
Mining Sequential Patterns on Data Streams: A
Near-Optimal Statistical Approach

P.A. Laur1, J.E. Symphor1, R. Nock1, and P. Poncelet2

1 Univ. Antilles-Guyanne/DSI/GRIMAAG, B.P. 7209
97275 Schoelcher Cedex, France

Email: {palaur,je.symphor,rnock}martinique.univ-ag.fr
2 EMA-LGI2P/Site EERIE, Parc Scientifique Georges Besse

30035 Nı̂mes cedex 1 - France
Email: Pascal.Poncelet@ema.fr

Abstract. When we mine for sequential patterns on a whole data stream
it’s necessary to cope with uncertainty as only a part of the stream is
stored. Even if different approaches exist for mining sequential patterns
in static databases they are not suitable for this context. We evaluate
a statistical technique which biases the estimation of the support of se-
quential patterns, so as to maximize either the precision or the recall,
as chosen by the user, and limits the degradation of the other criterion.
Experiments with databases demonstrate the potential of such technique.

1 Introduction

A data stream is an ordered sequence of itemsets that arrives in timely man-
ner. Such data (e.g. stock tickers, telecom records, network traffic measurements,
click streams, sensor networks) are very useful for many emerging and real ap-
plications. Different efficient approaches have been proposed to mine sequential
patterns on static databases [1, 6, 20]. They are usually based on Generating
Pruning techniques which are irrelevant when considering streaming data [5].
Furthermore, mining either itemsets or sequential patterns when the database
is subject to be updated regularly, maintaining frequent patterns has been ad-
dressed by various incremental algorithms, in order to mine frequent itemsets
without having to build everything from scratch [21]. Nevertheless, they suffer
the same drawbacks as traditional approaches. Recently, in order to handle effi-
ciently such streaming data, new data mining approaches have been proposed.
They mainly focus on finding all frequent items or itemsets over the entire his-
tory of a streaming data. The first approach was proposed by [10] where they
define the first single-pass algorithm. Li et al. [9] use a top-down frequent item-
set discovery scheme. A regression-based algorithm is proposed in [16] to find
frequent itemsets in sliding windows. Chi et al. [2] consider closed frequent item-
sets. In [5], they propose a FP-tree-based algorithm [6] to mine frequent itemsets
at multiple time granularities by a novel tilted-time windows technique.
All these approaches consider inter-transaction associations, i.e. there is no lim-
itation on order of events. In this paper we consider that itemsets are really



ordered into the streams, i.e. there is a strict order of events. Therefore, we are
interested in mining sequential patterns rather than itemsets. So such approaches
are not suitable for this task. The first problem we are facing is algorithmic, as
in static database the search space for sequential patterns is much more bigger
than the one of itemsets.

The second problem, we are facing is typically statistical. As we can mine
information from only a fragment of the stream, we propose an approach to
forecast the stream future with some guarantees on this prediction. For exam-
ple, it is not enough to observe some sequential patterns as frequent (similarly
infrequent) in the data stored; it is much more important to predict if it is really
frequent (similarly infrequent) in the whole data stream. Our guarantees are typ-
ically the maximization (with high probability) of some user-fixed criteria; they
do not rely on optimizing the estimation of these criteria (utility functions), like
for example in [4], [13]. The bounds we obtain are also finer and more applicable
than previous ones that could be used in our case [17].

The remainder of the paper is organized as follows. Section 2 goes deeper into
presenting the problem statement. Section 3 presents our solution to this prob-
lem. Section 5 reports the result of our experiments. In Section 6, we summarize
our findings and conclude the paper with future avenues for research.

2 Problem Statement

The problem of mining frequent sequential patterns was previously introduced
in [15] and extended in [14]: Let I = {i1, i2...im} be a set of literals called
items. An itemset is a non-empty set of items. A sequence s is a set of itemsets
ordered according to their time stamp. It is denoted by < s1 s2 ...sn >, where
sj , j ∈ 1...n, is an itemset. A k-sequence is a sequence of k itemsets. Let DB be a
set of transactions where each transaction T consists of customer-id, transaction
time and an itemset. A sequence S′ =< s′1 s′2 ... s′n > is a subsequence of another
sequence S =< s1 s2 ... sm >if there exist integers i1 < i2 < ... ij ... < in
such that s′1 ⊆ si1 , s′2 ⊆ si2, ... s′n ⊆ sin. All transactions from the same
customer are grouped together, sorted by increasing timestamp order and called
a data sequence. A data sequence contains a sequence S if it is a subsequence of
the data sequence. A support value (denoted supp(S)) for a sequence gives its
number of actual data sequence that contain it in DB. A sequence is frequent if
supp(S) ≥ θ × |DB| where θ ∈ (0, 1) is a user-specified minimum support. The
problem of mining frequent sequences is to mine all sequences whose support is
greater than, or equal to θ × |DB|. Each of them is called a frequent sequential
pattern. Meanwhile in the case of data stream we have a partial storage of DB.
Let us now assume that we are provided with a data stream. Let DS = B0, B1,
..., Bn, ..., be an infinite sequence of batches, where each batch is associated with
a timestamp t, i.e. Bt, and n is the identifier of the ”latest” batch Bn. Each batch
Bi consists of a set of customer data sequences; that is, Bi = [S1, S2, S3, ..., Sk].
The length (L) of the data stream is defined as L = |B0| + |B1| + ... + |Bn|



where |Bi| stands for the cardinality of the set Bi. In this context, the support
is defined as follows.

Definition 1. The support of a sequence S at a specific time t is the ratio of
the number of customers data sequence containing S in the current time window
to the total number of customers data sequences.

Therefore, the problem of sequential patterns in data streams is to find frequent

patterns S, i.e. verifying
L∑

t=0

supportt(S) >= θ × L. Given the nature of the

streaming data, there are two sources of error when estimating frequent sequen-
tial patterns:

1. it is possible that some sequences observed as frequent might in fact not be
frequent anymore from a longer observation of the data stream;

2. on the other hand, some sequences observed as not frequent may well in fact
be frequent from a longer history of the data stream.

Should it rely on frequencies estimations, any loss due to the imperfection of
the information stored is incurred by at least one of these two sources of error.
It is statistically hard to nullify both of them from a subset, even very large,
of the whole data stream [18]. It is also generally impossible to capture the
missing information from the data stream to make a fully accurate prediction.
The problem we address in this paper is how to obtain a solution to the following
problem while mining a data stream for sequential patterns:

(a) the user chooses a source of error, and fixes some related parameters;
(b) the source of error chosen is nullified with high probability, while the other

one incurs a limited loss.

3 Our approach

The data stream is supposed to be obtained from the repetitive sampling of
a potentially huge domain X which contains all possible data sequences, see
figure 1 (a). Each sequence is sampled independently through a distribution D,
see figure 1 (b), for which we make absolutely no assumption, except that it
remains fixed: there is no distribution drift through time. The reader may find
relevant empirical studies on concept drift for supervised mining in [19]. The
user specifies a real 0 < θ < 1, the theoretical support, and ideally wishes to
recover all the true θ-frequent sequential patterns of X. This set is called Xθ.

Definition 2.

∀0 ≤ θ ≤ 1, Xθ = {T ∈ X : ρX(T ) ≥ θ} , (1)

with ρX(T ) =
∑

T ′∈X:T≤tT ′ D(T ′), and T ≤t T ′ means that T generalizes T ′.



Observed

Stream

Real 

Sequential Pattern

(a)

(b)

(d)

(e)
(c)

Algorithm

X∗
θ

X
S

P , R, Fβ
S∗θ−ε S∗θ S∗θ+ε

sampling (D)

Fig. 1. Our framework.

The recovery of Xθ faces two problems. Apart from our statistical estimation
problem, there is a combinatorial problem which comes from the fact that X is
typically huge. The set of observed data sequences which we have sampled from
X in the data stream (S) has a size |S| = m (|S| << |X|). In our framework, we
usually reduce this difference with some algorithm returning a superset S∗ of S,
having size |S∗| = m∗ > m. Typically, S∗ contains additional generalizations of
the elements of S. The key point is that S∗ is usually still not large enough to
cover Xθ, regardless of the way it is built, so that the pregnancy of our statistical
estimation problem remains the same.

Our statistical estimation problem can be formalized as follows:

• approximate as best as possible the set X∗
θ = Xθ ∩S∗, for any S and S∗ (see

figures 1 (c) and 2).

Remark that ∀T ∈ S∗, we cannot compute exactly ρX(T ), since we do not
know X and D. Rather, we have access to its best unbiased estimator, ρS(T ) =∑

T ′∈S:T≤tT ′ w(T ′) (∀T ∈ S∗). Here, w(T ′) is the weight (observed frequency)
of T ′ in S. We adopt the following approach to solve our problem:

• find some 0 < θ′ < 1 and approximate the set X∗
θ by the set of observed

θ′-frequent of S∗, that is:

S∗θ′ = {T ∈ S∗ : ρS(T ) ≥ θ′} . (2)

Before computing θ′, we first turn to the formal criteria appreciating the goodness-
of-fit of S∗θ′ , see figure 1 (d). The two sources of error, committed with respect
to X∗

θ , come from the two subsets of the symmetric difference with S∗θ′ , as pre-
sented in Figure 2. To quantify them, let us define:
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TP =
∑

T∈S∗
θ′∩X∗

θ

D(T ) (3)

FP =
∑

T∈S∗
θ′\X∗

θ

D(T ) (4)

FN =
∑

T∈X∗
θ
\S∗

θ′

D(T ) (5)

TN =
∑

T∈S∗\(S∗
θ′∪X∗

θ
)

D(T ) (6)

The precision allows to quantify the proportion of estimated θ-frequent that are
in fact not true θ-frequents, out of S∗θ′ :

P = TP/(TP + FP ) . (7)

Maximizing P leads to minimize our first source of error. Symmetrically, the
recall allows to quantify the proportion of true θ-frequent that are missed in S∗θ′ :

R = TP/(TP + FN) . (8)

Maximizing R leads to minimize our second source of error. We also make use of a
well known quantity in information retrieval, which is a weighted harmonic aver-
age of precision and recall, the Fβ-measure. Thus, we can adjust the importance
of one source of error against the other by adjusting the β value:

Fβ = (1 + β2)PR/(R + β2P) , (9)

A naive approach to approximate X∗
θ would typically be to fix θ′ = θ. Un-

fortunately, the main and only interesting property of S∗θ′ is that it converges
with probability 1 to X∗

θ as m → ∞ from Borel-Cantelli Lemma [3]. Glivenko-
Cantelli’s Theorem gives a rate of convergence as a function of m, but it does
not give the possibility to maximize P or R.

4 Choosing θ′

Informally, our approach boils down to picking a θ′ different from θ, so as to
maximize either P or R. Clearly, extremal values for θ′ would do the job, but
they would yield very poor values for Fβ , and also be completely useless for data



mining purposes. For example, we could choose θ′ = 0, and would obtain S∗0 =
S∗, and thus R = 1. However, in this case, we would also have P = |X∗

θ |/|S∗|, a
too small value for many domains and values of θ, and we would also keep all
elements of S∗ as true θ-frequents sequential patterns, a clearly huge drawback
for mining issues. We could also choose θ′ = 1, so as to be sure to maximize P
this time; however, we would also have R = 0, and would keep no element of S∗

as θ-frequent sequential patterns.
These extremal examples show the principle of our approach. Should we want

to maximize P, we would pick a θ′ larger than θ to guarantee with high probability
that P = 1, yet while keeping large enough values for R (or Fβ), and a set S∗θ′
not too small to contain significant informations. There is obviously a statistical
barrier which prevents θ′ to be too close to θ to keep the constraint P = 1. The
objective is to be the closest to this barrier, which statistically guarantees the
largest R values under the constraint. The following Theorem holds regardless
of the domain, the distribution of the data sequences, the size of S∗, or the
user-fixed parameters (support, statistical risk). It relies only on independence
for sampling data sequences.

Theorem 1. ∀X, ∀D,∀m > 0,∀0 ≤ θ ≤ 1, ∀0 < δ ≤ 1, suppose we pick ε
satisfying ε ≥

√
(1/2m) ln(|S∗|/δ). If we fix θ′ = θ + ε in eq. (2), then P = 1

with probability at least 1 − δ. If we fix θ′ = θ − ε in eq. (2), then R = 1 with
probability at least 1− δ.

(proof uses standard tools on concentration inequalities [12]; omitted due to the
lack of space). The main point is that the values of θ′, see figure 1 (e), are in
fact close (i.e. up to negligible factirs) to the statistical barriers [18, 8] that still
guarantee maximal values for P or R. This is where lies the near-optimality of
our approach, formalized in the following Theorem (proof uses a careful analysis
of the tail of the binomial distribution; omitted due to the lack of space).

Theorem 2. ∃X, ∃D,∃m > 0, ∃δ > 0 s. t. ∀1/2 < θ ≤ 1, with probability > δ,
P 6= 1 and R 6= 1 for any ε ≤ c

√
(θ(1− θ)/m) ln(|X∗

θ |/δ), with c > 0 a constant.

A previous Chernoff-type analysis, due to [17], may be fit to handling data
streams as well, but for slightly more restricted problems; in particular while
some of the bounds would typically not be applicable for large S∗, the others
would be mainly addressed at controlling the precision of the support estimation,
and not the maximization of our criteria (precision or recall).

5 Experiments

We focus on evaluating how our statistical support can be helpful to mine se-
quential patterns on a data stream, given a fragment of this stream. For this
purpose, we use the previously defined measures: P (7), R (8) and Fβ (9).

We have chosen two Web log databases and a sequential pattern algorithm
PSP [11]. The first database named “Dragons”3 (132k transactions, 2,54Go),
3 www.elevezundragon.com.



Database θ sampling1 sampling2

Dragons [.07, .2] / .03 [.02,.1] / .01 [.15, .7] /.05
BuAG [.08, .2] / .03 [.05,.1] / .01 [.15, .7] /.05

Fig. 3. Range of parameters for the experiments in the form [a, b]/c, where a is the
starting value, c is the increment, and b is the last value.

holds click-stream data of an online gaming site. The second database “BuAG”4

(54k transactions, 3,48Go), holds click-stream of users access to the University
Library Web site.

On each database, we have evaluated our method with a broad range of
values for each free parameters (the exception is δ, which was fixed to be .05).
These parameters that vary during our experiments are described in Fig. 3.

Better than using a real data stream, we have chosen to simulate data streams
assuming the complete knowledge of the domains, thus allowing to compute
exact values for the performance measurements. More precisely, we simulate
data streams by sampling each database into fragments. For example, we could
consider that data arrive in a timely manner from the “Dragons” database, and
that only 20% of the whole data is stored. So we pick 20% of the transactions of
this database, we consider that it is the data stored, and check the P, R and Fβ

values with the whole database. We have chosen to sample the database on a
broad range of percentages using two scales. The first allows a fine sampling of
the database, for values ranging from 2% to 10% by steps of 1% (“sampling1”
in Fig. 3), and typically gives an idea of what may happens for very large, fast
data streams.We have completed this first range with a coarse range of samplings,
from 15% to 70% by steps of 5% (“sampling2” in Fig. 3), which gives an idea of
the average and limit behaviors of our method. Due to the very large number of
experiments and the lack of space to report them all, we have chosen to report
some plots we consider as representative, and synthesize the whole results.

Figure 4 shows result from experiments on choosen databases with δ = .05.
Each plot describes for one database and one support value, either P or R of the
three methods which consist in keeping S∗θ−ε, S

∗
θ , and S∗θ+ε.

A first glance at these plots reveals that their behavior is almost always the
same. Namely:

– the P increases with θ′ (eq. 2), while the R decreases with θ′,
– the P equals or approaches 1 for mostly storing sizes when θ′ = θ + ε,
– the R equals or approaches 1 for mostly storing sizes when θ′ = θ − ε.

These observations are in accordance with the theoretical results of Section 4.
There is another phenomenon we may observe: the R associated to θ′ = θ + ε
is not that far from the R of θ′ = θ. Similarly, the P associated to θ′ = θ − ε is
not that far from the P of θ′ = θ. This shows that the maximization of P or R is
4 www.univ-ag.fr/buag/.
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Fig. 4. Examples of plots with δ = .05 and three θ values. For theses values we give the
P (left plot) and R (right plot) for the three methods consisting in picking S∗θ−ε, S

∗
θ , S∗θ+ε.

obtained at a reduced degradation of the other parameter. We also remark that
P plots tend to be better than R plots. This is not really surprising, as advocated
in Section 4, since the range of values for P is smaller than that of R.

A close look at small storing sizes of the streams (before 10%) also reveals
a more erratic behavior without straight convergence to maximal P or R. This
behavior is not linked to the statistical support, but to the databases used.
Indeed, small databases lead to even smaller storing sizes, and frequent sequential
patterns kept out of small databases are in fact trickier to predict than for bigger
ones. This point is important as, from a real-world standpoint, we tend to store
very large databases, so we may expect this phenomenon to be reduced.

On these databases, another phenomenon seems to appear. First of all, be-
cause of the small values for θ, some tests have not be performed because θ−ε was
< 0. Furthermore, the greater difference observed between the curves seems to
stem out from the different sizes of databases. For example, the BuAG database
is smaller than the Dragons database by a factor 2.4. This, we think, explains
the greater differences between the curves: they are mostly a small database phe-
nomenon, and may not be expected from larger databases, or even real-world
data streams.
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Fig. 5. Two sets of plots of the Fβ value from the Dragons database, with β = .2 for
the left plots and β = 1.8 for the right plots.

In Figure 5, two sets of two plots taken from the Dragons database plot the
Fβ measure, against the size of the stream used (in %). The values of β have
been chosen different from 1, but not too small or too large to yield a reasonable
prominence of one criterion (.2 and 1.8, see Figure 5).

Different phenomenons appears on these plot. First of all, as seen on the left
plots, the Fβ value displays the advantage of choosing θ′ = θ + ε against the
choice θ′ = θ. Meanwhile, as shown on the right plots choosing θ′ = θ−ε against
the choice θ′ = θ is not always a win / win strategy. Moreover, R that this is
obtained while statistically guaranteeing the maximal value for whichever of the
P or R criterion, as chosen by the user.

6 Conclusion

In this paper we address the problem of mining sequential patterns on data
streams. We proposed a statistical technique for estimating the support of se-
quential patterns on data streams, regardless of the size of the data stored.
Conducted experiments have shown that this technique is very efficient. Fur-
thermore, one of the main advantage of the proposed approach is that it does
not depend on the used mining algorithm. One promising research direction
would be to integrate our approach with approaches that consisting in somehow
reducing the size of the data stored, so as to keep the property that sequential
patterns observed as frequent still remain frequent with high probability [7]. In
the framework of data streams it would be much more efficient from a statistical
standpoint to keep the sequential patterns that are truly frequent. This would
basically boil down to mixing our approach with them, so as to keep maximal R



(or P). Because of the technical machinery used in these papers (e.g. Blum fil-
ters [7]), mixing the approaches into a global technique for reducing the error in
maintaining frequent sequential patterns from data streams may be more than
simply interesting: it seems to be very natural.
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