly retrieving all data sequences satisfying the minimum support. These
sequences are considered as candidates for being patterns. The support
of candidate sequences is then computed by browsing the DB. Sequences
for which the minimum support condition does not hold are discarded.
The result is the set of frequent sequences. For building up candidate and
frequent sequences, the GSP algorithm makes multiple passes over the
database. The first step aims to compute the support of each item in the
database. When completed, frequent items (i.e. satisfying the minimum
support) are discovered. They are considered as frequent 1-sequences (se-
quences having a single itemset, itself being a singleton). The set of candi-
date 2-sequences is built according to the following assumption: candidate
2-sequences could be any couple of frequent items, embedded in the same
transaction or not. Frequent 2-sequences are determined by counting the
support. From this point, candidate k-sequences are generated from fre-
quent (k-1)-sequences obtained in pass-(k-1). The main idea of the candi-
date generation is to retrieve, among (k-1)-sequences, couples of sequences
(s, ') such that discarding the first element of the former and the last
element of the latter results in two sequences fully matching. When such
a condition holds for a couple (s, s'), a new candidate sequence is built
by appending the last item of s’ to s. The supports for these candidates
are then computed and those with minimum support become frequen-
t sequences. The process iterates until no more candidate sequences are
formed.

2.2 Incremental Web usage mining

Let DB be the original database and minSupp the minimum support.
Let db be the increment database where new transactions are added to
DB. We assume that each transaction on db has been sorted on visitor-id
and transaction time. U = DB U db is the updated database containing
all sequences from DB and db.

Let LPB be the set of frequent sequences in DB. The problem of
incremental mining of sequential patterns is to find frequent sequences in
U, noted LY, with respect to the same minimum support. Furthermore,

the incremental approach has to take advantage of previously discovered
patterns in order to avoid re-running mining algorithms when the data is

updated.

2.3 Example

Ip address Time URL accessed |
resl.newt.ac.uk 01/Jan/1998|/api/java.io.BufferedWriter. htm1|
resl.newi.ac.uk 01/Jan/1998|/api/java.util.zip.CRC32.html
resl.newi.ac.uk 04/Feb/1998 |/api/java.util.zip.CRC32.html
resl.newi.ac.uk 18/Feb/1998|/atm/logiciels.html
resl.newi.ac.uk 18/Feb/1998 |/relnotes/deprecatedlist.html
acasun.eckerd.edu 11/Jan/1998|/api/java.io.BufferedWriter.html
acasun.eckerd.edu 11/Jan/1998|/api/java.util.zip.CRC32.html
acasun.eckerd.edu 16/Jan/1998|/html4.0/struct/global .html
acasun.eckerd.edu 29/Jan/1998|/postgres/html -manual/query.html
acces. francomedia.qc.ca|05/Jan/1998|/api/ java.io.BufferedWriter.html
acces. francomedia.qc.ca|05/Jan/1998|/api/java.util.zip.CRC32.html |
acces. francomedia.qgc.ca|12/Feb/1998 |/postgres/html-manual/query.html |
acces. francomedia.qc.ca|16/Feb/1998|/html4.0/struct/global .html
ach3.pharma.mcgill.ca |06/Feb/1998 |/perl/perlre.html
ach3.pharma.mcgill.ca |08/Feb/1998 |/perl/struct/perlst.html

Fig. 1. An access-log file example

In order to illustrate the problem of incremental Web usage mining let us
consider the part of the access log file given in figure 1. Accesses are stored
for merely four visitors. Let us assume that the minimum support value
is 50%, thus to be considered as frequent a sequence must be observed for
at least two visitors. The only frequent sequences, embedded in the access
log, are the following:

< (/api/java.io.BufferedWriter.html /api/java.util.zip. CRC52.html)
(/html4.0/struct/global.html) >,

and

< (/api/java.io.BufferedWriter.html /api/java.util.zip.CRCGQ.html)
(/postgres/html-manual /query.html) >.

because they could be detected for both acasun.eckerd.edu and
access. francomedia.qc.ca.

Ip address Time URL accessed

acasun.eckerd.edu 8/Mar /1998 |/atm/logiciels.html
acasun.eckerd.edu 8/Mar /1998 |/perl/perlre.html

acasun.eckerd.edu 8/Mar /1998 |/relnotes/deprecatedlist.html
acasun.eckerd.edu 17/Mar/1998|/java-tutorial/ui/animloop.html
acasun.eckerd.edu 17/Mar/1998|/java-tutorial /ui/BufferedDate.html

acces. francomedia.qc.ca|06/Mar /1998
acces. francomedia.qc.ca|06/Mar /1998
acces. francomedia.qc.ca|12/Mar /1998
acces. francomedia.qc.ca|12/Mar /1998

/atm/logiciels.html
/perl/perlre.html
/java-tutorial/ui/animloop.html
/perl/struct/perlst.html

acahp.mg.edu
acahp.mg.edu
acahp.mg.edu

08/Mar /1998
08/Mar/1998
18/Apr /1998

/api/java.io.BufferedWriter.html
/postgres/html-manual/query.html
/relnotes/deprecatedlist.html

acahp.mg.edu

18/Apr/1998 |/ java-tutorial/ui/animloop.html

Fig. 2. An increment access log

Let us now consider the problem when new visitors and new transac-
tions are appended to the original access log file after some update ac-
tivities. Figure 2 describes the increment access log. We assume that
the support value is the same. As a new visitor has been added to
the access log file (acahp.mg.edu), to be considered as frequent a pat-
tern must now be observed for at least three visitors. According to
this constraint the set of user patterns of the original database is re-
duced to: <(/api/java.io.BufferedWriter.html /api/java.util.zip. CRC52.html) >.
This pattern is frequent since it appears in the sequence of the visitors:
resl.newi.ac.uk, acasun.eckerd.edu and acces.francomedia.qc.ca. Nev-
ertheless, by introducing the increment access log file, the set of frequent
sequences in the updated file is:

< (/api/java.io.BufferedWriter.html /api/java.util.zip. CRCs2.html)
(/atm/logiciels.html) >

< (/api/java.io.BufferedWriter.html) (/relnotes/deprecatedlist.html)>,

< (/api/java.io.BufferedWriter.html) (/java-tutorial/ui/animLoop.html>,

< (/ postgres/html-manual/ query.html) (/ java-tutorial /ui/animLoop.html>,
< (/perl/perlre.html)>.

Let us have a closer look to the sequence <(/api/java.io.BufferedWriter.html
/api/java.util.zip. CRCs2.html) (/atm/logiciels.html)>. This sequence could be
detected for visitor resl.newi.ac.uk in the original file but it is not a fre-
quent sequence. Nevertheless, as the URL /atm/logiciels.html occurs three

times in the updated file, this sequence also matches with transactions of
acasun.eckerd.edu and acces.francomedia.qc.ca.

Let us now consider the sequence <(/api/java.io.BufferedWriter.html)
(/relnotes/deprecatedlist.html)>. This sequence becomes frequent since, with
the increment, it appears in resl.newi.ac.uk, acasun.eckerd.edu and the
new visitor acahp.mg.edu.

3 Proposal

In this section we present our proposal. First we describe the WebTool
System architecture for taking into account added transactions into access
log file. Second we give an overview of the ISEWUM approach.

3.1 The architecture of the WebTool system

The architecture is depicted in figure 3. First let us consider the system
for mining user patterns from original database. For presenting our ap-
proach, we adopt the chronological viewpoint of data processing: from
collected raw data to exhibited knowledge. Like in [6], we consider that
the mechanism for discovering relationships and global patterns in Web
servers is a 2-phase process. The starting point of the former phase is data
automatically gathered by Web servers and collected in access log. First
a prepocessing phase removes irrelevant data (e.g. pages encompassing
graphics or sounds). Then the access log file is sorted with ip address as a
major key and transaction time as a minor key. Furthermore a clustering
of entries driven by time considerations is performed, i.e. we group togeth-
er entries that are sufficiently close according to the user-specified At in
order to provide temporal transactions. It results in a populated database
containing the meaningful remaining data: the set of all URL names and
their access times for the same client where successive log entries are with-
in At. A unique time stamp is associated with each such transaction and,
for efficiency, each URL is mapped into integer. In the second phase, data
mining techniques are applied in order to extract useful patterns. At the
end of this phase, user patterns as well as their associated support are
stored into the DBMS. Furthermore all parameters such as Af, the min-
imal support and the mapping of the original data are also stored in the
DBMS.

Next we consider the system for taking into account incremental user
patterns. According to data stored in the DBMS, irrelevant data is pruned
out from the increment access log file. Then, in the same way as the

Atl.-

Transformed - :
Data Eide TAt2
\‘
N

Accesslog
file

Origind file

Atn

| t A : Transformed Incrementa
ncrement Access > Mining
log file Data

Updated file

Fig. 3. An overview of the WebTool system

mining, the file is sorted with ip address as major key and transaction
time as minor key. Finally using informations stored in the DBMS about
cluster and mapping of data, the increment access log file is mapped into
integer. At the end of this phase, we are provided with number of new
transactions added to the original one and new visitors. The ISEWUM
approach is thus applied in order to exhibit new user patterns and prune
out invalid ones.

3.2 The ISEWuM approach

In this section we introduce the ISEWUM approach for mining us-
er patterns in the updated database. Basically we solve the problem
of incremental Web usage mining using information previously discovered.

Let us consider that k stands for the length of the longest frequent se-
quences in DB (in the previous example we have k = 3). We decompose
the problem into the two following sub-problems:

1. Find all new frequent sequences of size j < (k + 1). During this phase
three kinds of frequent sequences are considered:

— Sequences embedded in DB could become frequent since they
have sufficient support with the incremental database, i.e. same
sequences as in the original file appear in the increment.

— New frequent sequences embedded in db but we did not appear in
the original database.

— Sequences of DB might become frequent when adding items of db.
2. Find all frequent sequences of size j > (k + 1).

The second sub-problem can be solved in a straightforward manner
since we are provided with frequent (k + 1)-sequences discovered in the
previous phase. Applying a GSP-like approach at the (k + 1) step, we
can generate the candidate (k + 2)-sequences and repeat the process
until all frequent sequences are discovered. At the end of this phase all
frequent sequences embedded in U are found. Hence, the problem of
incremental mining of sequential patterns is reduced to the problem of
finding frequent sequences of size 7 < (k + 1).

To discover frequent sequences of size j < (k + 1), the ISEWuM ap-
proach contains a number of iterations. The first iteration starts at the size
one-sequences for the increment database. When 1-frequent sequences are
found in the updated database, they are used to generate new candidates
and to find previous frequent sequences in the original database occurring,
according to the timewise order, before such sequences. The main concern
of the next iterations is to find new j-candidates (j < (k + 1)) which can
be extension of frequent sequences previoulsy found. These features com-
bined together with the GSP-like approach when j > (k+1) form the core
of the ISEWUM approach and make our approach faster than re-run the
mining process from scratch, i.e. for the whole updated database. The first
iteration is address in the next part and is followed by the presentation
of the remaining iterations.

First iteration First, we scan the increment db and we count the support
of individual items. We are thus provided with the set of items occurring at
least once in db. Next, combining this set with the set of items embedded in
DB we determine which items of db are frequent in the updated database,
i.e. items for which the minimum support condition hold. Finally, as we
assume to be provided with the support of each frequent sequences of the
original database, we can update this support if new customers are added
in the increment.

Example 1 Let us consider our previous example of Figure 5. We assume
that access log entries have been mapped into integer for URL and that
transaction times are mapped into integer where the first date stands for
1 and the difference between two dates is mapped into the appropriate
integer. When scanning db we find the support of each individual item
during the pass over the data: {(< (1) >, 1), (< (3) >, 2), (< (4) >,

Ip address Time|URL accessed

resl.newi.ac.uk 1 1,2
resl.newi.ac.uk 4 2
resl.newi.ac.uk 18 3,4
acasun.eckerd.edu 11 1,2
acasun.eckerd.edu 16 5
acasun.eckerd.edu 29 6
acces. francomedia.qc.ca| 5 1,2

acces. francomedia.qc.ca| 12
acces. francomedia.qc.ca| 43
ach3.pharma.mcgill.ca | 37
ach3.pharma.mcgill.ca | 39

@ ~Jjort o™

Fig. 4. Original database DB where entries were mapped into integer

Ip address Time|URL accessed
acasun.eckerd.edu 68 3,4, 7
acasun.eckerd.edu 77 9,10

acces. francomedia.qc.ca| 66 3,7
acces. francomedia.qc.ca| 72 8,9
acahp.mg.edu 68 1,6
acahp.mg.edu 78 4,9

Fig. 5. increment database db where entries were mapped into integer

2), (< (6) >, 1), (< (7) >,2), (< (8) >, 1), (<(9)>,3), (<(10) >, 1)}.
Combining these items with the result of the mining on the initial database,
we obtain the set of frequent 1-sequences which are embedded in db and
frequent in U: {< (1) >, < (3) >, < (4) >, < (6) >, < (7) >, < (9) >}.
At the end of this phase we can update the support of previous frequent
1-sequences in LPB since a new customer is added to the transaction and
we obtain: LPP = {< (1) >, < (2) >}. In the same way we can delete
from LQDB sequences which are not frequent when a sub-sequence becomes
infrequent. We are thus provided with: LB = {< (1,2) >} where (1,2)
occurs three times in DB.

We use the frequent 1-sequences in db to generate new candidates. The
candidate generation operates by joining L% with L and yields the set
of candidate 2-sequences. We scan on db and obtain the 2-sequences em-
bedded in db. This phase is quite different from the GSP approach since
we do not consider the support constraint. We assume that a candidate
2-sequence is a 2-sequence if and only if it occurs at least once in db. The
main reason is that we do not want to provide the set of all 2-sequences,
but rather to obtain the set of potential extensions of items embedded
in db. In other words, if a candidate 2-sequence does not occur in db it
cannot of necessity be an extension of an original frequent sequence of
DB, and then cannot give a frequent sequence for U. In the same way,
if a candidate 2-sequence occurs in db, this sequence might be an exten-
sion of previous sequences in DB. Next, we scan the original database
to find out is these sequences are frequent in the updated database or not.

An additional operation is performed on the items discovered frequent
in db. The main idea of this operation is to retrieve in DB the frequent
sub-sequences of LPB preceding, according to the timewise order, items
of db. So, during the scan, we also obtain the set of frequent sub-sequences
preceding items of db. From this set, by appending the items of db to the
frequent sub-sequences we obtain a new set of frequent sequences of size
J<(k+1).

Example 2 Let us consider L% in the previous ezample. From this set,
we can generate the following sequences < (1 3) >, < (1) (3) >, < (14) >,
< (1) 4) >, ..., < (7) (9) >. Since the candidate < (1) (3) > does not
appear in db, it is no more considered when scanning U. At the end of
the scan on U with remaining candidates, we are thus provided with the
following set of frequent 2-sequences.

Let us now consider how frequent sub-sequences may be extended. Let us

consider the item 3 in L‘lﬂ’. For visitor resl.newi.ac.uk, 3 is preceded by
the following frequent sub-sequences: < (1) >, < (2) > and < (1 2) >. If
we now consider visitor acasun.eckerd.edu with the updated transaction,
we are provided with the following set of frequent sub-sequences preceding
5: < (1) >, < (2) > and < (1 2). The process is repeated until all trans-
actions are examined.

Let us now examine item 9. Even if the sequence < (6) (9) > could be
detected for Cs and Cy, it is not considered since 6 was not frequent in the
original database, i.e. 6 ¢ LPB. In fact, this sequence will be discovered
as frequent in the next phases of the algorithm.

The resulting set is obtained by appending to each item of L its associ-
ated frequent sub-sequences. For example, if we consider item 3, then the
following sub-sequences are inserted into the set: < (1) (3) >, < (2) (3) >
and < (12) (3) >.

At the end of the first scan on U, we are thus provided with a new set of
frequent 2-sequences as well as a new set of frequent sequences having a
length lower or equal to k+1.

gt Tteration (with j < (k 4+ 1)) Let us assume that we are at the
4t pass with j < k + 1. In these subsequent iterations, we start by
generating new candidates from the two seed sets found in the previous
pass. The supports for all candidates are then obtained by scanning U
and those with minimum support become frequent sequences. These two
sets are then used to generate new candidates. The process iterates until
all frequent sequences are discovered or j = k + 1.

At the end of this phase, LUk+1, the set of all frequent sequences having a
size lower or equal to k + 1, is obtained from L”® and maximal frequent
sequences obtained during the previous iteration.

4" Tteration (with 5 > (k+1)) Now, as all frequent sequences of size
j < (k4 1) are discovered, we find the new frequent j-sequences in LV
where j > k + 1. First we extract from LUk+1 frequent (k+1)-sequences.
New candidate (k+2)-sequences are then generated applying a GSP like
approach and the process iterates until no more candidates are generated.
Pruning out non maximal sequences, we are provided with LU the set of
all frequent sequences in the updated database.

1-sequences occurri
aﬁéﬂ onceindb "

Combine with L8

Update LB
according to new
visitors

Frequent sequences
of?(e]ngthger%indb

Find frequent (sub)-sequences
Generate 2-candidates oocurri?% beﬂgre a)n?legm of db

e

Frequent sequences of size (j < K+1
[an?inreql?Sn]l 2»$qumosig1 db (i:g)]

| First Iteration

Generate j-candidates

i Generate candidates from
frcgg frequent (j-1)-sequences i
in

the two previous sets by
adding -1)-se$uenc¢slo
the sequences of sizej < k+1

T
I
I
I
I
f=i]
E ! Scan db
v
= ! ("j-candidates occurring
§ | (Latleastonceindb
8
.
N Frequent sequences of size (j< k+1)
| and Frequent (j+1)-sequencesin db
I
I
I
! j<=k+landwe areableto
! j>k+1or generate candidate in db
N no more candidates
]
. /\
I
o Extract from frequent For new customer
0 sequences the extract maximal
\/\j I‘ (k+1) sequences frequent sequences
=g
k=N
B -
& Generate new candidates j=j+l
£
|
: Frequent sequences having size j>k+1
: Fequent sequences having size j <k+1 (new customers)
I
I

i?

no more candidates

‘ Prune non maximal frequent sequences ‘
The set of all frequent sequencesin
the updated database

Fig. 6. An overview of the ISEWUM phases

Figure 6 gives an overview of the main steps of the ISEWuUM approach.
Each operation performed during a phase is depicted by a square. The
results of such operations is symbolized by a round rectangle.

4 Related Work

The goal of this related work is twofold. First we present efficient
approaches for mining user patterns in the Web usage mining concern.
Second we present incremental mining techniques for large databases.

An approach to discovering useful information from Server access logs
was presented in [11,6]. A flexible architecture for Web mining, called

WEBMINER, and several data mining functions (clustering, associa-
tion,etc.) are proposed. An approach to mining user patterns is also
addressed. In this case, the access log file is rewriten in order to define
temporal transactions, i.e. a set of URL names and their access times for
all visitors where successives log entries are within a user specified time
gap (At), and an association rule-like algorithm [2] is used.

The WUM system proposed in [14] is based on an “aggregated materi-
alized view of the web log”. Such a view contains aggregated data on
sequences of pages requested by visitor. The query processor is incorpo-
rated to the miner in order to indentify navigation patterns satisfying
properties (existence of cycles, repeated access, etc) specified by the
expert. Incorporating the query language early in the mining process
allows to construct only patterns having the desired characteristics while
irrelevant patterns are removed.

On-line analytical processing (OLAP) and multi-dimensional Web log
data cube are proposed by [16]. In the WebLogMiner project, the data is
split up into the following phase. In the first phase, the data is filtered
to remove irrelevant information and it is transformed into a relational
database in order to facilitate the following operation. In the second
phase, a multi-dimensional array structure, called a data cube is built,
each dimension representing a field with all possible values described
by attributes. OLAP is used in the third phase to drill-down, roll-up,
slice and dice in the Web log data cube in order to provide further
insight of any target data set from different perspectives and at different
conceptual levels. In the last phase, data mining techniques such as data
characterization, class comparison, association, prediction, classification
or time-series analysis can be used on the Web log data cube and Web
log database.

To the best of our knowledge, not much effort has been spent on main-
taining sequential patterns in the general way [13,7]. The first approach
proposes an incremental mining algorithm, based on the SPADE approach
[17], which can update the sequential patterns in a database when new
transactions and new customers are added to the database. It is based
on an increment sequence Lattice consisting of all the frequent sequences
and all sequences in the negative border in the original database. This
negative border is the collection of all sequences that are not frequent but
both of whose generating sub-sequences are frequent. Furthermore, the
support of each member is kept in the Lattice too. The main idea of this
algorithm is that when incremental data arrives, the incremental part is

scanned once to incorporate the new information into the Lattice. Then
new data is combined with the frequent sequences and negative border
in order to determine the portions of the original database that need to
be re-scanned. Even this approach is very efficient, maintaining negative
border is very memory consuming and not well adapted for very large
databases [13].

In [7], the author proposes the FASTUP algorithm, which can update the
sequential patterns in a database when new transactions are added to
the database. The FASTUP approach fully resumes the FUP algorithm
[3] defined for incremental mining of association rules. The main idea is
to store the counts of all frequent sequences found in a previous mining
operation, then using these counts and examining the newly added trans-
actions, the algorithm can generate a very small number of candidates.
By scanning the original database, the set of new frequent sequences is
obtained. Even if this approach seems efficient since fewer candidates are
generated comparing that re-runing the mining from scratch, there is no
empirical evaluation.

5 Conclusion

In this paper we present the ISEWUM approach for incremental Web
usage mining of user patterns in access log files. This method is based on
the discovery of user patterns by only considering user patterns obtained
by an earlier mining. In order to assess the relative performance of the
ISEWUM approach when new transactions or new clients were appended
to the original access log file we have carried out some experiments on the
access log file obtained from the Lirmm Home Page. Figure 7 compares
the execution times, when varying the minimum support value, of our
approach and GSP from scratch, i.e. when re-mining the new updated
access log file. The original log used for this experiment contains entries
corresponding to the request made during March of 1998 and the updated
file contains entries made during April of 1998. As we can observe our
incremental approach clearly outperforms the GSP approach. Due to
space limitation, we do not provide detailled results on other experiments
which could be found in [10].

We are currently implementing the ISEWUM approach to the WebTool
System [8]. While, for efficiency, the algorithm is implemented in C++
with STL, the WebTool System is implemented using Java (JDK1.1.6
and Swing 1.1) which gives several benefits both in terms of added

Access Log

Time (s)
4000

3500 i
3000 /
2500 /”/
2000 //
1500 /

1000

500 /

250 Mf

o+ 777 T 7T

. © [Tz} =+ o4 2
o < © 53 Ly o =+ = <t <+ o Support
= =] =]

‘ - Incremental Mining -= GSP ‘

Fig. 7. Execution times for the Lirmm Home Page server

functionality and in terms of easy implementation.

Even if the incremetal approach is applicable to the databases which allow
frequent updates when new transactions are added to an original database,
Web usage mining impose that deletion or modification must be taken into
account in order to save storage space or because the information is out of
interest or becomes invalid. We are currently investigating how to manage
these operations in the ISEWUM approach.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of
Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD Conference,
pages 207-216, Washington DC, USA, May 1993.

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Generalized Association
Rules. In Proceedings of the 20th International Conference on Very Large Databases
(VLDB’94), Santiago, Chile, September 1994.

3. D.W. Cheung, J. Han, V.T. Ng, and C.Y. Wong. Maintenance of Discovered
Association Rules in Large Databases: An Incremental Update Technique. In
Proceedings of the 12th International Conference on DataEngineering (ICDE’96),
New-Orleans, Louisiana, March 1996.

4. D.W. Cheung, B. Kao, and J. Lee. Discovering User Access Patterns on the
World-Wide Web. In Proceedings of the 1st Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD’97), February 1997.

5. World Wide Web Consortium. httpd-log files. In hitp://lists.w3.org/Archives,
1998.

10.

11.

12.

13.

14.

15.

16.

17.

R. Cooley, B. Mobasher, and J. Srivastava. Web Mining: Information and Pattern
Discovery on the World Wide Web. In Proceedings of the 9th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’97), November 1997.
M.Y Lin and S.Y. Lee. Incremental Update on Sequential Patterns in Large
Databases. In Proceedings of the Tools for Artificial Intelligence Conference
(TAI’98), pages 24-31, May 1998.

F. Masseglia, P. Poncelet, and R. Cicchetti. WebTool: An Integrated Framework
for Data Mining. In Proceedings of the 9th International Conference on Database
and Ezpert Systems Applications (DEXA’99), Florence, Italy, August 1999.

F. Masseglia, P. Poncelet, and R. Cicchetti. An efficient algorithm for Web usage
mining. Network and Information Systems, to appear.

F. Masseglia, P. Poncelet, and M. Teisseire. Incremental Mining of Sequential
Patterns in Large Databases. Technical report, LIRMM, France, January 2000.
B. Mobasher, N. Jain, E. Han, and J. Srivastava. Web Mining: Pattern Discovery
from World Wide Web Transactions. Technical Report TR-96-050, Department
of Computer Science, University of Minnesota, 1996.

C. Neuss and J. Vromas. Applications CGI en Perl pour les Webmasters. Thomson
Publishing, 1996.

S. Parthasarathy, M.J. Zaki, M. Ogihara, and S. Dwarkadas. Incremental and
Interactive Sequence Mining. In Proceedings of the 8th International Conference
on Information and Knowledge Management (CIKM’99), pages 251-258, Kansas
City, MO, USA, November 1999.

M. Spiliopoulou and L.C. Faulstich. WUM: A Tool for Web Utilization Analysis.
In Proceedings of EDBT Workshop WebDB’98, Valencia, Spain, March 1998.

R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In Proceedings of the 5th International Conference on Ei-
tending Database Technology (EDBT’96), pages 3-17, Avignon, France, September
1996.

O. Zalane, M .Xin, and J. Han. Discovering Web Access Patterns and Trends
by Applying OLAP and Data Mining Technology on Web Logs. In Proceedings
on Advances in Digital Libraries Conference (ADL’98), Santa Barbara, CA, April
1998.

M. Zaki. Scalable Data Mining for Rules. Technical Report PHD Dissertation,
University of Rochester - New York, 1998.

