Summarizing Multidimensional Data Streams:
A Hierarchy-Graph-Based Approach

Yoann PITARCH, Anne LAURENT, Pascal PONCELET

LIRMM - Univ. of Montpellier 2, CNRS
161 rue Ada, 34392 Montpellier, France
{pitarch,laurent,poncelet}@lirmm.fr

Abstract. With the rapid development of information technology, many
applications have to deal with potentially infinite data streams. In such a
dynamic context, storing the whole data stream history is unfeasible and
providing a high-quality summary is required for decision makers. In this
paper, we propose a summarization method for multidimensional data
streams based on a graph structure and taking advantage of the data
hierarchies. The summarization method we propose takes into account
the data distribution and thus overcomes a major drawback of the Tilted
Time Window common framework. Finally, we adapt this structure for
synthesizing frequent itemsets extracted on temporal windows. Thanks
to our approach, as users do not analyze any more numerous extraction
results, the result processing is improved. Experiments conducted on
both synthetic and real datasets show that our approach can be applied
on data streams.

1 Introduction’

With the rapid development of information technology, many applications (web
log analysis, medical equipment monitoring, etc.) have to deal with data streams.
For instance, more than one billion of transactions are performed on the eBay
website every day [1]. A data stream is defined as a potentially infinite sequence
of precise and changing data arriving at an intensive rate. Due to the high-speed
constraint, stream data can be read only one time (referred to as the one-pass
constraint [2]) and storing the whole stream history is impossible. Nevertheless,
the data stream history analysis would be helpful for decision makers. This
naturally lead us to propose data stream summarization methods.

Moreover, most of stream data are multidimensional and can be considered
at multiple levels of precision (referred as MD/MT data). For instance, a web
log server registers visitor’s IP, the date, the status code, ... Providing an on-line
multidimensional and multilevel analysis on such data streams would be inter-
esting in order to make profit of the OLAP technology in static datawarehouses.

To the best of our knowledge, only two approaches exist for summarizing
multidimensional data streams thanks to OLAP technologies. The first of those

! Part of the MIDAS project founded by the french ANR agency (ANR-07-MDCO-
008)

approaches is [3]. Since it is impossible to store the whole history of a stream,
the temporal dimension is compressed thanks to the Tilted Time Windows [4]
(TTW) (the most recent history is registered at the finest granularity and the
older history is registered at coarser granularity). The authors made the most of
the users habits in order to choose the materialized cuboids. In spite of an inter-
esting architecture, the storage cost can be reduced. The authors of [5] overcame
this drawback by introducing precision functions which define for each granu-
larity level of every dimension the minimal interval of a TTW to avoid storing
unqueried or computable data. Globally, the existing approaches focus on which
cuboids must be materialized but none of them reconsider the use of TTWs. Even
if this technique allows to reduce efficiently the temporal dimension, changing
the time granularity at regular intervals can lead to an important loss of preci-
sion. Indeed, this mechanism does not take into account the data distribution.
For instance, if an item rarely occurs in the stream, it could be useful to keep
precise informations about its appearances. With the TTW mechanism, this in-
formation would be lost after the first aggregation.

In this paper, we propose a graph-based framework for summarizing MD /ML
data streams which overcomes the major drawback of the TTW. If an item fre-
quently appears in the stream, it is useless to conserve the precise history of
its appearances. Thus, performing aggregations does not lead to an important
loss of precision. Conversely, rare items should not be precociously aggregated
because conserving their precise appearances could be useful for supporting de-
cisions. Thereby, thanks to dynamic lists, aggregations are performed only if an
item occurs in several close windows of the stream. On the contrary, non-close
appearances are kept during a significant period.

Moreover, the frequent itemset mining on temporal windows can be con-
sidered as an interesting data stream summarization technique for two main
reasons: the trend analysis and the context-awareness. Indeed, the trend anal-
ysis is one of the most frequent tasks performed by decision makers. Moreover,
considering sets of items instead of isolated items allows the users to be more
contex-aware. Thus, supported decisions are imporoved. Nevertheless the anal-
ysis of frequent itemsets extracted over temporal windows suffers from a major
weakness: the independency of the extracted sets of itemsets. Thus, analyzing
the stream evolution means observing these distinct sets of itemsets manually.
The more thes number of separated sets to analyze, the more difficult it is.
For instance, let us suppose that a website administrator hourly extracts the
frequent itemsets from its network traffic. Then, if (s)he wants analyzing the
yearly evolution of the visitor habits, (s)he has to consider the 8,760 separated
sets of frequent itemsets. We show that our approach allows the unification of
these separated and numerous sets and describe the minor modifications brought
to the proposed framework in order to allow the synthesis of those independent
sets of itemsets.

2 Problem Statement

In this section, the necessary concepts of our proposed method are defined. First,
some definitions about the multidimensional and multilevel data are given. Then,
the problematic of the frequent itemset mining [6] is extended to the frequent
multidimensional itemset mining in data streams. Finally, a brief recall of the
TTW mechanisms is given.

2.1 Dealing with MT /ML Data

Let D = {D,..., Dy} be a set of M dimensions. Every dimension D; is defined
over a (finite or not) set of values named Dom(D;). Generally, every dimen-
sion can be considered at several levels of granularity. These levels compose
the hierarchy H; of the dimension D; with the following notations: max; is the
number of levels in H; with H]"* the finest level and H} the coarsest. Note
that for every dimension D; we consider a wild-card value * which can be de-
fined as all the values in D;. We note x € Dom(D}) if z is defined on the
level H f . For instance, the hierarchy of a geographic dimension D¢, could be
Hgeo = {H1 = ALL, Hy = Continent, H3 = Country, Hy = City} and we have
France € Dom(DGeo) With these notations, a (multidimensional) item ¢ is
defined as t = (dy, ..., dar) so that for every i = 1...M, d; € Dom(D;). We say
that t is a Lowest Level Item (LLI) if Vd;, € 1... M, d; € Dom(D;****). On the
contrary, t is named an High Level Item (HLI). We note father(t), the direct
generalization of the item ¢. For instance, considering the hierarchies presented in
the Figure 1, the item ¢ = (Water, LA) is a LLI and father(t) = (Drink,USA).

The "Product” dimension The "Place” dimension

ALL_| Pmducl hYi ALL Place

Food \Drmk : USA/ \ France

i COUNTRY
CATEGORY 3
Meat Fl$h Wine, / Water L& Par&\Lyﬂn i
PRODUCT | cry

Fig. 1. The hierarchies used in our example

ALL

2.2 Mining Multidimensional Items in data stream

Initially introduced in [6], the frequent itemset mining problem in a database DB
consists in the extraction of the multidimensional itemsets wich are supported
by at least minSupp transactions. A M-multidimensional k-itemset is a set of
k items described with M dimensions. The support of an itemset X, denoted
by supp(X) = count(X)/|DB| where count(X) is the number of transactions
in which X appears divided by the total number of transactions. An itemset X
is frequent iff supp(X) > minSupp where minSupp is a user-defined numerical

parameter.

To take the dynamic context into account, we adapt the problematic as follows.
A data stream S = By, By, ..., B, is an infinite sequence of batches (temporal
windows), where each batch is associated with a timestamp ¢, i.e. B, and n
is the identifier of the most recent batch B,,. A batch B; is defined as a set of
transactions appearing over the stream at the i time unit. In such a context, the
support notion must be redefined. suppg, (X) = count(X)/|B;| where count(X)
is the number of transactions of B; in which X appears divided by |B;|, the
number of transactions of B;.

2.3 The Tilted Time Window Framework

Since the volume of data generated by data streams is too huge to be totally
materialized, a lossy compression of data stream history must be performed. In
stream data analysis, users are usually interested in recent changes at a fine
granularity, but long term changes at coarse scale. Thus, the literature proposes
a model which takes inspiration of this: the Tilted Time Window model [4]. In
fact, time can naturally be registered at different levels of granularity. The most
recent history is registered at the finest granularity and the older history is reg-
istered at coarser granularity. The level of coarseness depends on the application
requirements and on how old the time point is from the current time. Figure
2(a) provides an example of TTW.

VALUES

e
1 year 1 quarter 1 month 1 week :
Y q ta Now :]

ty t
| | | l f —
| [| I

ts

TIME

(a) A natural TTW illustration (b) The TTW model con-
fronting to sparse data

Fig. 2. TTW: illustration and drawback

This technique allows an efficient compression of the temporal dimension but
suffers from major weakness. Changing the time granularity at regular intervals
can lead to an important loss of precision. For instance, let us consider the
appearances of the item 4 presented as the point in Figure 2(b). As we can see,
the item 7 rarely occurs in the stream. With classical TTW, these appearances
would have been quickly aggregated. Indeed, the older the appearances, the more
the number of values aggregated together. Thus, assuming that the displayed
lines represent the aggregated values inserted in the TTW, we see that the
resulted TTW is not representative of the appearance history of the item 4 in the
stream. As a consequence, TTWs are specially well-adapted for balanced data

distribution but not for continously-changing data distribution. Since stream
data have a continuously changing distribution, this drawback is really critical.

3 The Raw Stream Data Summarization

Initially, the hierarchies associated to the dimensions compose the base-structure.
These nodes are structural and do not store anything. Then, as multidimensional
items keep coming, nodes storing the summary at different levels of granular-
ity are created, updated or deleted dynamically. As previously discussed, storing
their history in TTWs leads to in an important loss of precision with distribution-
changing data streams. To overcome this drawback, the history of each LLI is
conserved in dynamic lists storing the precise appearances. Thus, aggregations
are not performed at regular time intervals but only when some conditions (e.g.,
temporal proximity between elements of the list) are validated. We discuss this
mechanism in the Section 3.2. Higher granularity nodes store classical TTWs.
Figure 3 displays a simple example of structure.

ALL_Place

LEGEND /

Food Drink France

O =
Meat / Fish Win

Pari&‘ Lyon
= O Q

O

Fig. 3. A toy illustration of the proposed structure. Observing the list associated to
the item (Water, LA), we see that it occurs 1 time in the batch ¢10 and 8 times in the
batch t12. History of more general items (e.g., (Drink,USA)) are store in TTWs.

Due to the potentially infinite length of a stream, the simple accumulation
of appearances in dynamic lists is impossible. Mechanisms for aggregating or
merging data are proposed:

1. If the same item appears in close temporal windows, they are merged and
the result of this merging is propagated along the item generalizations.

2. A maximum size for each list is fixed. When a list reaches its maximal size,
the oldest element is deleted.

3.1 The Structure Description

Initially, the graph structure is composed by the dimension hierarchies. These
nodes are name structural nodes SN. Histories of LLIs are stored in nodes
named the Lowest Level Nodes (LLN) defined as follows.

Definition 1. Let Nx = (X, Histx) be a LLN node so that X is a LLI and
Histx is a list containing pairs < W : County > where W is a time interval
and Countyy is the number of occurences of Xg in W. If W represent more than
one time unit, we note respectively Wyeg and Wepnq for the beginning and the end
of the interval. On the contrary, the notation W is used.

HLI are represented in our structure by High Level Nodes (HLN') defined
as follows.

Definition 2. Let Mx = (X,Tx) be an HLN so that X is an HLI and Tx is
a TTW storing the history of X.

Now we described how these components interact.

3.2 Updating the Structure

A distance measure between LLI Since stream data arrives at a very low
level of granularity, the number of potential items can be huge. [3] proposes
to tackle this problematic by electing the the lowest level of granularity which
is interesting for the user (named the m-layer). Thus, data are systematically
aggregated to this level of granularity. Sometimes, users need to keep a track of
precise data. In such a context, two items could be different but semantically
near. A solution for considering these items as equivalent is to define a distance
measure between them. If this distance is lower than an user defined threshold,
the items are considered identically. We propose an hierarchy-based distance
measure. Let A = {X{*, X5t ..., X§} et B={XE, XE, ..., XE} be two LLL. We
define dist(A, B) as:

di<i<n proa:(xf, xf)
N

dist(A,B) =1—
With:
— N is the number of dimensions

1 .
prow(zy, o) = 4 PVCAGzye IWNCA(z1,22)) # ALL
0 otherwise

lu(z) is the level of granularity of x (with lv(z) = 1 if = is a sheet of the
hierarchy)
— NCA(z1,x2) is the nearest common ancestor of z; and 9

Property 1 The dist function is a distance measure and satisfies the following
conditions: (1)the symmetry, (2) Va,y dist(x,y) = 0 & © = y and (3) the
triangular inequality.

Example 1 Let A=(Wine,Paris) and B=(Wine,Lyon) be two LLI. We have
dist(A,B) = 1 — 12322 Indeed, we have NCA(Wine, Wine) = IdProduct
(prox(Wine, WiIne) =1) and NCA(Paris, Lyon) = Country (Proxz(Paris,
Lyon) = 5).

Two items A and B are semantically close if and only if dist(A, B) < distMax
where distMax is a user defined threshold. In our experimentations, we consid-
ered distMaxz = 0.5.

When the node Nx (where Nx is a LLN) already exists, an update of this
node must be performed if X reappears (in the batch ¢ for instance). Indeed,
the pair < t, count; > must be added to Histx. Due to the storage constraint,
a merge mechanism is proposed.

The Merge Operation If an item occurs in close time interval, it is unec-
essary to store its distinct appearances. A naive solution would be to perform
this merge operation without any check. This solution would lead to mistakes
during the propagation on the HLN. For instance, let us consider the Table 7?7
and the TTW shown on Figure ??7. With this TTW, an agregation is performed
every three time units. The problem is that the aggregated value corresponding
to the time interval [Tyg;7T13] cannot be inserted in the second window of the
TTW because it overlaps the first two windows. Indeed, each value in the second
window represents three time units (more generally, each value stored in a win-
dow k represents the aggregation of Wi X ... X Wy_; time units). So, a merging
operation can be performed if and only if the impacted interval represents one
temporal granularity of the TTW.

The proposed method for merging pairs stored in the Histx of a node Nx
and propagating the aggregated values along the generalization of X is described
as follows. Firstly, the pair f arising from the merge is computed (line 1) and the
related pairs are deleted from Histx (line 2). This process begins a propagation
along the generalization of the concerned item. So, it is necessary to seek the
nodes sharing the same generalization. Each Hist is scanned in order to locate
entries which must take part in the aggregation mechanism (line 3 and 4). To
ensure the consistency of the algorithm, a pair cannot take part in two different
merge operations. So, each pair participating to a merge operation is marked
(line 5). At last, the aggregated value is inserted at the appropriate position in
the TTWs corresponding to the generalizations of X.

Example 2 Let us consider the example displayed in Figure 3 and let us suppose
that a merge has to be performed on the (Water-LA) node. Thus, the two pairs
<tyg:1> and < t12 : 8 > are aggregated. Then, the search of nodes sharing the
same generalization (i.e., (Drink-USA)) find the node Wine-NY. Its list contains
a pair < t11,5 >, which can participate to the aggregation.

Limiting the Size of the Lists The merge mechanism allows for compression
of lists but is insufficient to guarantee that the structure fits in main memory.
Thus, additional methods must be proposed in order to avoid the memory over-
flow.

Algorithm 1: Merge
Data: N = (X, Histx) a LLN, beg =< tpeq : county,,, >,
end =< tenq : county,, , >
Result: Performs the merge between beg and end and propagates along the
generalization of R
1 f=<ty:county >=< [tpeg;toeqg] : agr(counts,,,, ..., countr,, ,) >;

2 Removal of the merged pairs. ;

3 M = {p so that p =< t; : count; >€ Histx: with father(X) = father(X') and
ti € [toeg; tenal}s

4 agrero = agr(count;) (with < t; : counti >€ M) ;

5 Mark those pairs ;

6 Insert agr(county, agryro,) in the TTW of father(R) ;

Firstly, we previously said that a merging is performed if the interval repre-
sents one temporal granularity of the TTW but it is unrealistic to consider all
the granularities. For instance, let us suppose that the TTW displayed in Figure
2(a) is used. Considering the whole TTW for the merging mechanism implies
that we can potentially wait for 1 year before any aggregation and generaliza-
tion. Due to the huge number of lists (i.e. the number of LLN), storing a so long
history in each list is inconceivable. So, we introduce a user-defined numerical
parameter, Wy 4 x, which means that the maximum size of the possibly merged
interval is Wl X ... X W]\/[AX — 1.

Secondly, the merging mechanism is not sufficient to limit the number of
elements stored in a list. In fact, it is not possible to determine the data dis-
tribution in a stream and, consequently, it is impossible to predict the number
of merging operations. So, in order to limit the size of the list, a user-defined
numerical parameter, MAX-SIZF, is introduced. Intuitively, one may think that
no more than MAX-SIZE elements per list are stored. This is not completely
true. Indeed, since the MAX-SIZE" element in the list can be possibly merged
in the future, we authorize MAX-SIZE + (W7 X ... x Wyrax — 1) — 1 elements
per list.

Example 3 Let us consider that the TTW displayed in Figure 3 is used and
that MAX-SIZE= 3 and Wy ax = Ws3. With this parameter, the size on the list
is at worst 3+ (3 x 3) —1 = 11.

The General Update Algorithm The general method for updating a LLN NV
can be described as follows. Firstly, the size of Hist is evaluated and compared
to MAX-SIZE. If the size is smaller than MAX-SIZFE, we check in the list if
a merge operation is possible. If necessary, a merge operation is performed.
Otherwise, the pair is inserted at the end of the Hist. If the size of the Hist
is greater or equal to MAX — SIZE, we get the MAX — SIZE' element
in Hist and we check if a merge operation is possible. Otherwise, we check

if to —tm < (W1 X ... X Wagax — 1). This check allows us to verify if the
MAX —SIZE™ element could be merged in the future. Otherwise, it means that
the list is full and that any element in the list can be merged. As a consequence,
the oldest pair is deleted.

4 The Frequent Itemset Synthesis

As previously discussed, frequent itemsets extracted over temporal windows can
be considered as an interresting data stream summarization technique. However,
we discussed the difficulty for decision makers to analyze the numerous and
independent set of results manually. In this section, the minor adjustments to
perform in order to take into account such specific input are presented.

Storing frequent itemsets instead of items requires that dynamic lists (resp.
TTWSs) cannot be stored in LLN (resp. HLN). So, some definitions must be
adapted. Indeed, LLN and HLN nodes are now considered as structural nodes
and do not store any history.

Likewise LLIs, the history of each LLIS is stored in nodes named the Lowest
Level Itemset Nodes (LLISN).

Definition 3. Let Nx = (X : Histx) be a LLISN node so that X is a LLIS
and Histx is a set of pairs < W : Suppw > where W is a time interval and
Suppw is the support of X in W. If W represents more than one time unit,
we note Wyeg (resp. Weng) the beginning (resp. the end) of the interval. On the
contrary, the notation W is used.

HLIS are stored in nodes named the High Level Itemset Nodes (HLISN).

Definition 4. Let R = (X : T) be an HLR so that X is an HLI and T is a
TTW.

Methods presented in the Section 3 are easily transposable to the frequent
itemset synthesis. Due to both the lack of space and the extreme proximity with
the above-written algorithms, we do not present them.

5 Experiments

In this section, we present experiments to evaluate the feasability and perfor-
mance of our approach. Throughout the experiments, we answer the following
questions inherent to scalability issues: Does the algorithm update its data struc-
ture before the arrival of the next batch? Does the mining process over a data
stream remain bounded in term of memory ¢ The experiments were performed
on a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz with 2GB of main memory, run-
ning Ubuntu 9.04. The methods were written in Java 1.6. Due to lack of space,
all our experimental results are stored on a website 2. Here, we present and
discuss only the most representative.

2 http://www.lirmm.fr/ pitarch/PAKDD10/experiments.html

5.1 Synthetic Datasets

The data stream is simulated using a multidimensional random data generator
(following a Random Uniform Distribution). The convention for the data sets is
as follows: D10L3C5W20T100SM10FP10 means that there are 10 dimensions, 3
granularity levels per dimension (except level *), the node fan-out factor (cardi-
nality) is 5 (i.e., 5 children per node), there are 20K temporal windows of 100
tuples and the proper-approach parameters are SIZE-MAX=10 and the forgotten
parameter equals 10. We performed extensive experiments in order to evaluate
the approach. For this purpose, we tested the influence of numerous parameters:
the number of potential items in the stream, the number of dimensions, the
fan-out factor of the hierarchies, their depths and the MAX-SIZE parameter.

Results Figure 4 presents a representative result obtained during the experi-
mentations. On Figure 4(b), we can observe 3 distincst behaviors. Firstly, the
memory consumption quickly increases. Indeed, during that time, no merge is
performed. During the second phase, the RAM consumption fairly increases. In-
deed two concurrent phenomena occur: merges and les listes qui se remplissent.
Finally, the memory usage stabilizes because all the potential LN are created
and insertions in lists are balanced by merges.

Regarding the update time per window (Figure 4(a)), we notice 3 distinct time
scales. The lowest one corresponds to a node creation or to a simple insertion in
a list (performed almost instantaneously), the second one corresponds to merg-
ing and aggregation mechanisms (approximately 15ms) and the highest one is
explainable by both insertionw and merges (approximately 20ms).

Due to the Random Uniform Distribution of data, paramaters which impact
directly on the number of potential items to store have a logical influence on
both time and memory consumption performances. Indeed, the more the num-
ber of items, the longer the time to perform a merge operation. Nevertheless,
we notice that the performances become critical when the parameter values are
extreme (e.g., when the depth of the hierarchies equals 7). In other experiments,
results show the feasibility of the proposed method.

5.2 Real Dataset

The dataset used for these experiments comes from industrial pumps which
transmit physical informations about pressure, external temperature, ... An item
is described over 10 dimensions. We built arbitrarily hierarchies on these dimen-
sions with the following characteristics. Every dimension has 3 levels of granu-
larity and the average fan-out factor is 100. the dataset is dense. The input file
were divided by windows containing 100 tuples.

Summarizing Items Here, we apply the multidimensional item summarization
on this real dataset. Results are displayed in Figure 5. Regarding to the memory

i

(a) Insertion time/window (b) RAM consumption (3
(3 dimensions) dimensions)

Fig. 4. Influence of the number of dimensions(L3C5W20T100SM10FP150)

usage 5(b), we observe that is rapidly bounded. This can be explainable by the
high density of the dataset. Concerning the insertion time , we can observe that
(1) the average time is 50ms, (2) distinct time scales are observable, (3) the time
is relatively stable and (4) this time is at worst 230ms.

Fig. 5. Experiments conducted on raw data

(b) Memory consumption

Fig. 6. Experiments conducted on frequent itemsets

Synthesizing Frequent Itemsets Here, we report results about multidimen-
sional frequent itemset synthesis on this real dataset. The methodology used is
the following one. We arbitrarily build multidimensional itemsets and customer
sequences. The average number of items per itemset is 25 and the average num-
ber of customers per client is 100. Then, we applied a frequent itemset mining
algorithm 3 with a minSupp=10%. The average number of frequent itemsets per
window is approximatively 100. Finally, we run our algorithm on those frequent
itemsets. Figure 6(b) displays our results about the memory consumption. We
observe that the memory consumption stabilizes quickly because the frequent
itemsets are globally the same on the whole data stream. Altough two off-peaks
are observable, this can be explain by the garbage collector. Regarding the in-
sertion time, we observe that the simple insertions or list creations are a little
slower than with items. This is explainable by the higher complexity of itemsets
in comparison to items. We can also observe several merging and generalization
mechanisms.

6 Conclusion

In this paper, we tackle the problem of summarizing multidimensional and mul-
tilevel data stream thanks to a graph structure and provide efficient algorithm
for updating this structure. Moreover, thanks to dynamic lists, we overcome the
major drawback of the TTW: taking into account the data distribution. Finally,
we show how frequent itemsets can be synthesized in order providing a com-
fortable solution for decision support. Our experiment study on both synthetic
and real datasets shows that our summarization structure is efficient in both
critical aspects in such context: time and space. Those results allow us to con-
sider numerous possible extensions such as the adaptation of this structure to
the sequential patterns.

References

1. eBay: 2006 annual report (2006)

2. Aggarwal, C.C.: Data Streams: Models and Algorithms. Advances in Database
Systems. (2007)

3. Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream cube:
An architecture for multi-dimensional analysis of data streams. Distribed Parallel
Databases 18(2) (2005)

4. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.: Mining frequent patterns in data
streams at multiple time granularities (2002)

5. Pitarch, Y., Laurent, A., Plantevit, M., Poncelet, P.: Multidimensional data streams
summarization using extended tilted-time windows. In: FINA. (2009)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: Proceedings of the 20th International Conference
on Very Large Data Bases (VLDB 94). (12-15 1994) 487-499

3 We use the implementation of FP-Growth provided by the Illimine project.

