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1. Introduction12

Nowadays, satellite image time series (SITS) is a powerful source of information for13

monitoring purposes. Repeated satellite observations allow to follow the evolution (e.g.14

growing season, land-cover modifications) of a given area over the time in a systematic way.15

When repeatability and homogeneity of satellite observations are guaranteed it becomes16

possible to detect spatiotemporal evolutions and deduce their related dynamics (Bonn, 1996).17

However, the interpretation and the cross-comparison of several satellite images quickly18

become challenging.19

Advanced methods used to process multitemporal optical imagery are related to tra-20

jectory analysis. In this context, high-temporal frequency SITS from coarse to moderate21

sensors, such as MODIS, are used to model temporal signatures and detect anomalies or22

trends (Lunetta et al., 2006; Verbesselt et al., 2010; Cai and Liu, 2015). Although powerful,23

these methods are hardly adaptable in finer spatial scales applications where the number24

of images available is lower and the temporal sampling is irregular. However, several local25

scale applications need high frequency of observations at intra-annual basis. Mapping and26

monitoring natural and agricultural areas with an enhanced revisit capacity allows monitor-27

ing phenology states, agricultural practices and seasonal processes. Recent reviews about28

conservation monitoring (Nagendra et al., 2013) and Natura 2000 habitat monitoring (Van-29

den Borre et al., 2011) pointed out remote sensing as a strong, but still underexploited,30

tool.31

In the literature, methods used to process multitemporal optical imagery are commonly32

grouped under the change detection label. In a pioneer review article, Singh (1989) defined33

change detection as the process of identifying differences in the state of an object or phe-34

nomenon by observing it at different times. The author also categorised the main change35

detection techniques in ten different groups. A critical review about change detection meth-36

ods in ecosystem monitoring was provided by Coppin et al. (2004). More recently, Hussain37

et al. (2013) expanded the change detection categories previously proposed by Singh (1989),38

including object-based change detection (OBCD) techniques. Regarding this last point, the39

works of Chen et al. (2012) and Blaschke (2005) provided a deep overview of the available40

OBCD methods.41

Considering SITS of optical imagery, we can highlight twomain limitations in the current42

literature. Firstly, most of the existing methods focus their efforts on bi-temporal change43

detection situations, i.e. the study of temporal evolutions taking place between two dates.44

Usually, these methods include post-classification comparison (Yuan et al., 2005), image dif-45

ferencing (Lu et al., 2005), composite analysis (B. Descle, 2006), linear transformation (Qin46

et al., 2013) and change vector analysis (Malila, 1980). Secondly, the majority of works47

explored mainly pixel-based strategies (Petitjean et al., 2012; Inglada et al., 2015) whereas48

object-based image analysis (OBIA) are still among open challenges in remote sensing anal-49

ysis (Blaschke et al., 2014; Chen et al., 2012).50

Petitjean et al. (2012) constructed vector images from SITS and used classical unsuper-51

vised classification (k-means) at pixel level. The originality of the approach consisted in52

the integration of spatial relationships between pixels. Each pixel was enriched by some53
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contextual attributes coming from individual image segmentations performed at each times-54

tamp. In this case, the temporal behavior (based on 15 FORMOSAT-2 images acquired in55

the same year) was used to assign a unique land cover label (mainly crops) to each pixel.56

These labels, derived from ground reference data, are static (e.g. corn) and do not describe57

dynamics (e.g. bare soil -> growth of corn -> harvest); therefore it is not possible to per-58

form further analysis, or monitoring, related to the intra-annual evolutions. Inglada et al.59

(2015) evaluated the performance of state-of-the-art supervised classification methods for60

generating accurate crop type maps on 12 sites spread all over the world. The classification61

strategy giving the best results combined pixel-based temporal linear interpolation and fea-62

ture extraction (radiometry derived features only). In this case, SITS were composed of a63

variable number of SPOT-4 and Landsat-8 images (from 9 to 41 images depending on the64

site) acquired in the same year. In general, important amounts of ground reference data65

(from several dozens to a few thousands of hectares) were necessary for training the classifier66

and achieving accurate results. Also here, the process chain generates a single outcome (i.e.67

a map) representing static land cover classes. This flat representation, alone, is not able to68

describe the evolutions and the temporal behaviors behind each class label.69

Differently from previous approaches that mainly focus on the classification and/or de-70

tection of abrupt changes between consecutive images, this paper aims to describe a new71

methodology to explore SITS data detecting and describing spatiotemporal entities/phenomena72

existing in the study area. More in detail, given a time series of remote sensing images and73

an associated segmentation, our objectives are to: (i) detect the set of spatiotemporal enti-74

ties/phenomena existing in the study area and (ii) supply a spatiotemporal description for75

each of them. To this end, we propose an hybrid methodology combining OBIA and data76

mining techniques. Our proposal firstly identifies a set of spatial entities covering as much77

as possible the whole study site and, subsequently, for each of those spatial entities, it builds78

an evolution graph to describe its temporal evolution.79

We applied our approach on two study sites involving different types of natural, semi-80

natural and agricultural areas. Since the task we address is completely exploratory and81

different from most of the previous researches on SITS data (e.g. change detection, classifi-82

cation), to verify and assess the quality of our proposal we performed in-depth qualitative83

evaluations on the set of evolution graphs we extracted. More in detail, we showed how the84

evolutions graphs well summarize the temporal profiles of the extracted spatiotemporal phe-85

nomena and how they can be employed to synthesize the evolutions and temporal behaviors86

extracted from a SITS.87

The rest of the paper is organized as follows: Section 2 describes all the methodological88

steps of the proposed approach. Section 3 presents the study case context, namely the time89

series data, the preprocessing steps and the verification strategies. Experimental results are90

presented and discussed in Section 4. Conclusions are drawn in Section 5.91
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2. Methodology92

2.1. Object-based temporal evolutions93

The type of phenomena we want to capture are spatiotemporal evolutions (and their94

related dynamics) describing how an entity (i.e. a lake, a saltmarsh area, a crop field,95

etc..) evolves along the time. To this purpose, within a given study site, the first goal96

of our approach is to automatically detect a set of spatiotemporal entities. Subsequently,97

a high-level description is constructed for each of those entities employing a graph-based98

representation. The general framework of our methodology is summarized in Figure 1.99
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Figure 1: General framework showing the main steps of the methodology.

Given a SITS data and its associated segmentation, firstly we select a set of objects100

that represent the spatial entities we want to monitor during the time. We call such subset101

of objects Bounding Boxes (BBs). The set of BBs can contain objects coming from any102

timestamp. The term spatial entities is used in this paper to designate a part (any portion)103

of a given study site. Then, for each Bounding Box (BB), we create an evolution graph con-104

sidering all the objects, in all the timestamps, that are covered by the BB area. Each vertex105

of a graph corresponds to an object. Two vertices are linked by an edge if they belong to106

two successive timestamps and the corresponding objects overlap each other.The procedure107

is applied to each BB and the result consists in a set of evolution graphs summarizing the108

different spatiotemporal phenomena existing in the study site. The set of evolution graphs109

is successively exploited, with the object related information (e.g. spectral, geometrical, tex-110

tural, etc.) in order to supply analysis at graph and study-site levels. The first level allows111
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namely the analysis of the temporal trajectories (or profiles) of a particular spatiotempo-112

ral phenomenon while the second level supplies a more general picture summarizing the113

temporal dynamics detected over the entire study site.114

2.2. Bounding Box selection115

The first step of our process consists in the selection of coherent BBs (i.e. spatial entities)116

to monitor along the different timestamps. This operation analyzes all the objects provided117

by the input segmentations (all the timestamps) and selects a subset of different spatial118

entities covering as much as possible the whole study site. To deal with this task we made119

some assumptions that are justified from the nature of the SITS data we manage.120

The first assumption we made is related to the fact that each selected BB has, during121

the period considered by the SITS, a maximal extent (or footprint) from a spatial point122

of view. For instance, if we consider a temporary lake, in the time series we will have a123

timestamp in which it reaches its maximal spatial extent while for the other timestamps124

the same area may be segmented in different objects as water will cover a less important125

area. In our approach we attempt to select maximal footprints as BBs. To select the set126

of BBs, we adopted the following strategy: first we select a subset of the objects respecting127

the assumption on the maximal footprint, we named such set of objects candidateBB. Then,128

from candidateBB we filtered out a subset of objects that cover as much as possible the129

study site and that overlay as less as possible between each other from a spatial point of130

view.131

Since all the images span over the same grid of pixels, we can retrieve for each pixel of132

each timestamp the object it belongs to and therefore select the largest one. The process133

is repeated over the whole study site and the selected objects are added to candidateBB.134

This pre-selection explicitly implements the maximal footprints assumption over the whole135

study site. However, this process may retain objects representing very similar geographical136

areas. To deal with this redundancy issue we designed an algorithm that, starting from137

candidateBB, selects a set of objects to minimize as much as possible the degree of overlay.138

More in detail, the algorithm iterates over the set of candidateBB until no more objects139

can be included in the final set of BBs. At the beginning, the set of BBs is initialized to140

the empty set. A data structure containing the grid pixels covered during the process is141

initialized with the empty set. We call this structure PAC (Pixel Already Covered). At142

each iteration, the more promising object is selected from the candidateBB and added to143

the final set of BBs. The more promising object is determined considering the following144

piecewise function (1):145

weight(O) =


size(O) if novelty(O) = 1

novelty(O) if α ≤ novelty(O) < 1

0 if novelty(O) < α

(1)

where:146

• size(O) is the size of the object, in this case the number of pixels147

5



• novelty(O) is the contribution of the object w.r.t. the current partial solution148

• α is a threshold parameter defining the minimum value of novelty an object must show149

to be added to the final set of BBs150

1.151

More in detail, the novelty numerically describes the contribution of each object (belonging152

to candidateBB) w.r.t. the partial solution achieved by the procedure. The novelty is defined153

as follows (2):154

novelty(O) =
|size(O)− PAC(O)|

size(O)
(2)

where:155

• size(O) = the number of pixels of the object156

• PAC(O) = the number of pixels already covered by the current partial solution for a157

given object158

In summary, the weight assigned to each candidateBB object is dynamically recomputed159

during the procedure. This is done because we update the PAC variable whenever an object160

is added to the final set of BBs. According to the weight(O) function, first we will select all161

the bigger and non-overlapping objects from candidateBB as their novelty value is equal to162

1. Then, we will start to select the objects presenting the higher novelty values in order to fill163

the remaining uncovered areas of the study site. The process stops when all the remaining164

candidateBB objects present novelty values lower than the parameter α or all the grid pixels165

of the study site are covered. The value of α is inversely proportional to the number of BBs166

in the final set. High values of α will lead the selection of a small set of BBs, while small167

values of α will allow the procedure to extract a bigger set of BBs. Another point we can168

stress on is that the BBs extracted with a big value of α (e.g. 0.5) will be a subset of the169

BBs extracted with a small value of α (e.g. 0.3). This is due to the fact that the proposed170

procedure is deterministic and has a monotonic behavior. Decreasing the value of α will171

relax the spatial overlay constraint going further in the selection process.172

2.3. Graph construction173

The final set of BBs defines the spatial entities (and their related phenomena)we will174

monitor throughout the SITS. Logically, each BB has a unique spatial extent (footprint)175

which is used to select and link the objects from one timestamp to the next one. Given176

a BB, we project its footprint over each timestamp of the time series and we select the177

objects overlapping with BB. In order to avoid the selection of non-representative objects178

(or parasite objects) w.r.t. the area we monitor, we established two parameters that can179

be translated to the following restrictive conditions: (a) at least τ1 of the object should be180

inside of the BB footprint, (b) the object should represent at least τ2 of the BB footprint181

where both τ1 and τ2 are two percentages.The first parameter (τ1) is the most important182
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and control the selection of objects that should present most of their spatial extent outside183

the BB footprint. The second parameter (τ2) is used to keep all the objects filling more184

than a certain percentage of the BB footprint, irrespective of any other statement.185

After this selection, each BB will be associated to a set of objects which can be organized186

and stored as an evolution graph. The graph is built linking the objects of timestamp i with187

the objects of timestamp i + 1. Each object corresponds to a vertex of a graph and the188

weight of the link (edge) represents the degree of overlap between two objects. In this way189

we obtain graphs that have as many layers as the number of images in the time series.190

Another intrinsic characteristic of an evolution graph is that, for a certain layer, it will191

contain only one object (corresponding to the BB). Logically, objects belonging to the same192

timestamp are not connected; this is also true for objects not belonging to two successive193

timestamps. In other words, the graphs created by our procedure are oriented graphs, more194

precisely temporal oriented graphs. An oriented graph is the same thing as a loopless simple195

directed graphs (West, 2001), also called Directed Acyclic Graphs (DAGs) (Maurer, 2003).196

2.4. Computing graph coverages197

Each evolution graph is associated to an unique BB and can be represented by several198

spatial coverages (see Figure 2). The simplest way is to use the spatial extent of the former199

BB to represent the graph (e.g. in a map). We named this representation the Bound-200

ing Box Graph Coverage (BBCov). In order to get a Whole Graph Coverage (WholeCov)201

we calculated the total spatial extent of all the objects contained in the graph at all the202

timestamps. The WholeCov can be decomposed in two components, the Ephemeral Graph203

Coverage (EphemCov) which groups the area(s) covered only once during the time series204

and the Core Graph Coverage (CoreCov) which indicates the area(s) covered at least twice205

during the time series. Such surfaces (EphemCov and CoreCov) can be expressed as per-206

centages of the WholeCov. High percentages of EphemCov indicate unstable boundaries of207

the graph objects and can be related to transitory evolutions in the study area. However,208

sometimes this behavior can be produced by unsuitable segmentation results, e.g. under seg-209

mentation. In such a case the input segmentation can influence the extraction of interesting210

evolution graphs. This means that the EphemCov value can be employed as an indicator211

to estimate the quality of the time series segmentation and suggest, if necessary, to provide212

a better input segmentation that will impact positively the graph coverage results. How to213

optimize and produce coherent individual segmentations from a SITS is out of the scope of214

this work since, these two elements (SITS and segmentations) are the inputs of the proposed215

methodology. CoreCov usually encompasses the whole surface of the BBCov as well as a216

buffer area around it. A big discrepancy between CoreCov and BBCov usually indicates217

that the BB does not provide a good spatial representation of the whole graph.218

In the example showed in Figure 2, the BB used to create the evolution graph comes219

from the first timestamp (T0) and its coverage (BBCov) is highlighted in orange color.220

It represents two agricultural parcels covered by the same type of crop. In the following221

timestamps, the number of objects ranged from 3 to 4 and the evolution graph totaled222

17 objects. The union of all these objects corresponds to the WholeCov which is showed223

in black. We can notice an elongation in the upper left part of the WholeCov polygon if224
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Figure 2: Example of an evolution graph extracted from a crop area. Graph nodes and edges are showed
in the upper part, while the object boundaries (at each timestamp) are displayed below the timeline. The
four types of spatial coverages computed for this evolution graph can be visualized in the bottom part of
the figure.

compared to BBCov. The elongation does not correspond to the agricultural parcels targeted225

by the BB but to a parasite object coming from T1. This undesirable inclusion is clearly226

visible in the EphemCov (red color) which highlights also other small border sections around227

the agricultural parcels. In this example, the CoreCov (blue color) is very similar to the228

BBCov as the borders of the targeted parcels remained substantially stables during the time229

series.230

2.5. Measuring spatiotemporal evolutions at Graph and Study-site levels231

In order to analyze and understand the information behind the evolution graphs, we232

defined two levels of analysis: (a) the graph level and (b) the study-site level. In the former,233

the focus is mainly on how the objects of the graph are linked (graph structure) and how234

their attributes (content) evolve in time. In the latter, the focus is related to the whole235

study site and especially on how the most stable and the most dynamic spatial entities are236

distributed.237

Considering the graph level analysis, given a graph G, we indicate with Gi the set of238

objects covered by G at the timestamp i and with wj,k the weight of the link between object239

oj and object ok. We compute the Variation (V ar) between two consecutive timestamps240

with the following formula (3):241
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V ar(Gi, Gi+1) =
∑

oj∈Gi

size(oj)

size(Gi)
·
∑

ok∈Gi+1
wj,k · dist(oj , ok)∑

k wj,k
(3)

The first part of the V ar formula is proportional to the importance of the object oj over242

the set of objects at timestamp i. Therefore, size(oj) corresponds to the number of pixels of243

oj while size(Gi) represents the total number of pixels covered by the graph G at timestamp244

i. The second part of the formula evaluates the evolution between an object at timestamp i245

w.r.t. the objects at timestamp i + 1 linked to it. In particular, the variation between two246

timestamps is measured by a weighted sum of the euclidean distances between the attributes247

of the object oj and ok. The weight wj,k quantifies the strength of the interaction between248

oj and ok in terms of spatial overlay.249

The Global Variation (GlobaV ar) for a graph is obtained cumulating the contribution250

of each pair of consecutive timestamps as follows (4):251

GlobalV ar(G) =
n−1∑
i=1

V ar(Gi, Gi+1) (4)

TheGlobalV ar associated to an evolution graph estimates how much the area represented252

by this graph evolves during the period covered by the time series. Potentially, this score can253

vary between 0 and +∞.A low value of GlobalVar implies stable temporal behavior while a254

high value indicates important temporal evolution throughout the time series.255

Another option to perform graph-level analysis is by means of Temporal Profiles where256

the temporal variation of any object attribute can be plotted for all the nodes of a given257

graph. Temporal Profiles allow a more fine analysis of the graphs, facilitating the visualiza-258

tion and interpretation of temporal behaviors related to the graphs’ underling spatiotemporal259

phenomena. More in detail, given a graph G and an attribute we want to monitor (e.g. the260

NDVI), we can build a plot where the X-axis (resp. the Y-axis) represents the time (resp.261

the attribute to study, i.e. NDVI). Such plot will contain the objects of the graph temporally262

arranged from the first to the last timestamp. Such a representation combines the graph263

structure and the content (i.e. the attribute chosen to perform the analysis), allowing to264

follow the evolution of these elements conjointly all over the SITS. Examples of Temporal265

Profiles are reported in the experimental results (see Figure 8).266

Considering the study-site level analysis, the GlobalV ar scores (computed for each evo-267

lution graph) can be used to produce a GlobalVar map. In this kind of representation, any of268

the computed graph coverages (e.g. CoreCov) can be used to construct the map. According269

to the selected coverage, the polygons representing the graphs will be colored following a270

gradient proportional to their GlobalV ar scores. The GlobalVar map summarizes the distri-271

bution of the different phenomena detected within the study site and provides information272

related to the intensity of the evolutions during the time. This kind of map, computed273

automatically and considering the whole SITS, is an useful tool for exploratory researches274

over areas where the spatiotemporal dynamics are unknown (or few studied). GlobalVar275

maps can also provide valuable information for planning field-campaigns and prioritizing276

the visits over such unknown or few studied areas. In the case of similar temporal sampling,277
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GlobalVar maps may be used to compared the spatiotemporal dynamics of two (or more)278

different study sites.279

While the Temporal Profiles are more suitable for analyzing one particular object at-280

tribute at time, GlobalV ar scores (and maps) can be also obtained considering all the281

attributes or a subset of them (e.g. only a few spectral indices or a given combination of282

spectral bands).283

It is important to highlight that the GlobalVar score is more suitable for short-term284

landscape analysis (e.g. intra-annual scale) and less appropriate for long-term landscape285

evolution monitoring (e.g. multi-annual scale) since different temporal trajectories can col-286

lapse to the same score value. Conversely, the information supplied by Temporal Profiles can287

be adopted to study both short-term or long-term landscape evolutions since it preserves288

the full temporal trajectories associated to an evolution graph.289

2.6. Parameter Setting290

As previously noticed, our methodology needs the setting of three different parameters:291

α, τ1 and τ2. The first parameter limits the overlay among the selected BBs while the re-292

maining two parameters avoid the selection of non-representative objects in the construction293

of the evolution graphs.294

With the aim to facilitate the choice of these parameter values, we propose to consider295

the coverage and the redundancy of the extracted evolution graphs. The coverage of the296

evolution graphs is the union of the WholeCov of each of the graphs in the solution. This297

measure quantifies how much of the study site is covered by the selected graphs. Concerning298

the redundancy in the set of extracted graphs, we evaluate this quantity as the portion of299

the study site that is covered, at least, by two different graphs. This quantity measures how300

much redundancy exists in the obtained solution.301

In order to determine the three initial parameters (and the corresponding set of evolution302

graphs), we firstly generate different solutions varying the α, τ1 and τ2 parameters and then,303

we fix a threshold (σ) that defines the minimum accepted coverage. The σ threshold is304

expressed as a percentage of the whole study area. Once the threshold σ is fixed, we obtain305

a set of solutions that meets this constraint. Among such set of solutions, we choose the one306

with the minimum redundancy value. We remind that this analysis can be performed in a307

completely unsupervised way, independently from a possible ground truth data associated308

to the SITS.309

3. Case study310

3.1. Data and Study sites311

3.1.1. Time series data312

We used Landsat-5 TM and Landsat-7 ETM+ level-2A products available through the313

THEIA Data Centre (France). Such images were already ortho-rectified and corrected from314

atmospheric, environmental and slope effects as described by Hagolle et al. (2010). Each315

Landsat product was composed by six spectral bands (approximate center in nm): blue (485),316

green (565), red (665), NIR (820), SWIR-1 (1650) and SWIR-2 (2190). With a pixel size of317
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30 m, the raster data is expressed in surface reflectance. We selected six Landsat cloud-free318

images covering two study sites (described latter) between February and September 2009319

(see Table 1).320

Timestamp Acquisition date

T0 24 Feb. 2009
T1 05 April 2009
T2 07 May 2009
T3 10 July 2009
T4 19 Aug. 2009
T5 12 Sept. 2009

Table 1: Acquisition date of the selected Landsat images over the South of France.

The selected time series spreads from the end of the winter up to the end of the summer.321

Such temporal range encompasses the entire growing season for natural vegetation as well322

as the main agricultural cycles over the study sites.323

3.1.2. Study sites description324

Two sites were selected in the south of France, close to the Mediterranean Sea. Figure325

3 presents the spatial boundaries of the two sites: (A) Libron Valley and (B) Lower Aude326

Valley Natura 2000 site. Both sites are located inside the extent of the Landsat scenes327

composing our time series. Figure 4 shows the study areas at each timestamp.328

Located less than 10 km northeast from the city of Béziers (France), the Libron Valley329

site is mainly composed by agricultural parcels and natural areas. The site has about330

1 655 ha and is crossed by the small coastal river named Libron. Agricultural parcels are331

concentrated principally along the Libron waterway. Cereal crops dominate its upstream332

section (northwest of the site) while the downstream section is mainly occupied by vineyards333

(southeast of the site). The natural areas are essentially composed by patches of forest334

(mainly coniferous) and scrubland. Most of these patches are in the north of the Libron335

River, some of them encircle a golf field situated in the northern part of the site. In a336

general way, the limits between agricultural and natural areas over this site can be easily337

recognized in the Landsat images. Such a task is possible because agricultural parcels and338

forest patches are usually bigger than 6-8 ha (i.e. 200 m x 400 m or wider for most of the339

crop fields).340

The Lower Aude Valley is a Natura 2000 site located in the terminal section of the Aude341

River. Before reaching the Mediterranean Sea, the Aude River crosses a flat wetland area of342

about 4 842 ha. From a biodiversity point of view, 56.3% of the site is composed of natural343

habitat types of Community interest (NHCI). In total, 19 NHCI are part of the site, including344

5 priority habitat types. The most widespread habitats are: Mediterranean saltmarshes and345

Saline coastal lagoons. The remaining area (43.7%) is principally occupied by vineyards,346

cereal crops and temporary or permanent meadows. In opposition to the Libron site, the347

agricultural parcels are often small within this site (usually around 1-2 ha) and therefore348

more difficult to identify using Landsat images. Another particularity, the site is exposed to349
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Figure 4: Time series for the selected study sites (A Libron Valley ; B Lower Aude Valley Natura 2000
site) during 2009.

flooding events (mostly during winter) as well as to drought episodes (maximum intensity350

occurring in the end of the summer). The flooding areas are situated predominantly around351

the two coastal lagoons: Vendres in the north part of the site and Pisse-Vaches in the south.352

The Mediterranean Sea has also an influence over the salinity across the site (soils and water353

bodies), with a general gradient increasing from northwest to southeast.354
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3.2. Preprocessing and segmentation355

3.2.1. Spatial subset and fine geometrical registration356

Although level 2-A products were already ortho-rectified, we observed some spatial im-357

precision when overlapping all the time series images. For this reason, additional fine spatial358

positioning corrections were necessary in order to keep the spatial shift between any times-359

tamp less than a pixel. Afterwards, two spatial subsets (one for each study area) were360

performed over each Landsat image.361

3.2.2. Spectral indices362

Spectral indices are commonly used in remote sensing as they can be helpful for detect-363

ing and characterizing some specific features, like vegetation, soil, water, etc. In this work364

we calculated three spectral indices compatible with Landsat data using the formula pro-365

vided by the literature: a) Normalized Difference Vegetation Index NDVI (Rouse Jr et al.,366

1974); b) Normalized Difference Water Index NDWI (Gao, 1996); c) Visible and Shortwave367

Infrared Drought Index VSDI (Zhang et al., 2013). NDVI is sensitive to the amount of368

photosynthetically active vegetation present in the plant canopy (Tucker, 1979) and has369

been extensively used in remote sensing applications since the 1970s. NDWI is sensitive to370

changes in liquid water content of vegetation canopies (Gao, 1996) and has been used to371

estimate vegetation water content (Jackson et al., 2004). VSDI is sensitive to changes in372

soil and vegetation moisture and was conceived to monitor drought over different types of373

land cover during plant-growing season (Zhang et al., 2013).374

3.2.3. Time series image segmentation375

Image segmentation is a fundamental step in OBIA and it consists in merging pixels into376

object clusters (Baatz et al., 2008). Objects (or segments) are regions generated by one or377

more criteria of homogeneity in one or more dimensions of a feature space (Blaschke, 2010).378

The principal aim of segmentation is to create a new representation of the image, more379

meaningful and easier to analyze. This approach is similar to human visual interpretation380

of digital images, which works at multiple scales and uses color, shape, size, texture, pattern381

and context information (Lillesand et al., 2008). Image segmentation results in a set of382

objects that collectively cover the entire image without any overlapping. With respect to383

the homogeneity criteria, adjacent objects are expected to be significantly different between384

them.385

In this work, image segmentation was performed with the Multiresolution Segmenta-386

tion Algorithm (MSA) 1. We choose the MSA algorithm instead of recent approaches based387

on superpixel Achanta et al. (2012) since the objective of our strategy is to capture phe-388

nomena that can lie at different scales. Adopting a superpixel segmentation method, like389

SLIC (Achanta et al., 2012), will produce segments at equal scale and this will be in con-390

trast with the main assumption of our work (maximal spatial extent detection). Conversely,391

the MSA scale parameter is intrinsically related to the homogeneity criterion which takes392

1MSA algorithm: as implemented in eCognition Developer software, version 8.8.1
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into account both shape and radiometry of objects in a combined manner. For this reason,393

over two areas of the same size, MSA may provide multiple small objects if the target is394

heterogeneous or, a single larger object if the target is more uniform.395

Only the pixels within the boundaries of the study sites were used during the segmen-396

tations. Nine raster layers were simultaneously used for image segmentation. Six of them397

correspond to the Landsat spectral bands and the other three to the spectral indices. In398

order to obtain objects representing the natural and agricultural boundaries over the study399

sites, we conceived a segmentation rule-set composed of 3 main steps as showed in Figure400

5. For simplification purposes only the Lower Aude Valley site is presented in this figure401

as well as in the subsequent explanations. However, the same rule-set was applied over the402

Libron Valley site.403

step1. medium-coarse
segmentation
(180 objects at T )0 0

step2. very �ine
segmentation

(5595 objects at T )

step3. �inal
segmentation
(514 objects at T )0

Figure 5: Segmentation rule-set outputs (at T0) for the Lower Aude Valley Natura 2000 site.

The first step delimits the general zones trough a medium-coarse segmentation. MSA404

was configured here to combine both color and shape components but using predominantly405

color (0.8). About 170-200 objects are obtained per timestamp over the Lower Aude Valley406

site. In the second step, a very fine segmentation is performed inside the object boundaries407

created at step 1. Focused exclusively on the color component, it creates about 6 000 objects408

per timestamp. In step 3, medium-fine segmentation is performed taking into account the409

results of the previous steps. With balanced weights for color and shape components, step 3410

segmentation creates about 500-600 objects per timestamp. The segmentation rule-set was411
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executed for each timestamp separately. In other words, the set of objects obtained at T0412

does not impact the segmentation process at T1 and so on. The segmentations were also413

separately performed over each study site. For both sites and timestamps, only the objects414

obtained at the last level of segmentation (step 3) were exported and used as an input for415

the subsequent processing steps.416

3.3. Verification strategies417

To assess the quality and the accuracy of the results, we developed two verification418

strategies. The first was based on the interpretation of the ancillary imagery plus two419

thematic layers and was applied over the Lower Aude Valley site. The second strategy was420

mainly based on the official farmer declarations (one of the available thematic layer) and421

applied over the Libron Valley site.422

Considering the ancillary imagery, two types of image were employed: (a) normal color423

and color infrared aerial orthophotos (0.5 m spatial resolution) acquired during May 2009424

and (b) one RapidEye satellite image (6.5 m spatial resolution) acquired in 24 June 2009425

and only available for the Lower Aude Valley site.426

Regarding the thematic layers, the first concerns both study areas and is related to427

agricultural practices. It corresponds to the official farmer declarations indicating the main428

cultures exploited during 2009. The second thematic layer is proper to the Lower Aude429

Valley site. It corresponds to a detailed classification (scale 1:25 000) of the natural habitats430

over the site. The classification was realized by botanists and ecologists of the Conservatory431

for the Natural Spaces of the Languedoc-Roussillon Region (CEN-LR).432

3.3.1. Ancillary imagery based verification433

First, the aerial photographs were used to map the whole Lower Aude Valley Natura434

2000 site. This task was carried out through a manual land cover digitalization process435

at the 1:10,000 scale. Each individual map unit (polygons in our case) has been labeled436

according to hierarchically structured land cover classes. This hierarchy contains three levels437

of complexity and has, in the more detailed level (3), nineteen land cover classes. Eleven438

of them are associated to artificial, cultivated and managed areas, while the other eight439

classes are related to natural and semi-natural areas (see Table 2 for all the class names).440

Considering the acquisition date of the aerial photographs, the obtained land cover map441

represents the situation of the site in May 2009.442

Then, the obtained land cover map was superimposed on the RapidEye satellite im-443

age. All the initial polygons received a new land cover label (using the same hierarchical444

scheme) according to the situation observed on the RapidEye image (24th June 2009).445

When necessary, new boundaries were digitalized and some polygons of the former map446

were consequently divided into two or more smaller polygons. Thus, a second land cover447

map was produced representing the situation of site in late June 2009. In order to estimate448

the evolutions between the two land cover maps we computed an exhaustive set of from-to449

evolution classes. Then, we analyzed each from-to evolution class (about 50) and assigned450

a particular level (or intensity) of change: low, medium, high or very high. Finally, these451
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Level 1 Level 2 Level 3
Artificial, cultivated Artificial surfaces Highway and major road sections
and managed Areas and associated areas Other built-up and associated areas

Artificial waterbodies Artificial lakes and ponds
Cultivated and managed areas Crops - dense cover and high

greenness values
Crops - moderate/sparse cover and
high greenness values
Crops - low greenness values
Crops - harvested parcels
Crops - floating row covers
and bare soils (very high reflectance)
Vineyards - sparse cover
Vineyards - dense/moderate cover
Orchards

Natural and semi-natural areas Natural and semi-natural Dense/moderate cover and
vegetation areas high greenness values

Dense/moderate cover and
moderate greenness values
Dense/moderate cover and
low greenness values
Sparse cover

Bare areas Dry flats
Unvegetated dunes and beaches

Natural areas covered by water Shallow waters
Deep waters

Table 2: Hierarchically structured land cover classes used for mapping the Lower Aude Valley site. This
scheme was used to create two maps, one derived from the aerial photographs and the other from a RapidEye
image.

intensities of change (derived from the ancillary imagery) were compared to the GlobalVar452

scores, obtained from the evolution graphs (described in Section 2.5).453

3.3.2. Thematic layer based verification (official farmer declarations)454

The second verification procedure consisted in drawing up a parallel between the Global455

Variation results and the principal groups of culture declared annually by the farmers. In456

France, the reference parcel representation is the Farmers block/ilot in regard to the Euro-457

pean regulation (Comm. Reg. N 796/2004 ). This kind of parcel representation corresponds458

to an association of one or more agricultural parcels into blocks. Each block is the property459

of a single farmer and may contain one or several crop groups (Sagris and Devos, 2008). In460

practice, the official farmer declarations (the public version of the data) consists in a set461

of georeferenced polygons (one for each block) were a code indicates the principal groups462

of culture exploited during the year. Within the Libron Valley site, 11 groups of culture463

have been declared in 2009 which corresponds to 59 polygons. Nevertheless, this thematic464

layer contains some erroneous declarations, imprecise polygon boundaries and some gaps465

(i.e. when an agricultural parcel has not been declared). In order to attain a more precise466

comparison, we verified each polygon and selected only those without visible errors. Also,467

we eliminated all the polygons smaller than 4 ha to preserve an order of magnitute compa-468

rable with the graph objects. The obtained subset contains 32 polygons belonging to the469

following groups of culture: cereals (excepted wheat), flower-fruit vegetables, orchard, seeds,470

sunflower and vineyard. As these cultures are associated to dissimilar agricultural practices471
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Lower Aude Valley Libron Valley
Min Mean Max Min Mean Max

Number of nodes 7 15.2 38 6 13.0 26
Number of edges 7 24.5 77 5 18.9 53
Number of paths 2 79.7 1050 1 46.7 480
BBCov (ha) 1.6 16.2 125.0 3.2 13.8 67.1
WholeCov (ha) 5.3 46.2 175.7 6.1 34.5 107.9
CoreCov (ha) 2.1 29.9 142.5 3.4 22.6 94.6
CoreCov (%) 13.9 65.1 90.9 14.4 66.3 93.3
EphemCov (ha) 0.8 16.4 134.0 1.2 11.8 65.1
EphemCov (%) 9.1 34.9 86.1 6.7 33.7 85.6

Table 3: Global graph statistics obtained for each study site

and temporal dynamics all along the year, it is expected some noticeable differences among472

the graphs representing these areas (especially w.r.t. the GlobalVar results).473

4. Experimental Results and Discussion474

4.1. Overall results and statistics475

To generate the evolution graphs on the two study sites we used the procedure introduced476

in Section 2.6. We fixed the σ threshold (the minimum accepted coverage) equals to 95%477

and generated the set of different solutions varying the three parameters (α, τ1 and τ2) in478

the range [0.1, 1] with a step-size of 0.05. The procedure selected the following values for α,479

τ1 and τ2: 0.3, 0.25 and 0.20 respectively. The values are the same for both sites.480

We obtained a total of 340 graphs for the Lower Aude Valley site and a total of 142481

graphs for the Libron Valley site. The total number of objects per graph ranges from 6 (a482

single object per timestamp) to 38 (about 6.3 objects per timestamp). The mean value,483

considering both study sites, was 14.6 (about 2.4 objects per timestamp). Also considering484

the two study sites, the mean number of edges per graph was 22.9 while the mean number485

of paths per graph was 69.9. Taking into account all the 482 graphs, the whole spatial486

coverages (WholeCov) ranges from 5.3 ha to 175.7 ha with a mean value of 42.7 ha. Although487

some graphs present very high coverages (>100 ha), most of the values (about 97%) range488

between 10 and 90 ha. In other words, the areas monitored by our graphs correspond mostly489

to patches ranging from 100 to 1000 Landsat pixels. As another global result, the core graph490

coverages (CoreCov) correspond, in average, to 65.5% of the WholeCov areas. As expected,491

EphemCov is usually smaller than CoreCov and this is true for 87.5% of the graphs. Even if492

all the processing steps were identical for the two study sites, we noticed some differences in493

the graph derived statistics. Table 3 shows the main statistical results obtained separately494

for each study site.495

We can observe that the Lower Aude Valley graphs have a bigger number of nodes if496

compared to those of the Libron site. In general, they tend to present a more complex497

structure with a higher number of paths per graph. Another noticeable difference is related498

to the size of the objects and the derived graph coverages. All the greatest objects (>70 ha)499
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Figure 6: Degree of spatial overlapping among graphs for both study sites. The histogram indicates the
relative areas (% of each study site) considering number of graphs covering the same area.

comes from the Lower Aude Valley as well as most of the widest graphs (>100 ha w.r.t. the500

WholeCov). This can be explained by the exclusive presence of water bodies and temporally501

flooded areas in the Lower Aude Valley site. The spectral homogeneity of these particular502

areas contributes to generate large objects during the image segmentation step.503

As the graph coverages may partially overlap, it becomes interesting to detect the spatial504

distribution of the less and most overlapping areas. Figure 6 shows such spatial distribution,505

in terms of number of graphs representing the same area, over the two study sites. The spatial506

overlapping is related to the value of the parameter α (novelty threshold) used during the BB507

selection strategy presented in Section 2.2. This threshold allows a certain level of overlay508

among the BBs, it is expected that all the other derived graph coverages will present some509

degree of overlap as well. As a consequence, the higher is the α parameter, the lower will510

be the number of selected BBs, the lower will be the degree of spatial overlapping among511

the generated graphs. On both study sites we have observed that, when α is lower than 0.2512

the degree of overlay becomes particularly high (more than 75% of the study site is covered513

by two or more graphs) while α values larger than 0.4 lead to important gaps (areas not514

covered by any graph).515

However, the spatial overlapping depends also on the inner characteristics of each study516

site, in particular on how the spatial boundaries of their objects evolve during the time517

series. In the case of our study sites, the Libron Valley presented a lower degree of spatial518

overlapping w.r.t. the Lower Aude Valley. This can be explained by two main factors: (a)519

the spatial arrangement of the sites, e.g. in the Libron site the limits between agricultural520

and natural areas are easier to recognize (bigger and more homogeneous patches) and (b)521
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nature of the temporal evolutions, e.g. modifications in the shape of the objects are more522

frequent in the Lower Aude Valley since the site is exposed to flooding events. In addition,523

the fact of having many small parcels (near to the limit of detection) may contribute to524

shape instability from a timestamp to the next one.525

4.2. Spatiotemporal Dynamics526

When repeatability and compatibility of satellite observations are guaranteed it becomes527

possible to detect spatiotemporal evolutions, from which the related dynamics can be de-528

duced (Bonn, 1996). In that light, we consider spatiotemporal dynamics as derived from529

a set of consecutive evolutions we detected throughout the time series. In particular, we530

performed analysis at both graph and study-site levels (as described in Section 2.5).531

4.2.1. Graph Level Analysis532

In order to better illustrate graph structure and content, we selected 4 graphs represent-533

ing different evolutions in time (see Figure 7). Graph A represents a natural area composed534

mainly by scrubland and forest. Its BB came from the fourth timestamp which corresponds535

to the beginning of the summer. At this time, the area is the most homogeneous while the536

most heterogeneous situations are observed in the first (winter) and third (spring) times-537

tamps. In those two timestamps it is possible to better distinguish the deciduous vegetal538

community (brown at T1 and light green at T3) from the surrounding coniferous community539

(dark green during the whole time series). Conversely, Graph B has a particular structure540

with two very distinct portions: first there is a single object per timestamp from T0 to T3541

whereas from T4 to T5 there are several objects per timestamp (8 and 6 respectively). The542

huge spatial fractioning observed between T3 and T4 corresponds to the drying-up process543

of the Pisse-vaches coastal lagoon. High evaporation rates combined to weak precipitations544

during the summer leads to the replacement of the lagoon by a wide dry salt flat in the end545

of this season. Graph C presents a quite similar, but inverted, structure w.r.t. Graph B. In546

fact, this saltmarsh and salt meadow area is more heterogeneous in the beginning of the time547

series (T0 up to T2). At this time, the area is partially covered by water and hygrophilous548

vegetation, which explains the dissimilarities on the objects boundaries during these three549

timestamps. Afterwards, water is no more present and the dry summer conditions lead to550

a fast decrease of the photosynthetic vegetation, as a consequence, the area becomes much551

more homogeneous in the three last timestamps. Finally, Graph D represents the evolutions552

over two adjacent cereal crop fields. The plant-growing season is visible from T0 to T2 (late553

winter to spring) although we can notice that plant-growing is not homogeneous all over the554

field area. Then, the crops are harvested in early summer (between T2 and T3) and both555

fields remain unvegetated until the end of the time series.556

In addition to graph structure and visual analysis of image objects, it is important to557

consider the changes in the content of the objects. For that purpose, each graph can be558

also finely analyzed thanks to Temporal Profiles representing the variation of any object559

attribute. As examples, we can use the previously discussed graphs B and D (see Figure 8).560

In the case of Graph B, the temporal behavior of VSDI furnishes reliable information about561

the drying-up process of the coastal lagoon as this spectral index is sensitive to changes in soil562
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moisture and to the presence of surface water. Likewise, for Graph D, the NDVI temporal563

profile is useful to follow the changes observed over the cereal crop fields, i.e. plant-growing,564

harvest and long-lasting bare soil.565

4.2.2. Study-site Level Analysis566

Beside such fine temporal information, the Global Variation (GlobalVar) synthesizes567

how much the area represented by a given graph evolves during the whole time series and a568

GlobalVar map can be built from this information. Several GlobalVar maps can be produced569

by combining different object attributes. Indeed, GlobalVar maps are useful to compare570

graphs and promptly detect the most and the less stable areas within the considered study571

sites. In our case, as both study sites have the same timestamps, GlobalVar maps can also572

be used to compare the two zones (see Figure 9).573

Regarding Figure 9, we can observe that choosing different attribute combinations results574

in somewhat different GlobalVar maps. We can also underline that the two study sites575

exhibit different behaviors considering different attribute combinations. In other words, the576

attributes showed in Figure 9 are differently correlated according to each site and, in general,577

they are not highly correlated among them. Regardless of the attribute selection, the Libron578

site presents invariably higher values of GlobalVar if compared to the Lower Aude Valley.579

This is more evident when only the NDVI is employed (map 1) or only the raw bands (map580

2) to produce maps by means of GlobalVar, instead of map (3) where all the spectral indices581

were used.582
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Figure 9: Global Variation (GlobalVar) maps and the corresponding frequency histograms for the two
study sites (A-Lower Aude Valley, B-Libron Valley). The following attributes were used for the GlobalVar
maps: (1) only the NDVI, (2) all the raw bands and (3) all the spectral indices. As graph coverages may
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proportional contribution of the involved graphs.
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Considering only the Lower Aude Valley, one can suppose a very stable situation based583

on the analysis of the second map (all raw bands). Excepting few cereal crops in the western584

part of the site, all the remaining areas present low values of GlobalVar, including all the585

temporary flooded areas. Alone, the six spectral bands provide a very partial representation586

of the temporal dynamics since only some radical evolutions (i.e. bare soil/dense vegeta-587

tion/bare soil) are highlighted, while the other evolutions are not took into account. Over588

the Libron Valley site such kind of radical evolution is more frequent and widespread, espe-589

cially in the crop areas located along the upstream Libron waterway (red and orange hues590

in map 2). However, even in this case the results are not satisfactory as some crops areas591

presenting radical evolutions displays medium values of GlobalVar instead of high values.592

Conversely, the GlobalVar map derived from the NDVI furnishes much more reliable593

information related to landscape dynamics in both study sites. In the Libron Valley, the594

highest values correspond to the agricultural areas where important changes are observed595

throughout the year (e.g. cereals, sunflower, flower-fruit vegetables and seeds). Vineyards596

and orchards generally experience less noticeable inter-annual variations and are therefore597

assigned with medium or medium-low GlobalVar values. The lowest values correspond598

mostly to natural scrub and forest areas, in particular those dominated by coniferous. In599

the Lower Aude Valley, the lowest values are also principally related to natural areas, more600

specifically to herbaceous/scrub vegetation covering sand dunes (southeast of the site) or601

some not submerged areas surrounding the Vendres lagoon (center of the site). In addition,602

some build-up areas like camping and recreational facilities (all located along to the coast)603

present low GlobalVar values. Vineyards and orchards, as well as saltmarsh and salt meadow604

areas, are generally assigned with medium or medium-low GlobalVar values. Finally, the605

most dynamic areas are clearly associated to the two coastal lagoons (Vendres and Pisse-606

vaches) and, in a minor extent, to the few cereal crops located in the western part of the607

site. The graphs representing the coastal lagoons and surrounding areas are characterized by608

important changes in the objects shape and content. The Pisse-vaches sector is temporarily609

covered by shallow and brackish waters. It is scarcely colonized by the vegetation either610

during the submerged periods (very few aquatic macrophyte during winter and spring) either611

during the waterless period (very limited growth of pioneer communities during the summer612

and autumn). The Vendres sector also presents important seasonal water level fluctuations613

but possess a permanently flooded area (northeastern portion). Salinity is less important614

in this sector where dense aquatic and terrestrial vegetation can be observed during spring615

and summer.616

Finally, the third map of Figure 9 combines the three spectral indices to compute the617

GlobalVar (all indices). The spatial distribution of the less and the most dynamic areas618

is somehow similar to those described for the NDVI GlobalVar map, which is logical as619

the NDVI is one of the three spectral indices considered here. Nevertheless, the inclusion620

of VSDI and NDWI draw attention to some temporal evolutions unnoticed by the NDVI,621

in particular over the areas where the contribution of the soil is greater than those of the622

vegetation.623
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Pearson’s r Spearman’s rho
All raw bands 0.574 0.476
NDVI 0.767 0.659
NDWI 0.787 0.672
VSDI 0.719 0.580
All indices 0.789 0.676

Table 4: Correlation coefficients results for ancillary based verification. The value of change from ancillary
imagery (VCA) was compared with five sets of GlobalVar (all raw bands, NDVI, NDWI, VSDI, all indices)

4.3. Ancillary imagery based verification624

As explained in section 3.3.1, the ancillary imagery was processed in order to estimate625

the intensities of change all over the Lower Aude Valley Natura 2000 site. Such intensities of626

change were obtained by comparing two land cover maps and their related from-to evolution627

classes. The first map (derived from aerial photographs) represented the study site in May628

2009, while the second one (based on a RapidEye image) represented the site in late June629

2009. This time interval corresponds roughly to the timestamps T2 (7 May 2009) and T3630

(10 July 2009) of our Landsat time series. To perform a coherent verification, we calculated631

an extra set the GlobalVar values considering only these two timestamps of the former time632

series.633

As the spatial boundaries between the evolution graphs and the land cover maps are not634

similar, we employed the following strategy to compare their intensities of change. Starting635

from the CoreCov of each graph, we clipped the corresponding polygon(s) of the land cover636

maps. If a given graph is represented by more than one map polygon, we computed a637

weighted average of the intensities of change of those polygons. This is done by taking638

into account the relative area of each map polygon (inside the CoreCov) and multiplying639

it by a coefficient of change. The coefficient varies according to the intensities of change640

(low=1, medium=2, high=3 and very high=4) assigned to the from-to evolution classes. As641

consequence, each graph received a new numerical value of change (VCA) that is derived642

from the ancillary imagery and can be therefore compared to the GlobalV ar values.643

Table 4 summarizes the correlation coefficients obtained from the comparison of VCA644

against five sets of GlobalV ar (all raw bands, NDVI, NDWI, VSDI, all indices). We used two645

coefficients of correlation: (a) the Pearsons coefficient which measures the strength of the646

association between two variables and (b) the Spearmans ranked coefficient which assumes647

that the two variables under consideration were measured on an ordinal scale.648

The strength of association is particularly high between VCA and three sets of GlobalVar649

(all indices, NDWI and NDVI). This assertion is valid for the two correlation methods:650

(a) Pearson’s r ranging from 0.767 to 0.789 and (b) Spearman’s rho ranging from 0.659 to651

0.676. For both Pearson and Spearman, the correlation coefficient is very highly significantly652

different from zero (p-value <0.0001).653

It is worth noting that we eliminated the areas with potential water level fluctuations654

from this comparison. This was necessary because the acquisition dates of the images655

(Landsat and ancillary imagery) are not the same (i.e. 15 days separates the RapidEye656
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image from its corresponding Landsat image). As the water level is highly variable around657

the two coastal lagoons, we cannot assume that the observations made with several days of658

interval are comparable. During this time interval, other short-time evolutions (such as crop659

harvesting or plant growing) can occur and dramatically change the observed landscape.660

However, the detection of all these not comparable areas over the entire study site would661

require a very careful and meticulous visual confrontation of the 4 images employed in the662

verification process. Even without performing such deep data-cleaning task, we obtained663

high correlations between VCA and most sets of GlobalVar values. As expected, the strength664

of association was stronger when using spectral indices instead of raw bands. The best665

correlation coefficient was obtained with the GlobalVar(all indices), which considers the666

behavior of the three spectral indices together. Individually, both the GlobalVar(NDVI)667

and the GlobalVar(NDWI) are highly correlated to VCA. Although the difference is small,668

the combination of the three indices furnished an automated evaluation of the evolutions669

that is the nearest of those obtained from manual digitalization and visual interpretation of670

the ancillary images.671

4.4. Thematic layer based verification (official farmer declarations)672

As the boundaries of the thematic layer are not similar to those of the evolution graphs,673

we employed the following strategy. Starting from the 32 polygons representing the declared674

groups of culture by the farmers in 2009, we clipped the corresponding evolution graphs675

representing such areas (the CoreCov of each graph). If a given polygon of culture is676

represented by more than one evolution graph, we computed a weighted average of the677

GlobarVar values of those graphs. This is done by taking into account the relative area of678

each graph (inside the polygon of culture) and multiplying it by the corresponding GlobarVar679

values. At the end, each polygon of culture was assigned with five values of GlobalVar (all680

raw bands, NDVI, NDWI, VSDI, all indices) derived from the evolution graphs representing681

such agricultural areas.682

Figure 10 summarizes, for each group of culture, the mean GlobalVar value obtained683

for the five sets of attributes (all bands, NDVI, NDWI, VSDI, all indices). The number of684

polygons available for each group of culture is indicated in Figure 10 as well as the error685

bars related to the mean values (excepted for the sunflower crop that possesses only a single686

polygon).687

The general analysis of Figure 10 allows grouping the cultures into two subsets: (a) vine-688

yard and orchard which presented low GlobalVar values and (b) cereals (excepted wheat),689

sunflower, seeds and flower-fruit vegetables which presented high GlobalVar values. This690

separation in two main subsets can be observed in any of the five plots but is most evident691

in GlobalVar (NDVI).692

Although the number of polygons is quite small (32), the results are consistent with the693

dynamics we can observe for those types of culture. Orchards and vineyards parcels present694

almost the same temporal evolutions with a gradual augmentation of the greenness during695

spring and early summer. Then, the greenness level remains nearly stable for most of the696

parcels while for some others it can decrease thinly up to late summer. One interesting697

difference between these cultures is that the maximum of greenness is attained firstly for698
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Figure 10: Thematic layer verification using official farmer declarations.

the orchards (usually at T2 in our time series) and lately for the vineyards (usually at T3 in699

our time series). These may explain why the mean values of GlobalVar are smaller for the700

orchards if compared with those of the vineyards. The second subset assembles four types of701

crops: cereals, sunflower, seeds and flower-fruit vegetables. Those crops present dissimilar702

temporal dynamics but all of them are composed by the same general evolutions, or phases:703

plant-growing, harvest and bare soil. According to the calendar of each crop, such phases704

are observed in different periods of the time series. In a simplified way, they are temporally705

distributed as follows: (i) between T0 and T2 plant-growing for cereals and bare soil for the706

other cultures, (ii) between T2 and T3 harvesting for cereals and plant-growing for the other707

cultures, (iii) between T3 and T4 bare soil for cereals, harvesting for flower-fruit vegetables708

and plant-growing for sunflower and seeds, (iv) between T4 and T5 bare soil for cereals and709

flower-fruit vegetables, harvesting for sunflower and seeds. As we can observe, the evolutions710

are shifted in time, but their corresponding length over the entire time series is very close.711

As a consequence, the GlobalVar calculated for these crops generally fit in the same range712

of values (taking into account the error bars).713

According to the results of the two independent verifications presented in this section,714

our framework produced reliable results that are consistent with the ground truth we em-715

ployed. More in detail, we have seen that our methodology is able to automatically detect716

spatiotemporal dynamics in natural, semi-natural and agricultural areas.717

The object-tracking mechanism we conceived is able to describe those dynamics by means718

of objects coming from different images of the time series. Once the graph structure is built,719

it can be analyzed considering different combinations of the object attributes (e.g. raw720

bands, spectral indices). Modifying the combination of object attributes introduces some721

kind of flexibility and it allows to customize the proposed framework according to the task722

the user wants to deal with.723
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The proposed framework can be also exploited in order to plan field campaigns on un-724

known areas since it supplies an exploratory tool to draw a global overview of a study area.725

The practical interest is twofold: firstly, it provides a synoptic view based on spatially co-726

herent areas over the time; secondly, for each of these areas is automatically characterized727

by an estimation how much it evolved during the whole period covered by the SITS.728

5. Conclusion729

In this paper we proposed a new methodological framework to automatically extract730

spatiotemporal information from SITS. We combined OBIA and data mining techniques731

to extract graph structures describing spatio-temporal dynamics from SITS. Our approach732

starts with classical OBIA image processing which results in separate sets of objects for each733

timestamp. Then, a graph-based approach is employed to detect spatially coherent areas and734

connect the objects belonging to different timestamps generating a set of evolution graphs.735

From these graphs, spatio-temporal dynamics are computed and summarize the temporal736

behavior of each particular area over the time.737

The proposed framework was evaluated in two study sites located in the South of France,738

near to the Mediterranean Sea. The experiments underlined how the extracted information739

can be deeply explored at the evolution graph scale, as well as to supply a general picture740

at the study site scale, but also to be used for comparing different study sites. The robust-741

ness of the framework is verified via ancillary imagery, field campaigns and official farmer742

declarations.743

The framework described in this paper can be potentially used with any kind of SITS.744

In particular, Sentinel-2 images will shortly improve the observational capabilities for moni-745

toring purposes (the first satellite started operational acquisition in the beginning of 2016).746

Enhanced revisit capacity, i.e. 5 days when the two satellites will become operational, as-747

sociated to 10m resolution for visible and NIR bands, will open new possibilities for several748

applications including the monitoring of natural and agricultural areas.749

As a future work we plan to exploit deeply the knowledge supplied by the graph-based750

representation. One of our ongoing works is related to automatically grouping similar spa-751

tiotemporal entities in order to define categories (or families) of evolutions that characterize752

a given study site.753
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