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Abstract. Motivated by decision support problems, data mining has
been extensively addressed in the few past years. Nevertheless, the pro-
posed approaches mainly concern flat representation of the data and
to the best of our knowledge, not much effort has been spent on min-
ing interesting patterns from such structures. In this paper we address
the problem of mining structural association of semistructured data, or
in other words the discovery of structural regularities among a large
database of semistructured objects. This problem is much more compli-
cated than the classical association rule one, since complex structures
in the form of a labeled hirearchical objects partially ordered has to be
taken into account.

1 Introduction

Motived by decision support, the problem of mining association rules
or sequential patterns has recently received a great deal of attention
[AIS93,A594, BMUT97, FPSSU96,SON95,T0i96,SA96,MCP98]. Nevertheless,
the proposed approaches mainly concern flat representation of the data and to
the best of our knowledge, not much effort has been spent on mining interesting
structures from such a data [WL97,WL99]. In fact, this problem is much more
complicated than the classical association rule or sequential patterns, since
complex structures in the form of a labeled hirearchical objects partially ordered
has to be taken into account.

In this paper, we present a new algorithm, called SCM (Schema Mining) for
mining structural regularities of semistructured data. The rest of this paper is
organized as follows. In section 2, the problem is stated and illustrated. The
algorithm ScM is described in section 3. Related work is briefly presented in
section 4. Finally section 5 concludes the paper.

2 Problem statement

In this section we give the formal definition of the structural association
mining problem. First we formulate the semistructured data which widely



resumes the formal description of the Object Exchange Model (OEM) defined
for representing structured data [AQM™97]. Second we look at the structural
association mining problem in detail.

The data model that we use is based on the OEM model designed specifically
for representing semistructured data. We assume that every object o is a tuple
consisting of an identifier, a type and a value. The identifier uniquely identifies
the object. The type is either complexr or some identifier denoting an atomic
type (like integer, string, gif-image, etc.). When type is complex then the object
is called a complex object and value is a set (or list) of identifiers. Otherwise the
object is an atomic object, and its value is an atomic value of that type. As we
consider set semantics as well as list semantics, we use a circle node to represent
an identifier of a set value and a squared node to represented an identifier of a
list value.

We can thus view OEM data as a graph where the nodes are the objects and
the labels are on the edges. In this paper we assume that there is no cycle in
the OEM graph. We also require that: (i) identifier(o) and value(o) denotes the
identifier and value of the object o; (ii) object(id) denotes the unique object
with an identifier id; (iii) Each atomic object has no outgoing edges. (iv) If two
edges connect the same pair of nodes in the same direction then they must have
different label. We thus assume that we are provided with a labeling function
Fg : E — Lg where Lg is the domain of edge labels. A single path in the
graph is an alternating sequence of objects and labels < 011105...05_1lx_105 >
beginning and ending with objects, in which each label is incident with the two
nodes immediately preceding and following it. The number of labels from the
source object to the target node in a path, k, is the length of the path. As we
consider nested structures, we can consider that the length is similar to the
nested level of the structure. Let P the set of all paths p where the length of
p is k. We now consider multiple path defined as follows: a multiple path (or
path for short) is a set of single paths such as the source object is the same in
all the single paths. The length of the path is the maximal length of all single
paths. As we are only interested in structural regularity, in the following we do
not consider atomic values anymore and we use symbol L in order to denote an
atomic value in the graph.

A path p,, is a sub-path of a path p, if p,, is included in p,. We define the
inclusion in the following way: A path p, =< 04,0l41005---0a4_1las_10a, > 18
included in another path py =< 0p,lp, 0py-.-0p,_, lp,._, 0p,, > if and only if there
exists integers i1 < iy < ... < in such that o,, = 0p 0,
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Example 1 The path {category: L,name: 1,address: {street: L,city:
1,zipcode: L}, price: L1} is not a sub-path of {category: L,name:
1,address: {street: L,city: L,zipcode: L},nearby: {price: L,category:
1,name: L}, nearby: {category: L,name: L,address: L, address: L,price:
1, zipcode: 1}} since the label price is not at the same level in the graph.



Let DB be a set of transactions where each transaction T consists of
transaction-id and a multiple path embedded in the OEM graph and involved
in the transaction. A support value (supp(s)) for a multiple path in the OEM
graph gives its number of actual occurrences in D B. In other words, the support
of a path is defined as the fraction of total data sequences that contain p. In
order to decide whether a path is frequent or not, a minimum support value
(minSupp) is specified by user, and the multiple path expression is said frequent
if the condition supp(s) > minSupp holds.

Given a database DB of customer transactions the problem of regularity min-
ing, called Schema mining, is to find all maximal paths occurring in DB
whose support is greater than a specified threshold (minimum support). Each
of which represents a frequent path. From the problem statement, discovering
structural association sequential patterns resembles closely to mining associa-
tion rules [AIS93,A594,BMUT97,FPSSU96,S0N95,T0i96] or sequential patterns
[AS95,5A96]. However, elements of handled association transactions have struc-
tures in the form of a labeled hirearchical objects, and a main difference is
introduced with partially ordered references. In other word we have to take into
account complex structures while in the association rules or sequential patterns
elements are atomics, i.e. flat sets or lists of items.

3 ScM algorithm

In this section we introduce the SCM algorithm for mining structural associa-
tion of semistructured data in a large database. We split the problem into the
following phases:

1. Mapping phase: The transaction database is sorted with transaction id
as a major key and values embedded in a set-of are sorted according to the
lexicographic order. In order to efficiently find structural regularity among
path expressions, each path expression is mapped in the following way. If
the object value is a part of a set-of value, then we merge an ’S’ to the label
(resp. a 'L’ for a list-of value). Furthermore, in order to take into account
the level of the label into the transaction, we append to the label an integer
standing for the level of the label in the nested structure. When two labels
occur at the same level and if the first one directly follows the second one,
they are grouped together in the same set otherwise they form a new set of
labels. The ordering of the list-of value is taken into account by creating a
new set of labels. The “composite” transaction which results from the union
of such sets obtained from original transaction describe a sequence of label
and the ordering of such a sequence may be seen as the way of navigating
through the path expression.

2. Mining Phase: The GENERAL algorithm is used to find the frequent paths
in the database.

Example 2 In order to illustrate the mapping phase, let us consider the fol-
lowing transactions [t1,{a :< e: {f : L,b: L}, d:<g: L,h: L >>c: L}.



According to the previous discussion, the transaction ¢; is mapped into the fol-
lowing: [tz, (Sal) (Lez) (Sf35b3) (Lg3)(Lh3)(Ld2) (Scl)]

Our approach for mining structural regularities fully resumes the fundamental
principles of the classical association rule problem [AIS93]. At each step k,
the DB is browsed for counting the support of current candidates (procedure
VERIFY_CANDIDATE). Then the frequent sequence set Lj can be built. From
this set, new candidates are exhibited for being dealt at the next step (procedure
CANDIDATE- GENERATION). The algorithm stops when the longest frequent
paths, embedded in the DB are discovered thus the candidate generation
procedure yields an empty set of new candidates. Due to lack of space we do
not provide the full description of the algorithms but rather an overview.

In order to improve the efficiency of the generation as well as the organization
of candidates paths we use a prefix tree structure close to the structure used
in [MCP98] and improved in [MPC99]. At the k" step, the tree has a depth
of k. It captures all the candidate k-path as well as all frequent paths: once
candidates are counted and determined frequent they remain in their proper
position in the tree and become frequent paths. Any branch, from the root to
a leaf stands for a candidate path, and considering a single branch, each node
at depth [ (k > I) captures the [** label of the path. Furthermore along with
a label, a terminal node provides the support of the path from the root to the
considered leaf (included). Sets cutting is captured by using labelled edges. In
order to illustrate this difference, let us consider two nodes, one being the child
of the other. If the labels emboddied in the node originally occurred in the
same set, the edge linking the nodes is labelled with a dashed link otherwise it
is labelled with a line.

In order to improve the efficiency of retrievals when candidates paths are
compared to data-sequences, we assume that each node is provided with two
hashtables. The fist one is used to consider labels occurring in the same set
while the other one is used for taking into set cutting.

Candidate_Generation

The candidate generation builds, step by step, the tree structure. At the
beginning of step 2, the tree has a depth of 1. All nodes at depth 1 (frequent
labels) are provided with children supposed to capture all frequent labels. This
means that for each node, the created children are a copy of its brothers. When
the k" step of the general algorithm is performed, the candidate generation
operates on the tree of depth k and yields the tree of depth k+1. For each leaf
in the tree, we must compute all its possible continuations of a single item.
Exactly like at step 2, only frequent items can be valid continuations. Thus
only paths captured by nodes at depth 1 are considered. Associated leaves, by
construction of the tree, are brothers.

Verify_Candidate
In fact, to discovery candidates paths included in a data sequence, the data-
sequence is progressively browsed beginning with its first label, then with the



second, and so on. From the item, a navigation is performed through the tree
until a candidate path is fully detected. This is done by comparing successively
following items in the data sequence with the children of the current node in
the prefix-tree structure. Finally when a leaf is reached, the examined path
support the candidate and its counting value must be incremented.

The ScM algorithm is implemented using Gnu C++. Due to lack of space we
do not report experiments about our approach but interested reader may refer
to [Lau00].

4 Related Work

To the best of our knowledge there is few work on mining such a structural regu-
larity in a large database. Nevertheless, our work is very related to the problem of
mining structural association of semistructured data proposed in [WL97,WL99]
where a very efficient approach for mining such regularities is provided. The
author propose a very efficient approach and they give some pruning strategies
in order to improve the candidate generation. Nevertheless our work has some
important differences. Unlike their approach we are insterested in all structures
embedded in the database while they are interested in mining tree expression
which are defined as a path from the root of the OEM graph to the atomic
values. According to this definition of the tree expression they cannot find reg-
ularities such as identity: {address: < street: 1, zipcode: L >} (Cf. section 2).
In fact, when parsing the database in order to find frequent tree, they are only
provided with maximal tree and when only a part of the tree is frequent it is
not discovered.

Discovering structural information from semistructured data has been studied in
some interesting works. In this context, they are some propositions for extract-
ing the typing of semistructured data. For instance in [NAM98] they extract the
structure implicit in a semistructured schema. This approach is quite different
from our since we address the repetition of a structure in a schema. Neverthe-
less we assume that our transaction database has been preprocessed using such
a technique in order to provide an OEM graph where the raw data has been
casted in terms of this structure.

5 Conclusion

In this paper we present the SCM approach for mining structural association of
semistructured objects in a large database. Our approach is based on a specific
generation of candidates efficiently performed using a new structure as well as
a very well adapted mapping of the initial database.



References

[AIS93]

R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between
Sets of Items in Large Databases. In Proceedings of the 1998 ACM SIGMOD
Conference, pages 207-216, Washington DC, USA, May 1993.

[AQM™97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.I. Wiener. The

[AS94]

[AS95]

Lorel Query Language for Semi-Structured Data. International Journal on
Digital Libraries, 1(1):68-88, April 1997.

R. Agrawal and R. Srikant. Fast Algorithms for Mining Generalized Asso-
ciation Rules. In Proceedings of the 20th International Conference on Very
Large Databases (VLDB’94), Santiago, Chile, September 1994.

R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proceedings of
the 11th International Conference on Data Engineering (ICDE’95), Tapei,
Taiwan, March 1995.

[BMUT97] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic Itemset Counting

and Implication Rules for Market Basket Data. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD’97), pages 255264,
Tucson, Arizona, May 1997.

[FPSSU96] U.M. Fayad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors.

[Lau00]

[MCPY8]

[MPC99]

[NAMOS]

[SA96]

[SON95]

[Toi96]

[WL97]

[WL99]

Advances in Knowledge Discovery and Data Mining. AAAT Press, Menlo
Park, CA, 1996.

P.A. Laur. Schema Mining : vers une approche efficace. In Technical Report
(in french), LIRMM, France, 2000.

F. Masseglia, F. Cathala, and P. Poncelet. The PSP Approach for Mining
Sequential Patterns. In Proceedings of the 2nd European Symposium on
Principles of Data Mining and Knowledge Discovery (PKDD’98), LNAI,
Vol. 1510, pages 176184, Nantes, France, September 1998.

F. Masseglia, P. Poncelet, and R. Cicchetti. An Efficient Algorithm for
Web Usage Mining. Networking and Information Systems Journal, 2(5-6),
December 1999.

S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema for
Semistructured Data. In Proceedings of the International Conference on
Management of Data (SIGMOD’98) - SIGMOD Record 27(2), 1998.

R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and
Performance Improvements. In Proceedings of the 5th International Confer-
ence on Eztending Database Technology (EDBT’96), pages 3-17, Avignon,
France, September 1996.

A. Savasere, E. Omiecinski, and S. Navathe. An Efficient Algorithm for
Mining Association Rules in Large Databases. In Proceedings of the 21 st
International Conference on Very Large Databases (VLDB’95), pages 432—
444, Zurich, Switzerland, September 1995.

H. Toivonen. Sampling Large Databases for Association Rules. In Pro-
ceedings of the 22nd International Conference on Very Large Databases
(VLDB’96), September 1996.

K. Wang and H.Q. Liu. Mining Nested Association Patterns. In Proceed-
ings of the SIGMOD’97 Workshop on Research Issues on Data Mining and
Knowledge Discovery, May 1997.

K. Wang and H. Liu. Discovering Structural Association of Semistructured
Data. IEEE Transactions on Knowledge and Data Engineering, 1999.



