
A Hierarchy-Based Method for Synthesizing Frequent Itemsets Extracted from
Temporal Windows

Yoann Pitarch, Anne Laurent and Pascal Poncelet
LIRMM

UM2 - CNRS
Montpellier, France

{pitarch,laurent,poncelet}@lirmm.fr

Abstract

With the rapid development of information technology,
many applications have to deal with potentially infinite
data streams. In such a dynamic context, storing the whole
data stream history is unfeasible and providing a high-
quality summary is required for decision makers. A practical
and consistent summarization method is the extraction of
the frequent itemsets over temporal windows. Nevertheless,
this method suffers from a critical drawback: results pile
up quickly making the analysis either uncomfortable or
impossible for users. In this paper, we propose to unify these
results thanks to a synthesis method for multidimensional
frequent itemsets based on a graph structure and taking
advantage of the data hierarchies. We overcome a major
drawback of the Tilted Time Window standard framework
by taking into account the data distribution. Experiments
conducted on both synthetic and real datasets show that our
approach can be applied to data streams.

1. Introduction1

With the rapid development of information technology,
many applications (web log analysis, medical equipment
monitoring, etc.) have to deal with data streams. For in-
stance, more than one billion of transactions are performed
on the eBay website every day [1]. A data stream is defined
as a potentially infinite sequence of precise and changing
data arriving at an intensive rate. Due to the high-speed
constraint, stream data can be read only one time (referred to
as the one-pass constraint [2]) and storing the whole stream
history is impossible. Nevertheless, the data stream history
analysis would be helpful for decision makers. This naturally
leads to propose data stream summarization methods.

One of the three data stream summarization categories
is the use of data mining algorithm. In particular, the
frequent itemsets are useful for users interested by the trend
discovery. This technique is faithful to a human memory

1. Part of the MIDAS project founded by the french ANR agency (ANR-
07-MDCO-008)

mechanism because memories are indeed inter-linked. Thus,
events are not stored independently in the human memory.
In the cognitive psychology domain, this idea is known as
the constructive memory theory [3], [4]. For instance, the
mention of a familiar person involves the reconstruction of
several memories about this person (his appearance, the last
time we saw him, ...). Frequent itemset mining algorithms
on data streams are a stream summarization method and can
be subdivided into two categories. In the former situation,
those algorithms are applied on the whole data stream. The
result is not really interesting because there is no way to
analyze the evolution of the stream. More recently, frequent
itemset mining approaches are applied on temporal windows
to handle stream data. Thus, the analysis of the stream
evolution is feasible but this increasing list of independent
results made the analysis either uncomfortable or impossible.
For instance, let us suppose that a website administrator
extracts everyday the frequent itemsets from its network
traffic. If (s)he wants analyzing the yearly evolution of the
visitor habits, (s)he has to consider the 365 independent sets
of frequent itemsets. An interesting proposal could be to
synthesize those independent results in order to provide a
meta-summary of the stream.

Most of data streams are composed by several dimensions
which can be considered at multiple granularity levels. For
instance, a chain store can store the visitors’ purchases with
the associated date and store address, ... All of these dimen-
sions can be observed at coarser level of granularity (e.g.,
a product can be also considered as a product category).
Taking advantage of these multidimensional and multilevel
properties would be interesting in order to synthesize the
frequent itemsets.

To the best of our knowledge, only two approaches
take advantage of these properties in a stream context and
both are used for summarizing multidimensional raw data.
The first approach is [5]. Since it is impossible to store
the whole history of a stream, the temporal dimension is
compressed thanks to the Tilted Time Windows [6] (the
most recent history is registered at the finest granularity
while the older history is registered at coarser granularity).
Then, since it is unrealistic to store all the cuboids, the

authors consider the users habits in order to choose the
materialized cuboids. In spite of an interesting architecture,
the storage cost can be reduced. Indeed, some materialized
elements can be computed or are never queried. The authors
of [7] overcame this drawback by introducing precision
functions. These functions define for each granularity level
of each dimension the minimal interval of a Tilted Time
Windows to avoid storing unqueried or computable data.
The major drawback of this approach is that the precision
functions are fixed in the initialization step.
Globally, the existing approaches focus on which cuboids
must be materialized but none of them reconsider the use
of the Tilted Time Windows. Even if this technique allows
to reduce efficiently the temporal dimension, changing the
time granularity at regular intervals can lead to an important
loss of precision. Indeed, this mechanism does not take into
account the data distribution. For instance, if an item rarely
occurs in the stream, it could be useful to keep precise
informations about its apparition. With the Tilted Time
Window mechanism, this information would be lost after
the first aggregation.

In this paper, we take benefit of the multilevel and
multidimensional properties of almost data streams and
propose a graph structure for synthesizing frequent itemsets.
Thus, we provide a unique framework and facilitate heavily
the result analysis process. We overcome the major
drawback of the Tilted Time Windows thanks to dynamic
lists. Aggregations are performed only if an itemset is
frequent in several close windows of the stream. On the
contrary, non-close occurences are kept during a significant
period.
Experiments conducted on synthetic and real datasets show
that our aproach is adapted to the data stream context.

2. Problem Statement

In this section, the necessary concepts of our proposed
method are defined. First, some definitions about the mul-
tidimensional and multilevel data are given. Then, the
problematic of the frequent itemset mining [8] is extended
to the frequent multidimensional itemset mining in data
stream. Finally, a brief recall of the Tilted Time Window
mechanisms is given.

2.1. Hierarchy

Let D = {D1, ..., Dn} be a set of N dimensions. Each
dimension Di is defined on a (finite or not) set of values
called Dom(Di). Generally, every dimension can be con-
sidered at several levels of granularity. We call these levels
the hierarchy Hi of the dimension Di with the following
notations: maxi is the number of levels in Hi with Hmaxi

i

the finest level and H1
i the coarsest. Note that for each

dimension Di we consider a wild-card value * which can be
defined as all the values in Di. For instance, the hierarchy
of a geographic dimension DGeo could be HGeo = {H1 =
ALL, H2 = Continent,H3 = Country, H4 = City}.
With these notations, a (multidimensional) item t is defined
as t = (d1, ..., dn) such that for every i = 1...m and
li = 1...maxi, di ∈ Dom(Dli

i), Di ∈ D. We denote
father(i), the direct generalization of the item i. For
instance, if we consider the hierarchies presented in the
Figure 1, we have father((A12, B21)) = (A1, B2).

Figure 1. The hierarchy used in our example

2.2. Mining Multidimensional Itemsets in data
stream

Initially introduced in [8], the frequent itemset
mining problematic in a database D consists in the
extraction of the itemsets wich are supported by at least
minSupp transactions. As we handle multidimensional
items, this problematic can be adapted as follows. Let
I = {x1, x2, ..., xm} with xi = (xi

1, ..., x
i
N) be a set of m

distinct N-multidimensional items. A k-itemset is a subset
of I with a cardinality equals to k. The support of an
itemset X , denoted by supp(X) = DX/|D| where DX is
the number of transactions in which X occurs divided by
the total number of transactions. An itemset X is frequent
iff supp(X) ≥ minSup where minSupp is a user-defined
numerical parameter.
To take the dynamic context into account, we adapt the
problematic as follows. A data stream S = B0, B1, ..., Bn

is an infinite sequence of batches (temporal windows),
where each batch is associated with a timestamp t, i.e.
Bt, and n is the identifier of the most recent batch Bn.
A batch Bi is defined as a set of tuples appearing over
the stream at the ith time unit. In such a context, the
support notion must be redefined. suppBi(X) = DX/|Bi|
where DX is the number of transactions of Bi in which
X appears divided by |Bi|, the number of transactions of Bi.

Figure 2. A natural tilted-time window model

2.3. Tilted Time Window

The volume of data generated by data streams is too
huge to be totally materialized. In stream data analysis,
users are usually interested in recent changes at a fine
granularity, but long term changes at coarse scale. Thus, the
literature proposes a model which tis inspired by this idea:
the tilted-time window model [6]. In fact, time can naturally
be registered at different levels of granularity. The most
recent history is registered at the finest granularity and the
older history is registered at coarser granularity. The level
of coarseness depends on the application requirements and
on how old the time point is from the current time. Figure
2 provides an example of tilted-time windows.

This technique allows for efficient compression of the
temporal dimension but suffers from a major weakness.
Changing the time granularity at regular intervals can lead to
an important loss of precision. For instance, let us consider
the apparitions of the item i presented in the Table 1. With
classical Tilted Time Model, it is impossible to detect that
item i periodically appears in the stream. Indeed, old values
would have been aggregated. Thus, the Tilted Time Window
is specially well-adapted for balanced data distribution but
not for continously-changing data distribution. Since stream
date have a continuously changing distribution, this draw-
back is really critical.

i

T0 10
T100 1
T200 6
T300 8
T400 4

Table 1. An illustration of the Tilted Time Window
drawback

3. The Frequent Itemset Synthesis

Multidimensional and multilevel data stream summariza-
tion can be put together with the human memory mechanism.
Indeed, human beings dayly receive a huge amount of
information which are synthesized in memory. Thus, we
naturally considered the cognitive psychology theory. A
current and adjustable theory is known as the constructive
memory [3], [4]. It means that memories are inter-linked.
Indeed, events are not stored independently in the human

memory. For instance, the mention of a familiar person
involves the reconstruction of several memories about this
person (his appearance, the last time we saw him, ...). The
frequent itemset semantic is very close to this theory.

To synthesize multidimensional and multilevel frequent
itemsets, we need a structure which can manage different
heterogeneous objects such as hierarchies, multidimensional
items or itemsets. For this, we take advantage of a graph
structure. Initially, the based-graph is composed by nodes
representing the hierarchies of the dimensions. These nodes
are structural and do not store anything. Then, as multi-
dimensional itemsets keep coming, nodes storing the sum-
mary at different levels of granularity are created, updated
or deleted dynamically. In the existing approaches which
take advantage of the multilevel property, the history is
stored in Tilted Time Windows. As previously discussed,
this mechanism leads to an important loss of precision
with distribution-changing data streams. We overcome this
drawback thanks to dynamic lists contained in the nodes
representing the lowest granularity itemsets. Each time t an
itemset is frequent, the timestamp and the corresponding
support are inserted in the associated list. Thus, aggregations
are not performed at regular time intervals but only when it
exists close elements in one list. We discuss this mechanism
in the Section 3.2. Higher granularity nodes store classical
Tilted Time Windows. The Figure 3 displays an example of
structure.

Due to the potentially infinite length of a stream it is
impossible to simply accumulate occurrences in each list.
In order to ensure the bounded size of the summary, some
mecanisms for aggregating, merging or forgetting data are
proposed:

1) If the same itemset is frequent in close temporal win-
dows, they are merged and the result of this merging
is propagated along the itemset generalizations.

2) Storing all the occurences per itemset is infeasible.
Thus, a maximum size for each list is fixed. When
a list reaches its maximal size, the oldest element is
deleted.

3) Forgetting the old and non-repetitive events is a human
behavior. Thus, if an itemset does not appear in the
stream for a long period, its associated node is deleted.

3.1. The Structure Description

Initially, the graph structure is composed by the dimension
hierarchies. We note this set of nodes Xinit. By definition,
stream data are observable at a very low level of granularity.
We note them the Base Items (BI). More formally, a k-
item X = (x1, ..., xk) is a BI if ∀xi, we have xi ∈
Dom(Dmaxi

i). The frequent itemsets which must be inserted
in the graph are composed of BI . These base frequent
itemset histories are stored in List Nodes (LN).

Figure 3. An illustration of the proposed structure

Definition 1. Let N = (XN , SuppListN) be a LN so that
XN is a base frequent itemset and SuppListN is a set of
pairs < W : CountW > where W is a time interval and
CountW is the number of occurences of XR in W . If W
represent more than one time unit, we note respectively Wbeg

and Wend for the beginning and the end of the interval. On
the contrary, the notation W is used.

In order to provide a multilevel vision of the itemsets,
we also materialize the generalization of the BI and call
them Higher Item (HI). Thus, the base frequent itemset
generalizations can be easily constructed thanks to the HI .
The frequent itemset generalization history are stored in
nodes called the Tilted Time Window Nodes (TTWN).

Definition 2. Let N = (X, T) be a TTWN so that X is a
base frequent itemset generalization and T is a Tilted Time
Window storing its history.

3.2. Updating the Structure

In this section, we describe the different mechanisms for
updating the structure and bounding the its size.

3.2.1. A distance measure between itemsets. One on the
most important caracteristics of a data stream is that data
arrives at a very low level of granularity. This can be
critical due to the huge number of potential itemsets. [5]
proposes to tackle this problematic by electing the minimal
interest layer (m-layer). The m-layer is the lowest level of
granularity which is interesting for the user. Thus, data are
systematically aggregated to this level of granularity. This
can be problematic if the user want to keep a track of precise
data. In such a context, two itemsets could be syntaxically
different but semantically near. A solution for considering
those itemsets as identical is to define a distance mesure
between them. Thus, when this distance is lower than an

user-defined threshold, those itemsets are considered identi-
cally. We propose an hierarchy-based distance measure. Let
A = {XA

1 , XA
2 , ..., XA

L } et B = {XB
1 , XB

2 , ..., XB
K} be two

itemsets. Figure 4 presents the proposed distance measure
and the associated notations.

Example 1. Let A = {(A11, B21)} and B =
{(A12, B21), (A22, B11)} be two base itemsets. We have
Xmax = B and dist(A, B) = 1 − 1+0.25

2×2 . Indeed, the
item of B which maximizes the numerator is (A12, B21).
Thus, we have NCA(A11, A12) = A1 (its implies
prox(A11, A12) = 1

22) and NCA(B21, B21) = B21 (its
implies prox(B21, B21) = 1).

Propriety 1. Dist is a distance mesure and satisfy the three
following conditions :

1) Symetry
∀X, Y two itemsets, dist(X,Y) = dist(Y, X)

2) Separation
∀X, Y two itemsets, dist(X,Y) = 0⇔ X = Y

3) The triangular inegality
∀X, Y, Z three itemsets, dist(X, Z) ≤ dist(X, Y) +
dist(Y, Z)

Two itemsets A and B are semantically near if and only
if dist(A, B) < distMax where distMax is a user defined
threshold. In our experimentations, we used distMax = 0.5.

When the node XR corresponding to the itemset X
already exists in the structure, an update of this node must
be performed if X appears in the batch t. Indeed, the pair
< t, countt > must be added to the SuppList of XR. How-
ever, storing this increasing list without any compression
technique is impossible due to the storage constraint. Thus,
a merging mechanism is proposed.

3.2.2. The Merging Operation. The goal of such an op-
eration is to compress the list stored in each LN . If an

Figure 4. The distance measure definition

Figure 5. The Tilted Time Window used in the example

itemset occurs in close time interval, it is unecessary to store
the distinct supports. A naive solution would be to perform
this merge operation with any check but this solution would
lead to mistakes during the propagation on the TTWN .
For instance, let us consider the Table 2 and the Tilted
Time Window shown on the Figure 5. With this Tilted Time
Window, an agregation is performed every three time units.
The aggregated value corresponding to the time interval
[T10; T13] cannot be inserted in the second window because
it overlaps the first two windows. Indeed, each value in the
second window represents three time units. More generally,
each value stored in a window k represents the aggregation
of W1× ...×Wk−1 time units. As a consequence, a merging
operation can be performed if and only if the impacted
interval represents one temporal granularity of the Tilted
Time Window.

R

T0 0.3
T10 0.3
T11 0.6
T12 0.8
T13 0.4

Table 2. A SuppList illustration at T13

Algorithm 1 presents the method used for merging some
pairs in the SuppList of a LN R and how this aggregated
value is propagated along the generalizations of R. Firstly,
the pair f arising from the merge is computed (line 1) and
the related pairs are deleted from the SuppList (line 2).
This process begins a propagation along the generalization
of the concerned node. So, the nodes sharing the same
generalization have to be sought. Each SuppList is scanned

in order to locate entries which must take part in the
aggregation mechanism (line 3 and 4). To ensure the
consistency of the algorithm, a pair cannot take part in two
different merge operations. So, each pair participating to a
merge operation is marked (line 5). At last, the aggregated
value is inserted at the appropriate position in the Tilted
Time Windows corresponding to the generalization of R.

Example 2. Figure 3 illustrates the proposed algorithm.
Suppose that a merging operation has to be performed
on the {(A22, B11)(A22, B21)} node. Thus, the three pairs
< t10 : 0.65 >, < t11 : 0.52 > and < t12 : 0.48 >
are aggregated. Then, the search of node sharing the
same generalization ({(A2, B1)(A2, B2)}) find the node
{(A22, B12)(A21, B22)}. In its SuppList, it exists a pair,
< t11, 5 >, which can be aggregated with the three pairs.

Algorithm 1: Merge
Data: R = (XR, SuppListR) a LN,

beg =< tbeg : counttbeg
>,

end =< tend : counttend
>

Result: Performs the fusion between beg and end and
propagates along the generalization of R

f =< tf : countf >=< [tbeg; tbeg] :1

agr(counttbeg
, ..., counttend

) >;
Removal of the merged pairs. ;2

// Searching pairs occurring in the
list of low level siblings

M = {p|p =< ti : counti >∈ SuppListR′ with3

father(R) = father(R′) and ti ∈ [tbeg; tend]};
agrbro = agr(counti) (with < ti : counti >∈M) ;4

Mark those pairs ;5

Insert agr(suppf , agrbro) in the TTW of father(R) ;6

3.2.3. Limiting the Size and the Number of the Lists.
The merging mechanism allows for compression of the

lists but is insufficient to guaranty that the structure
fit in main memory. As a consequence, some methods
have to be proposed in order to avoid the memory explosion.

Firstly, as previously discussed a merging operation is
performed if the interval represents one temporal granularity
of the Tilted Time Window but it is unrealistic to consider
all the granularities. For instance, let us suppose that the
Tilted Time Window displayed in the Figure 2 is used.
Considering the whole Tilted Time Window for the merging
mechanism implies that we can potentially wait for 1 year
before any aggregation and generalization. Due to the huge
number of lists (i.e. the number of LLR), storing a so long
history in each list is inconceivable. So, we introduce a
user-defined numerical parameter, WMAX , which means
that the maximum size of the possibly merged interval is
W1 × ...×WMAX − 1.

Secondly, the merging mechanism is not sufficient to
limit the number of elements stored in a list. In fact, it is
not possible to determine the data distribution in a stream
and, consequently, it is impossible to predict the number of
merging operations. So, in order to limit the size of the list, a
user-defined numerical parameter, MAX-SIZE, is introduced.
Intuitively, one may think that no more than MAX-SIZE
elements per list are stored. This is not completely true.
Indeed, since the MAX-SIZEth element in the list can be
possibly merged in the future, we authorize MAX-SIZE
+(W1 × ...×WMAX − 1)− 1 elements per list.

Example 3. Let us consider that the Tilted Time Window
displayed in the Figure 5 is used and that MAX-SIZE= 3
and WMAX = W3. With this parameter, the size on the list
is at worst 3 + (3 × 3) − 1 = 11. Figure 6 illustrates such
a list.

Figure 6. A dynamic list illustration

Finally, it is a human behavior to forget old and non
repetitive events. Based on this idea, we propose to delete
lists which are not updated for a long period. We call this
parameter the FORGETTING parameter.

3.2.4. The General Update Algorithm. We present the
general algorithm for updating a LLR (algorithm 2). Firstly,
the size of SuppList is evaluated and compared to MAX-SIZE

(line 1). If the size is smaller than MAX-SIZE, we check
in the list if a merge operation is possible. If necessary,
a merge operation is performed. Otherwise, the pair is
inserted at the end of the SuppList. If the size of the
SuppList is greater or equal to MAX − SIZE, we get
the MAX − SIZEth element in SuppList and we check
if a merge operation is possible. Otherwise, we check if
tc− tm < (W1× ...×WMAX − 1). This check allows us to
verify if the MAX − SIZEth element could be merged in
the future. Otherwise, it means that the list is full and that
any element in the list can be merged. As a consequence,
the first pair is deleted.

Algorithm 2: UpdateRule
Data: c =< tc : countc > the pair to insert,

R = (XR, SuppListR) a LN, WMAX

if size(ListSuppR) < MAX − SIZE then1

if (∃l ∈ SuppListR sa (tc − tl) ∈2

{W1, ..,W1 × ...×WMAX − 1}) then
Merge(R,l,c);3

else4

Add c at the end of SuppListR;5

else6

m =< tm : countm > the pair of SuppListR at7

the MAX − SIZEth position ;
if (tc − tm) ∈ {W1, ..,W1 × ...×WMAX − 1})8

then
Merge(R,m,c);9

else10

if (tc − tm) < (W1 × ...×WMAX − 1) then11

Add c at the end of SuppListR;12

else13

Delete the first pair of SuppListR;14

4. Experiments

In this section, we present the experiments we conducted
in order to evaluate the feasability and the performances of
our approach. Throughout the experiments, we answer the
following questions inherent to scalability issues: Does the
algorithm update its data structure before the arrival of the
next batch? Does the mining process over a data stream
remain bounded in term of memory ? The experiments were
performed on a Intel(R) Xeon(R) CPU E5450 @ 3.00GHz
with 2GB of main memory, running Ubuntu 9.04. The
methods were written in Java 1.6.

4.1. Synthetic Datasets

We performed extensive experiments in order to evaluate
the approach. For this purpose, we tested the influence of
numerous parameters: the number of potential items in the
stream, the minSupp parameter, the number of dimensions,
the fan-out factor of the hierarchies, their depths, the MAX-
SIZE parameter and the FORGETTING parameter. Due to
lack of place, all our experimental results are available on
a website 2. Here, we present only the most representative
ones. In the same way, analyzing precisely the impact of
each parameter is infeasible. As a consequence, we synthe-
size the result analysis.

The data stream is generated by a multidimensional ran-
dom data generator designed for testing cube computation
and data mining algorithms on data streams. The convention
for the data sets is as follows: D10L3C5I10S5SM10FP10
means that there are 10 dimensions, 3 granularity levels
per dimension (except level *), the node fan-out factor
(cardinality) is 5 (i.e., 5 children per node), there are 10K
potential items in the stream, minSupp=5% and the proper-
approach parameters are SIZE-MAX=10 and the FORGET-
TING parameter equals 10. These parameters are the default
parameter of our experimentations. The methodology used
for extracting frequent itemsets is the following one. We
arbitrarily build the transactions. The average number of
items per transaction is 20 and the average number of
transactions per batch is 1000. Then, we applied a frequent
itemset mining algorithm 3 [?].

Figure 7 presents a representative result obtained during
the experimentations. On Figure 7(a), we can observe 3
distincst behaviors. Firstly, the memory consumption quickly
increases. This can be explained by the fact that during that
time, none list is removed (because of the FORGETTING
parameter). During the second phase, the RAM consumption
fairly increases. Indeed two concurrent phenomena occur:
the list suppressions (FORGETTING parameter) and the
creation of new nodes in the structure. Finally, the memory
usage stabilizes because all the potential LN are created and
the list update is balanced by the list suppression.
Regarding the update time per window (Figure 7(b)), we
notice 3 distinct time scales. The lowest one corresponds to
a node creation or to a simple insertion in a list (performed
almost instantaneously), the second one corresponds to
merging and aggregation mechanisms (approximately 15ms)
and the highest one is explainable by both suppressions and
merging mechanisms (approximately 20ms).

Due to the Random Uniform Distribution of data, para-
maters which impact directly on the number of potential
itemsets to store have a logical influence on both time and
memory consumption performances. Indeed, the more the

2. http://www.lirmm.fr/˜pitarch/SOCPAR09/index.html
3. We use the implementation provided by the Illimine project.

number of itemsets, the longer the time to perform a merge
operation. Nevertheless, we notice that the performances
become critical when the parameter values are extreme
(e.g., when the depth of the hierarchies equals 7). In others
experiments, results show the feasibility of the proposed
method.

4.2. Real Dataset

The dataset used for these experiments comes from
sensors implemented on industrial pumps which send out
physical informations about pressure, external temperature,
... An item is described over 10 dimensions. We arbitrarily
built hierarchies on these dimensions with the following
characteristics. Each dimension has 3 levels of granularity
and the average fan-out factor is 100. The dataset is dense.
We cut the input file in windows of 100 tuples.

The methodology used for extracting frequent itemsets
is the following one. We arbitrarily build the transactions.
The average number of items per transaction is 25 and the
average number of transactions per batch is 100. Then, we
applied [?] with a minSupp=10%. The average number of
frequent itemsets per batch is approximatively 100. Finally,
we run our algorithm on those frequent itemsets. The Figure
8(a) displays our results about the memory consumption.
We observe that the memory consumption stabilizes quickly
because the frequent itemsets are globally the same on the
whole data stream. Altough two off-peaks are observable,
this can be explain by the garbage collector.

5. Conclusion

In this paper, we tackle the problem of synthesizing the
results of multidimensional frequent itemset mining over
data streams. Thanks to a graph structure, we take advantage
of the multilevel property of most of data and provide
efficient algorithm for updating this structure. Moreover,
thanks to dynamic lists, we overcome the major drawback
of the Tilted Time Window: taking into account the data
distribution. Our experimental study on both synthetic and
real datasets shows that our summarization structure is
efficient in both critical aspects in such context: time and
space. Those results allow us to consider numerous possible
extensions. Firstly, it would be interesting to consider a
summarization approach based on sequential patterns in
order to take into account the sequentiality between the
events. Then, a promising way would be to capture both
frequent and uncharacteristic events in the stream. Finally,
an efficient querry system would be suitable to fully exploit
the proposed structure.

Acknowledgment

We would like to warmly thank Maximilien Servajean for
the quality of the algorithm implementation.

(a) RAM consumption

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e
(m

s)

idWindow

(b) Insertion time/window

Figure 7. Representative insertion time/window and RAM consumption experimental results

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

M
em

or
y

(M
o)

idWindow

(a) RAM consumption

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400

T
im

e
(m

s)

idWindow

(b) Insertion time/window

Figure 8. Experiments conducted on frequent itemsets

References

[1] eBay, “2006 annual report,” 2006.

[2] C. C. Aggarwal, Data Streams: Models and
Algorithms, ser. Advances in Database Sys-
tems, Springer, Ed., 2007. [Online]. Avail-
able: http://www.springer.com/west/home/default?SGWID=4-
40356-22-107949228-0

[3] G. Miller, “Human memory and the storage of information,”
Information Theory, IEEE Transactions on Information
Theory, vol. 2, no. 3, pp. 129–137, 1956. [Online]. Available:
http://dx.doi.org/10.1109/TIT.1956.1056815

[4] D. L. Schacter and D. R. Addis, “The cognitive neuroscience
of constructive memory: remembering the past and imagining
the future.” Philos Trans R Soc Lond B Biol Sci, vol.
362, no. 1481, pp. 773–786, May 2007. [Online]. Available:
http://dx.doi.org/10.1098/rstb.2007.2087

[5] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang,
and Y. D. Cai, “Stream cube: An architecture for multi-
dimensional analysis of data streams,” Distributed Parallel
Databases, vol. 18, no. 2, 2005.

[6] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu, “Mining
frequent patterns in data streams at multiple time granularities,”
2002.

[7] Y. Pitarch, A. Laurent, M. Plantevit, and P. Poncelet, “Multidi-
mensional data streams summarization using extended tilted-
time windows,” in FINA, 2009.

[8] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” in Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB 94), J. B. Bocca,
M. Jarke, and C. Zaniolo, Eds., 12–15 1994, pp. 487–499.

