
ACADÉMIE DE MONTPELLIER

U N I V E R S I T É M O N T P E L L I E R 2
Sciences et Techniques du Languedoc

PH.D THESIS

présentée au Laboratoire d’Informatique de Robotique
et de Microélectronique de Montpellier pour

obtenir le diplôme de doctorat

Spécialité : Informatique
Formation Doctorale : Informatique
École Doctorale : Information, Structures, Systèmes

Mining Object Movement Patterns from Trajectory Data

par

PHAN NHAT HAI

Version du September 30, 2013

Supervisor
Mme. Maguelonne TEISSEIRE, Research Director . IRSTEA, Montpellier

Joint supervisor
M. Pascal PONCELET, Professor . LIRMM, Université Montpellier II

Reviewers
M. Osmar ZAÏANE, Professor . University of Alberta
M. Arno SIEBES, Professor . Utrech University

Examinators
M. Francesco BONCHI, Senior Researcher. .Yahoo! Research Lab
M. Bruno CREMILLEUX, Professor . Université de Caen
M. Dino IENCO, Researcher . IRSTEA, Montpellier

i

First and foremost I want to thank my advisors: Dr. Dino Ienco, Prof. Pascal
Poncelet and Dr. Maguelonne Teisseire. It has been an honor to be their PhD

student. I appreciate all their valuable support of time, ideas, and funding
to make my PhD experience productive and stimulating. The joy and

enthusiasm they have for their research was contagious and motivational
for me, even during tough times in the PhD pursuit. The members of the

Tatoo team have contributed immensely to my personal and professional
time at Irstea, Lirmm, and University of Montpellier 2. The team has been a

source of friendships as well as good advice and collaboration. I am
especially grateful for the fun team members who stuck it out with me

during my PhD duration: Hugo Alatrista-Salas, Mickaël Fabrègue, and
Flavien Bouillot. We worked together on the mining trajectories on Tweets

experiments, and I very much appreciated his enthusiasm, intensity,
willingness to do all the tasks. In additionally, I am also thankful to Amal

Zine El Aabidine for her help in mining trajectories from gene data source. I
thank Prof. Donato Malerba (University of Bari) for not only proposing the

multi-relational gradual pattern idea but also advising me on the very
interesting work. Under his support, we are able to extract an novel kind of
gradual patterns based on two different point of views. In my later work of

Communication Graph Compression, I am grateful to Dr. Francesco Bonchi
(Senior Researcher at Yahoo! Lab) for his support, guidance and all fun

along during three months of my internship at Yahoo! Research Lab,
Barcelona. I gratefully acknowledge the funding sources that made my PhD

work possible. I was funded by the French National Centre for Scientific
Research (CNRS). My work was also supported by the LIRMM - IRSTEA

Laboratories. For this dissertation I would like to thank my reading
committee members: Prof. Osmar Zaiane, Prof. Arno Seibes, Dr. Francesco

Bonchi, and Prof. Bruno Cremilleux for their time, interest, helpful

ii

comments, and insightful questions. My time at Montpellier was made
enjoyable in large part due to the many friends and groups that became a

part of my life. I am grateful for time spent with roommates and friends, for
my backpacking buddies and our memorable trips into the mountains,

beaches, seas, and ancient cities in Europe as I finished up my degree, and
for many other people and memories. Lastly, I would like to thank my

family for all their love and encouragement. For my parents who raised me
with a love of science and supported me in all my pursuits. And most of all

for my loving, supportive, encouraging, and patient girl friend Huong whose
faithful support during the final stages of this PhD is so appreciated. Thank
you. PHAN Nhat Hai, Irstea-Lirmm Labs, University Montpellier 2, October

2013.

Contents

Contents iii

List of Figures 1

List of Tables 4

1 Introduction 7
1.1 Illustrative Example and Motivations . 8
1.2 Contributions . 9

2 Related Work 15
2.1 Preliminary Definitions . 15
2.2 Object Movement Pattern Mining . 19

3 All in One: Mining Multiple Movement Patterns 23
3.1 Object Movement Patterns in Itemset Context 23
3.2 Frequent Closed Itemset-based Object Movement Pattern Mining Algorithm 29

3.2.1 GeT_Move . 29
3.2.2 Incremental GeT_Move . 31

3.3 Preliminarily Experimental Results . 34
3.3.1 Effectiveness . 35
3.3.2 Efficiency . 37
3.3.3 Toward A Parameter Free Incremental GeT_Move Algorithm 40
3.3.4 Object Movement Pattern Mining Algorithm Based on Explicit Com-

bination of FCI Pairs . 45

iii

iv CONTENTS

3.4 Experimental Results . 48
3.4.1 Parameter Free Incremental GeT_Move Efficiency 48
3.4.2 Movement Pattern Mining Algorithm Based on Explicit Combina-

tion of FCI Pairs . 49
3.5 Discussion . 51

4 Mining Fuzzy Moving Object Clusters 55
4.1 Introduction . 55
4.2 Fuzzy Closed Swarms . 57
4.3 Discovering of Fuzzy Closed Swarms . 59
4.4 Experimental Results . 62

4.4.1 Effectiveness . 63
4.4.2 Parameter Sensitiveness . 64

4.5 Discussion . 67

5 Mining Time Relaxed Gradual Moving Object Clusters 69
5.1 Introduction . 70
5.2 Problem Statement . 72
5.3 Discovering Maximal Time Relaxed Gradual Trajectory Patterns 74

5.3.1 ClusterGrowth Approach . 76
5.3.2 The ClusterGrowth Implementation . 78

5.4 Preliminarily Experimental Results . 80
5.4.1 Effectiveness and Pattern Meaning . 81
5.4.2 Parameter Sensitiveness . 83

5.5 Mining Representative Gradual Trajectory Patterns 85
5.5.1 Problem Statement . 87
5.5.2 Encoding Scheme . 88
5.5.3 Complexity Analysis . 90
5.5.4 Mining top-K Representative rGpatterns 90

5.6 Experimental Results on Mining Representative rGpatterns 96
5.7 Discussion . 100

6 Mining Representative Movement Patterns through Compression 101
6.1 Introduction . 101
6.2 Problem Statement . 103
6.3 Encoding Scheme . 104

6.3.1 Movement Pattern Dictionary-based Encoding 104
6.3.2 Overlapping Movement Pattern Encoding 105

6.4 Mining Compression Object Movement Patterns 108
6.4.1 Naive Greedy Approach . 108
6.4.2 Smart Greedy Approach . 108

CONTENTS v

6.5 Experimental Results . 110
6.6 Discussion . 113

7 Mining Multi-Relational Gradual Patterns 115
7.1 Introduction . 115
7.2 Preliminarily Definitions . 117

7.2.1 Multi-Relational Data . 117
7.2.2 Gradual Pattern: Single Relation vs Multi-Relations 117
7.2.3 Multi-Relational Gradual Pattern . 118

7.3 Pattern Occurrences . 120
7.4 Pattern Support . 121

7.4.1 Kendall’s ⌧-based Multi-Relational Gradual Pattern Support 123
7.4.2 Gradual Support . 127

7.5 Multi-Relational Gradual Pattern Mining Algorithms 130
7.5.1 Mining Mono-Relational Gradual Patterns 130
7.5.2 Discovering Multi-Relational Gradual Patterns 132

7.6 Experimental Results . 135
7.6.1 Multi-Relational Gradual Patterns . 136
7.6.2 Efficiency and Pattern Distribution . 136

7.7 Related Work . 138
7.8 Discussion . 139

8 Applications 143
8.1 Introduction . 144
8.2 The MULTI_MOVE System Architecture . 144
8.3 Other Applications . 146

8.3.1 Mining Trajectories on Genes . 146
8.3.2 Mining Trajectories on Tweets . 148

8.4 Discussion . 151

9 Conclusion & Perspectives 153
9.1 Conclusion . 153
9.2 Streaming GeT_Move: Mining Representative Movement Patterns from

Streaming Trajectory Data . 154
9.3 CorGpattern: Combined Time Relaxed Gpattern 155

9.3.1 CorGpattern Definition . 156
9.3.2 CoClusterGrowth: Discovering Maximal CorGpatterns 157

9.4 Directly Mining Representative Movement Patterns through Compression . 157
9.5 Completed Mining Multi-Relational Gradual Patterns 158
9.6 Trajectory Mining on Diverse Applications . 159

9.6.1 Social Networks and Social Media . 159

vi CONTENTS

9.6.2 Remote Sensing, Spatial Information on Satellite Image Processing . 159

10 Publications 163
10.1 International Conferences and Journals . 163

Bibliography 165

List of Figures

1.1 A running example of moving object data. 8
1.2 Our three step framework on mining and managing object movement patterns. 10

2.1 An example of swarm and convoy extracted from the Figure 1.1. 16
2.2 A group pattern example. 18
2.3 A periodic pattern example. 19

3.1 A swarm from our running example in Figure 1.1. 25
3.2 A convoy from our running example in Figure 1.1. 26
3.3 The main process. 30
3.4 A case study example. (b)-ci1 (resp. ci2,ci3) is a frequent closed itemset ex-

tracted from block 1 (resp. block 2). 31
3.5 An example of patterns discovered from Swainsoni dataset. 36
3.6 Running time on Swainsoni dataset. 38
3.7 Running time on Buffalo dataset. 39
3.8 Running time on Synthetic dataset. 40
3.9 Number of patterns on Swainsoni dataset. Note that # of frequent closed item-

sets is equal to # of closed swarms. 41
3.10 Number of patterns on Buffalo dataset. Note that # of frequent closed itemsets

is equal to # of closed swarms. 42
3.11 Number of patterns on Synthetic dataset. Note that # of frequent closed item-

sets is equal to # of closed swarms. 43
3.12 Running time w.r.t mino on large Synthetic dataset. 43
3.13 Running time w.r.t block size. 44

1

2 List of Figures

3.14 Examples of non-nested , almost nested, fully nested datasets [37]. Black = 1,
white = 0. (a) Original, (b) Almost nested, (c) Fully nested. 45

3.15 An example of the explicit combination of pairs of FCIs-based approach. 46
3.16 Original cluster matrices and nested cluster matrices. 50
3.17 Running time on Swainsoni dataset. 51
3.18 Running time on Buffalo dataset. 52
3.19 Running time on Synthetic dataset. 53
3.20 Explicit combination algorithm efficiency. 54

4.1 An example of moving object clusters. o3,o4 are moving objects, c1, . . . ,c5,c10
are clusters which are generated by applying some clustering techniques and A,
C, D, E, H are spatial regions. 56

4.2 Membership degree functions for fuzzy time gaps. 57
4.3 A fuzzy closed swarm example from our running example in Figure 1.1. 58
4.4 An example of extracted patterns from Swainsoni dataset. The two object

names are ’SW22’ and ’SW40’. 64
4.5 Running time on Synthetic Dataset. 65
4.6 Number of patterns on Synthetic Dataset. 66
4.7 Influence of TGi(X) on #patterns through ". 66

5.1 An example of gradual moving object clusters from running example in Figure
1.1. 70

5.2 An example of time relaxed gradual trajectory pattern. 71
5.3 An example of uninteresting rGpattern and sliding window (w= 2). 73
5.4 An object bit set configuration example. 75
5.5 ClusterGrowth search space of the running example in Figure 5.1 with §= ’∏’,

mint= 1 and w= 3. 76
5.6 An example of extracted patterns from Swainsoni dataset (best viewed in color). 82
5.7 Running time on Buffalo Dataset. 83
5.8 Running time on Synthetic Dataset. 84
5.9 Number of patterns on Buffalo Dataset. For conciseness sake, #Interesting Max-

imal rGpatterns is denoted as #rGpatterns. 85
5.10 Number of patterns on Synthetic Dataset. For conciseness sake, #Interesting

Maximal rGpatterns is denoted as #rGpatterns. 86
5.11 An example of two types of rGpatterns. c and o respectively are cluster and

object, (oi,cj) = 1 means oi belongs to cluster cj. Blurred rectangle is the over-
lapping part between two rGpatterns. 88

5.12 COMPOGP algorithm in action. 91
5.13 An example of directly evaluating compression gain of C∏. Cused

o
i

and Oused
c
j

are
lists of blurred rectangles. 93

List of Figures 3

5.14 An illustration of DICOMPOGP in Table 5.4. c5 is the largest cluster among
c1, . . . ,c8. 94

5.15 Compressibility (higher is better) of different algorithms. 97
5.16 Running time of different algorithms. 98
5.17 rGpattern generation task vs post-processing task vs DICOMPOGP on Synthetic

dataset. 99
5.18 The DiCompoGp scalability on Synthetic dataset. 99

6.1 An example of moving object database. Shapes are movement patterns, oi,ci
respectively are objects and clusters. 102

6.2 An example of pattern overlapping, between closed swarms (rectangles) and
rGpatterns (step shapes), in Figure 1.1. Overlapping clusters are c1,c3,c4,c5 and
c6. 102

6.3 An example of the approach. 105
6.4 Top-3 typical compression patterns. 111
6.5 Compressibility (higher is better) of different algorithms. 112
6.6 Running time. 113

7.1 A Financial database (from PKDD CUP 99). 120
7.2 A 1:N relation example (best view in color). 122
7.3 Loan ./Account. 122
7.4 A M:N relation example. (t 03,t

0
5) does not support the pattern p =

{Book.price>,Client.birthday<} since (C2,C3) 62 occ(Client.birthday<) . . 125
7.5 An illustrative example of Binary matrix of orders in Table 7.1. 131
7.6 Graph of the Financial MRD in Figure 7.1. 133
7.7 mrGp search space of the graph in Figure 7.6. 135
7.8 (a)(b)-Running time and #patterns on the Financial database. (c)(d)-Running

time and #patterns on the Thrombosis database. 137
7.9 Number of redundant patterns in Financial database. 138
7.10 Multi-relational gradual pattern distribution with �min ∏ 0.15. 139

8.1 The MULTI_MOVE System Architecture. 145
8.2 The Graphical Visualization Interface. 145
8.3 The graphical visualization interface of gene expression tool. 149
8.4 Another graphical visualization interface of gene expression tool. 150
8.5 An example of a trajectory that can be extracted from tweets. 150

9.1 An example of Streaming GeT_Move. 155
9.2 An example of CorGpattern extracted from our running example, i.e. Figure 1.1. 156
9.3 DiCompo algorithm in action. 158
9.4 Left: Subset of a Quickbird satellite image of Rostock (© DigitalGlobe, Inc.,

2011), right: derived land cover classes. 160

9.5 An example of trajectory pattern mining on satellite images. 161

List of Tables

2.1 An example of a moving object database. 16
2.2 Overview of movement pattern methods and applications. 21

3.1 Cluster matrix from our running example in Figure 1.1. 24
3.2 Periodic cluster matrix in Figure 2.3. 27
3.3 Closed Itemset Matrix. 33
3.4 An example of FCI binary presentation. 45
3.5 Fully nested blocks on datasets. 49

4.1 Cluster matrix corresponding to our example in Figure 1.1. 60

5.1 Notation Description. 74
5.2 An example of a reconfigured spatio-temporal database in Figure 5.1. 75
5.3 An illustrative example of data and dictionary in Figure 5.11. 1̄ and 2̄ respec-

tively are pattern types: C∏ and C∑. 89
5.4 An illustrative example of moving object data. 94
5.5 The number of all the rGpatterns in datasets. 98

6.1 An illustrative example of database and dictionary in Figure 6.2. 0̄, 1̄ and 2̄ re-
spectively are pattern types: closed swarm, rGpattern∏ and rGpattern∑. . . . 104

6.2 Correlations between pattern p and pattern p 0 in F. O,� and X respectively
mean "overlapping allowed, regular encoding", "overlapping allowed, no encod-
ing" and "overlapping not allowed". 106

7.1 Gradual support vs Kendall’s ⌧ support. 127

4

List of Tables 5

7.2 Interesting Patterns. 142

8.1 Example of matrix query to compare extracted trajectories for HIV-2, R5, and X4. 148
8.2 Cluster matrix corresponding to gene dataset. 148

CHAPTER

1
Introduction

With the rapid development of positioning technologies, sensor networks, and online
social media, spatio-temporal data is now widely collected from smartphones carried by
people, sensor tags attached to animals, GPS tracking systems on cars and airplanes, RFID
tags on merchandise, and location-based services offered by social media. Indeed, analyz-
ing spatio-temporal data generated from these systems frames many research problems
and high-impact applications:

. Understanding animal movement is important to addressing environmental chal-
lenges such as climate and land use change, bio-diversity loss, invasive species, and
infectious diseases.

. Traffic patterns help people understand conditions of road networks and better
design future transportation systems; analyzing driving patterns combining with
weather conditions could improve routing systems.

. Unusual vessel trajectory could be a sign of smuggling; outlying taking-off/landing
patterns could be a dangerous signal for aviation; and detection of suspicious human
movements could help prevent crimes and terrorism.

Motivated by the huge benefit of many applications, a lot of researchers have been fo-
cusing their research motivation to spatio-temporal data mining. One of the key tech-
niques is to analyze such datasets for meaningful patterns, called moving object clusters
[7] [17] [18] [23]. A moving object cluster can be defined in both spatial and temporal
dimensions: (1) a group of moving objects should be geometrically close to each other,
(2) they should be together for at least mint timestamps. In this context, many recent
studies have been conducted to mine moving object clusters including flocks [7] [30] [39],
moving clusters [19] [17], convoy queries [18] [2], k-star [29], closed swarms [23] [9], trav-
eling companions [28], group patterns [32], periodic patterns [24], etc. To extract these
kinds of patterns, many algorithms have been proposed such as CuTS§ (convoy mining),

7

8 CHAPTER 1. INTRODUCTION

Figure 1.1: A running example of moving object data.

ObjectGrowth (closed swarm mining), VG-Growth (group pattern mining), BFE (flock
mining), Periodica (periodic pattern mining), etc. Interested readers may refer to [14]
where descriptions of the most efficient approaches and patterns are presented.

For instance, let us consider a database in which there are four cars moving during the
time and their locations are reported by GPS system. We have 4 cars moving from t1 to
t999, 8i 2 [1 : 10],ci is a cluster generated by applying clustering technique as presented
in Figure 1.1. In most of the chapters, we will use (a part of) this running example for
enhancing some particularities that are addressed in the chapter. One of the extracted
convoys can be "the two cars, o3 and o4, are consecutively moving together from t1 to t4"
or a potential closed swarm is "the two cars, o1 and o2, are moving together from t2 to
t999, from B to L", etc. Even though these kinds of patterns are meaningful, there are some
challenging issues that limit their utility.

1.1 Illustrative Example and Motivations

In this section, we will give an example to generally present challenging issues and our
motivations in object movement pattern mining.

1) The first issue is how to efficiently manage different kinds of patterns? Indeed, given
a specific dataset, e.g. see Figure 1.1, it is difficult to know which kind of patterns is useful
to analyze the data. Intuitively, that could be a set of closed swarms indicate that the cars
o1 and o2 or the cars o3 and o4 are moving together. However, that also could be a set of
moving object clusters state that the cars o1,o2,o3 and o4 are moving together from C to
D to E to F, etc.

To deal with this issue, one of potential solutions is employing all the existing ap-
proaches, each of which extracts a specific pattern, to obtain all kinds of patterns. Then,
user can analyze the final results to understand the object movement behavior. Naturally,
the computation is costly and time consuming since we need to execute different algo-
rithms consecutively. Additionally, in some applications object locations are continuously

1.2. CONTRIBUTIONS 9

updated, e.g. cars report their locations by using Global Positioning System (GPS). There-
fore, new data is always available and it means that we need to execute again and again the
algorithms on the entire data to update the final results. This is of course, cost-prohibitive
and time consuming as well.

2) The second issue is that the existing patterns are relevant and help us to fully under-
stand the complex and unpredictable behavior of moving objects or not. For instance, they
require the group of moving objects to be together for at least mint timestamps, i.e. could
be consecutive or completely be non-consecutive, which might not be practical in the real
cases. Enforcing consecutive time constraint may results in loosing meaningful patterns
while completely relax this constrain may generate large amount of extraneous patterns.

For instance, see Figure 1.1, enforcing the consecutive time constraint results in losing
of the pattern "the two cars, o1 and o2, are moving together from B to E and to F" since they
are not close each other at time t3. While completely relax this constraint will generate the
extraneous patterns such as "the two cars, o1 and o2, are moving together from B to E to F
to G to K and to L". This pattern are irrelevant because they meet each other at L after 949
timestamps by chance and not actually moving together from K to L.

Another illustrative example is that the traditional movement patterns usually focus
on an unchanged group of objects and thus they cannot capture the object moving trend.
Indeed, objects can step by step getting together to go to some place or leaving each other
from that place.

For instance, in Figure 1.1, "all the cars are gathering at E after A to C and to D". This
phenomenon is involved in many real world applications such as traffic congestion, animal
or population migration, location prediction, etc. Therefore, it demands the definition of
novel movement pattern models to enrich the application benefit.

3) Naturally, end user can be overwhelmed by a huge number of extracted patterns al-
though only a few of them are useful. Indeed, thousand of patterns representing redundant
knowledge clearly poses limit in their usefulness. However, relatively few researchers have
addressed the problem of reducing movement pattern redundancy.

4) The potential utility of the developed spatio-temporal mining tools must be justi-
fied in their applicable field. One of our ultimate goals is to develop techniques that not
only benefit the computer science society, but more importantly, are applicable to vari-
ous interdisciplinary science and engineering fields. Therefore, it is always crucial for us
to emphasize the practicability of our methods. Performance measures of the developed
tools in terms of accessibility, scalability, reliability and other human factors also need to
be carefully studied, in order to provide answers to concerns from domain experts.

1.2 Contributions

All of the mentioned issues have been addressed in my thesis. We propose a three step
framework, i.e. Figure 1.2. First of all, we develop a unifying approach to extract and man-

10 CHAPTER 1. INTRODUCTION

Figure 1.2: Our three step framework on mining and managing object movement patterns.

age multiple patterns. Second, we discover novel kinds of movement patterns and efficient
algorithms to mine them. To select informative patterns from thousand of very redundant
ones, we further design a compression step based on Minimum Description Length prin-
cipal. To justify the utility of the proposed concepts and developed approaches, we also
supply a demonstration system, named MULTI_MOVE, which is designed to efficiently and
automatically extract different movement patterns. Our contributions are generally pre-
sented as follows:

All in One: Mining Multiple Movement Patterns. Designing a unifying approach which
can manage multiple movement patterns is very challenging. This is because: 1) there are
many kinds of patterns and each of which have their own characteristics. 2) Additionally
the results need to be reusable to obtain the final results when new data is available. 3)
Obtaining the optimal parameters is a difficult task for most of algorithms which require
parameter setting.

All these challenging issues have been throughly considered and well addressed in my
proposed method, GET_MOVE [12]. The basic idea of GET_MOVE is to reconfigure moving
object data to a cluster matrix then movement patterns will be redefined in an itemset
context. Next, frequent closed itemset will be adopted to efficiently extract closed itemsets
from which movement patterns can be mined.

Fuzzy Moving Object Clusters. To soften the consecutive time constraint, the key chal-
lenge is to deal with the time gap between a pair of clusters since: 1) it is difficult to rec-
ognize which size of a time gap is relevant or not, 2) we need to know when the patterns
should be ended to eliminate uninteresting ones.

To address these issues, we present the definition of fuzzy time gap and fuzzy time

1.2. CONTRIBUTIONS 11

gap participation index. Obtained patterns are of the type "the two cars, o1 and o2, are
moving together from B to E to E to G and to K with 60% weak, 20% medium and 20% strong
time gaps", see Figure 1.1. These patterns are characterized by their time gap frequency
(or support), which is by definition the proportion of time gaps involved in the patterns.
To extract all the fuzzy closed swarms, we propose a novel itemset-based property so that
GET_MOVE can be employed to gather all the fuzzy closed swarms.

Time Relaxed Gradual Trajectory Patterns. A gradual moving object cluster is a list
of moving object clusters which satisfy the graduality constraint and integrity condition
during at leastmint timestamps. The graduality constraint can be the increase or decrease
of the number of objects and the integrity condition can be that all the objects should
remain in the next cluster.

As exemplified in Figure 1.1, the retrieved knowledge from traditional patterns can be
"the two cars, o1 and o2, are moving together from t2 to t6" or "the two cars, o3 and o4, are
moving together from t1 to t4". Even if these patterns are relevant, they do not really present
the actual moving behavior which can be "from t1 to t4, as time passes, the more cars are
following the trajectory {A i C i D i E}".

To avoid finding redundant rGpatterns, we only focus on discovering the complete set
of maximal rGpatterns. The basic idea is that if C is a rGpattern, it is unnecessary to output
any subset C 0 of C even if C 0 may also satisfy rGpattern requirements.

Efficiently extracting of complete set of maximal rGpatterns in a large moving object
data, denoted db, is a non-trivial task. First, the size of all possible combinations is expo-
nential, i.e. approximately 2|Cdb

| where Cdb is the set of all clusters extracted from the data
db and |Cdb| is significantly large. Second, none of previous work (i.e. frequent pattern
mining [1] [15], moving object clusters [7] [17] [18] [23]) solves exactly the same issue as
finding maximal rGpatterns. This is because they do not address the graduality in terms
of itemsets or moving clusters. However, graduality is a key feature in rGpattern context.
Thus, the discovery of rGpatterns introduces a new problem that needs to be solved by
specifically designed techniques.

Facing the huge potential search space, we propose an efficient approach, named
CLUSTERGROWTH, which shares the same spirit with the ObjectGrowth algorithm [23] but
different in terms of design and goal. In CLUSTERGROWTH, we design two efficient rules
which are Graduality Pruning and Backward Pruning to end unnecessary further search.
After cutting a great portion of invalid candidates through the pruning rules, we perform
a further check, i.e. Actual Maximum Checking, to report interesting maximal rGpatterns
on-the-fly. This final step avoids using more space to store candidates and extra time for
post-processing.

To enrich the utility of the rGpattern concept, we adapt the Minimum Description
Length (MDL) principle for mining representative rGpatterns. An encoding scheme which
is designed to deal with different kinds of overlapping rGpattern structures is proposed.
We show that mining representative rGpatterns is NP-Hard and therefore we propose two
heuristic algorithms to extract compressing rGpatterns. The first algorithm, named COM-

12 CHAPTER 1. INTRODUCTION

POGP, uses a greedy two-phase approach. To overcome performance with the required
candidate generation in COMPOGP we propose an effective algorithm, called DICOMPOGP,
to directly mine compressing rGpatterns.

Mining Representative Object Movement Patterns. Most of the researches are devoted
to extract trajectories that differ in their structure and characteristic in order to capture
different object behaviors. The first issue is constituted from the fact that all these meth-
ods extract thousand of patterns resulting in a huge amount of redundant knowledge that
poses limit in their usefulness. The second issue is supplied from the nature of spatio-
temporal database from which different type of moving object patterns could be extracted.
This means that using only a single type of patterns is not sufficient to supply an insightful
picture of the whole database.

Motivating by these issues, we develop a Minimum Description Length (MDL)-based
approach that is able to compress spatio-temporal data combining different kinds of mov-
ing object patterns. The core of the method is to design and encoding scheme for different
movement patterns, and then an approach which allow overlapping between them. The
proposed method results in a rank of the patterns involved in the summarization of the
dataset.

MULTI_MOVE System. Despite the growing demands for diverse applications, there
have been few scalable tools for mining massive and sophisticated moving object data.
Even if some tools are available for extracting patterns (e.g. [33]), they mainly focus on
specific kinds of patterns at a time. Obviously, when considering a dataset, it is quite dif-
ficult for the decision maker to know in advance which kinds of patterns are embedded
in the data. To cope with this issue, we propose the MULTI_MOVE system to reveal, au-
tomatically and in a very efficient way, collective movement patterns like convoys, group
patterns, closed swarms, moving clusters and also periodic patterns. Starting from the
results of MULTI_MOVE, the user can then visualize, browse and compare the different ex-
tracted patterns through a user friendly interface in Google Maps and Google Earth. The
MULTI_MOVE system has gained a lot of publicity, since it is the first system that enable
users to obtain the comparative results.

Moreover, we also demonstrate that our proposed approaches and systems can be ef-
ficiently applied to many other domains such as gene expression analysis, and tweet user
behavior analyzing. The GET_MOVE approach was applied on 3 HIV time-series gene ex-
pression dataset to outline relationships between genes based on their expressions at dif-
ferent timestamps following infection. We have found that clustering gene expression data
groups together efficiently genes of similar function based on their FC value and coherent
results with our knowledge on HIV-1 versus HIV-2 infection were obtained. In additional,
trajectories expressing the evolution of French political communities can be extracted from
the political tweets which have been gathered during the French Election Campaign 2012.

Mining Multi-Relational Gradual Patterns. As an extra work, we also present the
multi-relational gradual patterns. Indeed, gradual patterns highlight covariations of at-
tributes of the form “The more/less X, the more/less Y". Their usefulness in several applica-

1.2. CONTRIBUTIONS 13

tions has recently stimulated the synthesis of several algorithms for their automated dis-
covery from large datasets. However, existing techniques require all the interesting data
to be in a single database relation or table. This work extends the notion of gradual pat-
tern to the case in which the co-variations are possibly expressed between attributes of
different database relations. The interestingness measure for this class of “relational grad-
ual patterns" is defined on the basis of both Kendall’s ⌧ and gradual support. Moreover,
we propose two algorithms, named ⌧RGp and gradRGp, for the discovery of relational
gradual rules, and three pruning strategies to reduce the search space. The efficiency of
the algorithms is empirically validated, and the usefulness of relational gradual patterns is
proved on some real-world databases.

The remaining of the report is organized as follows. The related work is discussed in
Chapter 2. GET_MOVE is presented in Chapter 3. Mining fuzzy closed swarms and gradual
trajectory patterns are described in Chapters 4 and 5 separately. Mining representative
movement patterns will be introduced in Chapter 6. I also briefly present MULTI_MOVE

system in Chapter 7. The extra work, i.e. mining multi-relational gradual patterns, and the
conclusion will be drawn in Chapters 8 and 9.

CHAPTER

2
Related Work

Preamble

The problem of object movement patterns has been extensively addressed over the last
years. Basically, an object movement patterns are designed to group similar trajecto-
ries or objects which tend to move together during a time interval. So many different
definitions can be proposed and today lots of patterns have been defined such as flocks,
convoys, closed swarms, moving clusters and even periodic patterns.

2.1 Preliminary Definitions

First of all, let us assume that we have a group of moving objects Odb = {o1,o2, . . . ,oz},
a set of timestamps Tdb = {t1,t2, . . . ,tn} and at each timestamp ti 2 Tdb, spatial infor-
mation 1 x,y for each object. For example, Table 2.1 illustrates an example of a moving
object database. Usually, in object movement pattern mining, we are interested in ex-
tracting a group of objects staying together during a period. Therefore, from now, O =
{oi

1

,oi
2

, . . . ,oi
p

}(OµOdb) stands for a group of objects, T = {ta
1

,ta
2

, . . . ,ta
m

}(T µ Tdb) is
the set of timestamps within which objects stay together. Let mino be the user-defined
threshold standing for a minimum number of objects and mint the minimum number of
timestamps. Thus |O| (resp. |T |) must be greater than or equal to mino (resp. mint).

Database of clusters. A database of clusters, Cdb= {Ct
1

,Ct
2

, . . . ,Ct
n

}, is the collection
of snapshots of the moving object clusters at timestamps {t1,t2, . . . ,tn}. Note that an object
could belong to several clusters at one timestamp (i.e. cluster overlapping). Given a cluster
c 2 Ct(2 Cdb) and c µ Odb, |c| and t(c) are respectively used to denote the number of

1. As illustrated in the introduction, spatial information can be for instance GPS location.

15

16 CHAPTER 2. RELATED WORK

Table 2.1: An example of a moving object database.

Objects Odb Timesets Tdb x y
o1 t1 2.3 1.2
o2 t1 2.1 1
o1 t2 10.3 28.1
o2 t2 0.3 1.2

(a) Swarm (b) Convoy

Figure 2.1: An example of swarm and convoy extracted from the Figure 1.1.

objects belong to cluster c and the timestamp that c involved in. To make the process
more general, the clustering 2 is taken as a preprocessing step. In the following, we formally
define all the different kinds of movement patterns.

Informally, a swarm is a group of moving objectsO containing at leastmino individuals
which are closed each other for at least mint timestamps. Then a swarm can be formally
defined as follows:

Definition 1. Swarm[23]. A pair (O,T) is a swarm if:
8
<

:

(1) :8ta
i

2 T,9c s.t. Oµ c, c is a cluster.
(2) : |O|∏mino.
(3) : |T |∏mint.

(2.1)

Note that the meaning of the above conditions are: (1) there is at least one cluster containing
all the objects in O at each timestamp in T , (2) there must be at least mino objects, (3) there
must be at least mint timestamps.

2. The clustering method is not fixed in our system. Users can cluster cars along highways using a density-
based method, or cluster birds in 3 dimension space using the k-means algorithm. Clustering methods that
generate overlapping clusters are also applicable, such as EM algorithm or using a rigid definition of the
radius to define a cluster. Moreover, clustering parameters are decided by users’ requirements or can be
indirectly controlled by setting the number of clusters at each timestamp.

Usually, most of clustering methods can be done in polynomial time. In our experiments, we used DB-
Scan [4], which takes O(|O

db

|log(|O
db

|)£ |T
db

|) in total to do clustering at every timestamp. To speed it up,
there are also many incremental clustering methods for moving objects. Instead computing clusters at each
timestamp, clusters can be incrementally updated from last timestamps.

2.1. PRELIMINARY DEFINITIONS 17

For example, as shown in Figure 2.1a, if we set mino = 2 and mint = 2, we
can find the following swarms ({o3,o4}, {t1,t2}), ({o3,o4}, {t1,t2,t3}), ({o3,o4}, {t1,t3}),
({o3,o4}, {t1,t2,t3,t4,t999}), etc. We can note that these swarms are in fact redundant since
they can be grouped together in the following swarm ({o3,o4}, {t1,t2,t3,t4,t999}).

To avoid this redundancy, Zhenhui Li et al. [23] propose the notion of closed swarm for
grouping together both objects and timstamps. A swarm (O,T) is object-closed if, when
fixing T , O cannot be enlarged. Similarly, a swarm (O,T) is time-closed if, when fixing O,
T cannot be enlarged. Finally, a swarm (O,T) is a closed swarm if it is both object-closed
and time-closed and can be defined as follows:

Definition 2. Closed Swarm [23]. A pair (O,T) is a closed swarm if:
8
<

:

(1) : (O,T) is a swarm.
(2) : ÿO 0 s.t. (O 0,T) is a swarm and OΩO 0.
(3) : ÿT 0 s.t. (O,T 0) is a swarm and T Ω T 0.

(2.2)

For instance, in the previous example, ({o3,o4}, {t1,t2,t3,t4,t999}) is a closed swarm.
A convoy is also a group of objects such that these objects are closed each other dur-

ing at least mint time points. The main difference between convoy and swarm (or closed
swarm) is that convoy lifetimes must be consecutive. In essential, by adding the consecu-
tiveness condition to swarms, we can define convoy as follows:

Definition 3. Convoy [18]. A pair (O,T), is a convoy if:
�

(1) : (O,T) is a swarm.
(2) :8i,1∑ i< |T |, ta

i+1

= ta
i

+1.
(2.3)

For instance, on Figure 2.1b, with mino = 2,mint = 2 we have a convoy
({o3,o4}, {t1,t2,t3,t4,t999}). In this chapter, we not only consider maximal convoys[18]
but also valid (resp. closed) convoys [2]. Similar to swarm and closed swarm, a convoy
becomes a valid convoy if it cannot be enlarged in terms of objects and timestamps.

Until now, we have considered that we have a group of objects that move close to each
other for a long time interval. For instance, as shown in [14], moving clusters and dif-
ferent kinds of flocks virtually share essentially the same definition. Basically, the main
difference is the use of clustering techniques. Flocks, for instance, usually consider a rigid
definition of the radius while moving clusters and convoys apply a density-based cluster-
ing algorithm (e.g. DBScan[4]). Moving clusters can be seen as special cases of convoys
with the additional condition that they need to share some objects between two consecu-
tive timestamps[19]. Therefore, in the following, for brevity and clarity sake, we will mainly
focus on convoy and density-based clustering algorithm.

18 CHAPTER 2. RELATED WORK

Figure 2.2: A group pattern example.

According to the previous definitions, the main difference between convoys and
swarms is about the consecutiveness and non-consecutiveness of clusters during a time
interval. In [32], Hwang et al. propose a general pattern, called a group pattern, which
essentially is a combination of both convoy and closed swarm. Basically, group pattern is
a set of disjointed convoys which are generated by the same group of objects in different
time intervals. By considering a convoy as a time point, a group pattern can be seen as a
swarm of disjointed convoys. Additionally, group pattern cannot be enlarged in terms of
objects and number of convoys. Therefore, group pattern is essentially a closed swarm of
disjointed convoys. Formally, group pattern can be defined as follows:

Definition 4. Group Pattern[32]. Given a set of objects O, a minimum weight threshold
minwei, a set of disjointed convoys TS = {s1,s2, . . . ,sn}, a minimum number of convoys
minc. (O,TS) is a group pattern if:

�
(1) : (O,TS) is a closed swarmmino w.r.t minc.

(2) :
P|TS|

i=1

|s
i

|

|T
db

|
∏minwei.

(2.4)

Note that minc is only applied for TS (i.e. |TS|∏minc).

For instance, see Figure 2.2, with mint = 1 and mino = 2, we have a set of convoys
TS = {({o1,o2}, {t1}),({o1,o2}, {t4,t5})}. Additionally, with minc = 1, we have ({o1,o2},TS)
is a closed swarm of convoys because |TS|= 2 ∏minc, |O| ∏mino and (O,TS) cannot be

enlarged. Furthermore, with minwei = 0.5, (O,TS) is a group pattern since |[t
1

]|+|[t
4

,t
5

]|
|T
db

|
=

3
6 ∏minwei.

Previously, we overviewed patterns in which a group objects move together during
some time intervals. However, mining patterns from individual object movement is also
interesting. In [24], N. Mamoulis et al. propose the notion of periodic pattern in which
an object follows the same routes (approximately) over regular time intervals. For exam-
ple, people wake up at the same time and generally follow the same route to their work
everyday. Informally, given an object’s trajectory including N time-points, TP which is the
number of timestamps that a pattern may re-appear. The object’s trajectory is decomposed
into b N

TP
c sub-trajectories. TP is data-dependent and has no definite value. For example,TP

can be set to ’a day’ in traffic control applications since many vehicles have daily patterns,

2.2. OBJECT MOVEMENT PATTERN MINING 19

Figure 2.3: A periodic pattern example.

while annual animal migration patterns can be discovered by TP = ’a year’. For instance,
see Figure 2.3, an object’s trajectory is decomposed into daily sub-trajectories.

Essentially, a periodic pattern is a closed swarm discovered from b N
TP

c sub-trajectories.
For instance, in Figure 2.3, we have 4 daily sub-trajectories and from them we extract po-
tential periodic patterns such as {c1,c3,c4,c5}, {c2,c5,c6}, etc. The main difference in peri-
odic pattern mining is the preprocessing data step while the definition is similar to that of
closed swarms. As we have provided the definition of closed swarms, we will mainly focus
on closed swarm mining below.

2.2 Object Movement Pattern Mining

As mentioned before, many approaches have been proposed to extract movement pat-
terns. Interested readers may refer to [14] where short descriptions of the most efficient or
interesting patterns and approaches are proposed. For instance, Gudmundsson and van
Kreveld [7], Vieira et al.[30] define a flock pattern, in which the same set of objects stay to-
gether in a circular region with a predefined radius, Kalnis et al.[19] propose the notion of
moving cluster, while Jeung et al.[18] define a convoy pattern.

Jeung et al.[18] adopt the DBScan algorithm[4] to find candidate convoy patterns. The
authors propose three algorithms that incorporate trajectory simplification techniques in
the first step. The distance measurements are performed on trajectory segments of as op-
posed to point based distance measurements. Another problem is related to the trajectory
representation. Some trajectories may have missing timestamps or are measured at dif-
ferent time intervals. Therefore, the density measurements cannot be applied between
trajectories with different timestamps. To address the problem of missing timestamps, the
authors proposed to interpolate the trajectories by creating virtual time points and by ap-
plying density measurements on trajectory segments. Additionally, the convoy is defined
as a maximal pattern when it has at least k clusters during k consecutive timestamps. To
accurate the discovery of convoys, H. Yoon et al. propose the notion of valid convoy[2]
which can not be enlarged in terms of timestamps and objects.

20 CHAPTER 2. RELATED WORK

Recently, Zhenhui Li et al.[23] propose the concept of swarm and closed swarm and the
ObjectGrowth algorithm to extract closed swarms. The ObjectGrowth method is a depth-
first-search framework based on the objectset search space (i.e., the collection of all subsets
of Odb). For the search space of Odb, they perform depth-first search of all subsets of Odb

through a pre-order tree traversal. Even though, the search space remains still huge for
enumerating the objectsets in O (2|Odb

|). To speed up the search process, they propose
two pruning rules. The first pruning rule, called Apriori Pruning, is used to stop traversal
the subtree when we find further traversal that cannot satisfy mint. The second pruning
rule, called Backward Pruning, makes use of the closure property. It checks whether there
is a superset of the current objectset, which has the same maximal corresponding timeset
as that of the current one. If so, the traversal of the subtree under the current objectset is
meaningless. After pruning the invalid candidates, the remaining ones may or may not be
closed swarms. Then a Forward Closure Checking is used to determine whether a pattern
is a closed swarm or not.

In [32], Hwang et al. propose two algorithms to mine group patterns, known as the
Apriori-like Group Pattern Mining algorithm and Valid Group-Growth algorithm. The for-
mer explores the Apriori property of valid group patterns and extends the Apriori algorithm
[1] to mine valid group patterns. The latter is based on idea similar to the FP-growth algo-
rithm [15].

To discover group of moving objects on streaming trajectories, L.-A. Tang et al. [28]
present the concept of traveling companions. In order to efficiently extract traveling com-
panions, the authors first propose the models of closed companion candidates and smart
intersection to accelerate data processing. Then, a data structure termed traveling buddy
is designed to facilitate scalable and flexible companion discovery from streaming trajec-
tories. The traveling buddies are micro-groups of objects that are tightly bound together.
By only storing the object relationships rather than their spatial coordinates, the buddies
can be dynamically maintained along trajectory stream with low cost. Based on traveling
buddies, the system can discover companions without accessing the object details.

Patterns that are mined from trajectories are called trajectory patterns and character-
ize interesting behaviors of single object or group of moving objects. Giannotti et al. [65]
presented an algorithm to find frequent movement patterns that represent cumulative be-
havior of moving objects where a pattern, called T-pattern, was defined as a sequence of
points with temporal transitions between consecutive points. A T-pattern is discovered
if its spatial and temporal components approximately correspond to the input sequences
(trajectories). The meaning of these patterns is that different objects visit the same places
with similar time intervals. Once the patterns are discovered, the classical sequence min-
ing algorithms can be applied to find frequent patterns. Crucial to the determination of
T-patterns is the definition of the visiting regions. For this, the Region-of-Interest (RoI) no-
tion was proposed. A RoI is defined as a place visited by many objects. Additionally, the
duration of stay can be taken into account. The idea behind RoI is to divide the working
region into cells and count the number of trajectories that intersect the cell. The algorithm

2.2. OBJECT MOVEMENT PATTERN MINING 21

Table 2.2: Overview of movement pattern methods and applications.

Problem Application Based-Method Selected literature
Trajectory clustering, Cars, evacuation traces Rinzivillo et al. [59]

Trajectory aggregation, ,landings and interdictions OPTICS Andrienko et al. [60] [61] [62]
Trajectory generalization of migrant boats Lee et al. [22]

Kalnis et al. [19]
Jeung et al. [18]

Migrating animals, Vieira et al. [30]
Moving clusters flocks, convoys DBSCAN Gridding, Li et al. [23]

of vehicles, swarms, DBSCAN Aung et al. [2]
gradual trajectories Phan et al. [9] [10] [12]

Tang et al. [28]
Extracts important DBSCAN, Palma et al. [63]

places from trajectories People’s trajectories Incremental clustering Kang et al. [64]

Trajectory patterns Fleet of trucks Density of spatial regions Giannotti et al. [65]
Representative trajectories Migrating animals DBSCAN Phan et al. [11]

for finding popular regions was proposed, which accepted the grid with cell densities and
a density threshold d as input. The algorithm scans the cells and tries to expand the re-
gion in four directions (left, right, up, down). The direction that maximizes the average cell
density is selected and the cells are merged. After the regions of interest are obtained, the
sequences can be created by following every trajectory and matching the regions of inter-
est they intersect. The timestamps are assigned to the regions in two ways: (1) Using the
time when the trajectory entered the region or (2) Using the starting time if the trajectory
started in that region. Consequently, the sequences are used in mining frequent T-patterns.

As we can recognize that there are many kinds of patterns and algorithms, i.e. Table 2.2
summarizes the categories of movement patterns, thus it is costly and time consuming to
mine and manage all them. Additionally, in some real world applications, i.e. cars, the new
object information is continuously reported and thus it demands an innovative solution
to manage them. These challenging issues are addressed in the next Chapter, All in One:
Mining Multiple Movement Patterns.

CHAPTER

3
All in One: Mining Multiple

Movement Patterns

Preamble

Due to the emergence of many different kinds of object movement patterns in recent
years, different approaches have been proposed to extract them. However, each ap-
proach only focuses on mining a specific kind of patterns. In addition to being a
painstaking task due to the large number of algorithms used to mine and manage pat-
terns, it is also time consuming. Moreover, we have to execute these algorithms again
whenever new data are added to the existing database. To address these issues, we first
redefine movement patterns in the itemset context. Secondly, we propose a unifying
approach, named GeT_Move, which uses a frequent closed itemset-based object move-
ment pattern-mining algorithm to mine and manage different patterns. GeT_Move is
developed in two versions which are GeT_Move and Incremental GeT_Move. To opti-
mize the efficiency and to free the parameters setting, we further propose a Parameter
Free Incremental GeT_Move algorithm. Comprehensive experiments are performed on
real and large synthetic datasets to demonstrate the effectiveness and efficiency of our
approaches.

3.1 Object Movement Patterns in Itemset Context

For clarity sake, we remind some notions introduced in Chapter 2. First of all, let us
assume that we have a group of moving objects Odb = {o1,o2, . . . ,oz}, a set of timestamps
Tdb = {t1,t2, . . . ,tn}. Then O = {oi

1

,oi
2

, . . . ,oi
p

}(O µOdb) stands for a group of objects,
T = {ta

1

,ta
2

, . . . ,ta
m

}(T µ Tdb) is the set of timestamps within which objects stay together.
Let mino be the user-defined threshold standing for a minimum number of objects and

23

24 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

Table 3.1: Cluster matrix from our running example in Figure 1.1.

Tdb t1 t2 t3 t4 t5 t10 t50 t999
Clusters Cdb c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Odb

o1 1 1 1 1 1 1
o2 1 1 1 1 1 1 1
o3 1 1 1 1 1 1
o4 1 1 1 1 1

mint the minimum number of timestamps. Thus |O| (resp. |T |) must be greater than or
equal to mino (resp. mint).

Database of clusters. A database of clusters, Cdb= {Ct
1

,Ct
2

, . . . ,Ct
n

}, is the collection
of snapshots of the moving object clusters at timestamps {t1,t2, . . . ,tn}. Note that an object
could belong to several clusters at one timestamp (i.e. cluster overlapping). Given a cluster
c 2 Ct(2 Cdb) and c µ Odb, |c| and t(c) are respectively used to denote the number of
objects belong to cluster c and the timestamp that c involved in. To make our framework
more general, we take clustering as a preprocessing step.

Basically, patterns are evolution of clusters over time. Therefore, to manage the evolu-
tion of clusters, we need to analyze the correlations between them. Furthermore, if clus-
ters share some characteristics (e.g. share some objects), they could be a pattern. Con-
sequently, if a cluster is considered as an item we can have a set of items (called itemset).
The key issue essentially is to efficiently combine items (clusters) to find itemsets (a set of
clusters) which share some characteristics or satisfy some properties to be considered a
pattern. To describe cluster evolution, moving object data is presented as a cluster matrix
from which patterns can be extracted.

Definition 5. Cluster Matrix. Assume that we have a set of clusters Cdb. A cluster matrix is
thus a matrix of size |Odb|£ |Cdb| such that each row represents an object and each column
represents a cluster. The value of the cluster matrix cell, (oi,cj) is 1 (resp. empty) if oi is in
(resp. is not in) cluster cj. A cluster (or item) cj is a cluster formed by applying clustering
techniques.

For instance, the data from our illustrative example (Figure 1.1) is presented in a cluster
matrix in Table 3.1. Object o3 belongs to the cluster c1 at timestamp t1 and thus the matrix
cell (o3-c1) is 1, meanwhile the matrix cell (o1-c1) is empty because object o1 does not
belong to cluster c1.

By presenting data in a cluster matrix, each object acts as a transaction while each clus-
ter cj stands for an item. Additionally, an itemset can be formed as⌥= {c1,c2, . . . ,cp} with
life time T⌥ = {t(c1),t(c2), . . . ,t(cp)} where t(c1) < t(c2) < . . . < t(cp), 8i : t(ci) 2 Tdb,ci 2
Cdb. The support of the itemset ⌥, denoted �(⌥), is the number of common objects in

3.1. OBJECT MOVEMENT PATTERNS IN ITEMSET CONTEXT 25

Figure 3.1: A swarm from our running example in Figure 1.1.

every items belonging to ⌥, O(⌥) =
Tp
i=1 ci. Additionally, the length of ⌥, denoted |⌥|, is

the number of items or timestamps (= |⌥|= |T⌥|).
For instance, in Table 3.1, for a support value of 2 we have: ⌥= {c2,c7} veryfying�(⌥)=

2. All the items (resp. clusters) of⌥,c1 and c7, are in the transactions (resp. objects) o1,o2.
The length of |⌥| is the number of items (= 2).

Naturally, the number of clusters can be large; however, the maximum length of an
itemsets is |Tdb|. Because of the density-based clustering algorithm used, clusters at the
same timestamp cannot be in the same itemsets.

Now, we will define some useful properties to extract the patterns presented in Section
2.1 from frequent itemsets as follows:

Property 1. Swarm. Given a frequent itemset ⌥= {c1,c2, . . . ,cp}. (O(⌥),T⌥) is a swarm if,
and only if: �

(1) :�(⌥)∏mino

(2) : |⌥|∏mint
(3.1)

Proof. After construction, we have �(⌥) ∏mino and �(⌥) = |O(⌥)| then |O(⌥)| ∏mino.
Additionally, as |⌥|∏mint and |⌥|= |T⌥| then |T⌥|∏mint. Furthermore, 8tj 2 T⌥,O(⌥)µ
cj, means that at any timestamps, we have a cluster containing all objects in O(⌥). Con-
sequently, (O(⌥),T⌥) is a swarm because it satisfies all the requirements of the Definition
1.

For instance, in Figure 3.1, for the frequent itemset ⌥ = {c2,c5,c6,c7,c8,c9} we have
(O(⌥) = {o1,o2},T⌥ = {t2,t4,t5,t10,t50,t999}) which is a swarm with support threshold
mino= 2 and mint= 2. We can notice that �(⌥)= 2∏mino and |⌥|= 6∏mint.

Essentially, a closed swarm is a swarm which satisfies the object-closed and time-closed
conditions therefore closed-swarm property is as follows:

Property 2. Closed Swarm. Given a frequent itemset ⌥ = {c1,c2, . . . ,cp}. (O(⌥),T⌥) is a
closed swarm if and only if:

8
<

:

(1) : (O(⌥),T⌥) is a swarm.
(2) : ÿ⌥ 0 s.t O(⌥)ΩO(⌥ 0),T⌥ 0 = T⌥ and (O(⌥ 0),T⌥) is a swarm.
(3) : ÿ⌥ 0 s.t. O(⌥ 0)=O(⌥),T⌥ Ω T⌥ 0 and (O(⌥),T⌥ 0) is a swarm.

(3.2)

26 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

Figure 3.2: A convoy from our running example in Figure 1.1.

Proof. After construction, we obtain (O(⌥),T⌥) which is a swarm. Additionally, if ÿ⌥ 0 s.t
O(⌥) ΩO(⌥ 0),T⌥ 0 = T⌥ and (O(⌥ 0),T⌥) is a swarm then (O(⌥),T⌥) cannot be enlarged
in terms of objects. Therefore, it satisfies the object-closed condition. Furthermore, if ÿ⌥ 0

s.t. O(⌥ 0) = O(⌥),T⌥ Ω T⌥ 0 and (O(⌥),T⌥ 0) is a swarm then (O(⌥),T⌥) cannot be en-
larged in terms of lifetime. Therefore, it satisfies the time-closed condition. Consequently,
(O(⌥),T⌥) is a swarm and it satisfies object-closed and time-closed conditions and there-
fore (O(⌥),T⌥) is a closed swarm according to the Definition 6.

According to the Definition 3, a convoy is a swarm which satisfies the lifetime consec-
utiveness condition. Therefore, for an itemset, we can extract a convoy if the following
property holds:

Property 3. Convoy. Given a frequent itemset ⌥= {c1,c2, . . . ,cp}. (O(⌥),T⌥) is a convoy if
and only if: �

(1) : (O(⌥),T⌥) is a swarm.
(2) :8j,1∑ j<p : t(cj+1)= t(cj)+1.

(3.3)

Proof. After construction, we obtain (O(⌥),T⌥) which is a swarm. Additionally, if ⌥
satisfies the condition (2), it means that the ⌥’s lifetime is consecutive. Consequently,
(O(⌥),T⌥) is a convoy according to the Definition 3.

For instance, see Table 3.1 and Figure 3.2, for the frequent itemset⌥= {c1,c3,c4,c5} we
have (O(⌥)= {o3,o4},T⌥= {t1,t2,t3,t4}) is a convoy with support thresholdmino= 2 and
mint= 2.

Please remember that a group pattern is a set of disjointed convoys which share the
same objects, but in different time intervals. Therefore, the group pattern property is as
follows:

Property 4. Group Pattern. Given a frequent itemset ⌥ = {c1,c2, . . . ,cp}, a mininum
weight minwei, a minimum number of convoys minc, a set of consecutive time segments

3.1. OBJECT MOVEMENT PATTERNS IN ITEMSET CONTEXT 27

Table 3.2: Periodic cluster matrix in Figure 2.3.

Tdb t1 t2 t3 t4 t5 t10 t50 t999
Clusters Cdb c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

STdb

st1 1 1 1 1 1 1
st2 1 1 1 1 1 1 1
st3 1 1 1 1 1 1
st4 1 1 1 1 1

TS= {s1,s2, . . . ,sn}. (O(⌥),TS) is a group pattern if and only if:
8
>>>>><

>>>>>:

(1) : |TS|∏minc.
(2) :8si,si µ T⌥, |si|∏mint.
(3) :

Tn
i=1 si=;,Tn

i=1O(si)=O(⌥).
(4) :8s 62 TS,s is a convoy, O(⌥) 6µO(s).

(5) :
P

n

i=1

|s
i

|

|T | ∏minwei.

(3.4)

Proof. If |TS| ∏minc then we know that at least minc consecutive time intervals si in TS.
Furthermore, if 8si,si µ T⌥ then we have O(⌥) µO(si). Additionally, if |si| ∏mint then
(O(⌥),si) is a convoy (Definition 3). Now, TS actually is a set of convoys of O(⌥) and ifTn
i=1 si=; then TS is a set of disjointed convoys. A little bit further, if 8s 62 TS,s is a convoy

and O(⌥) 6µ O(s) then ÿTS 0 s.t. TS Ω TS 0 and
T|TS 0 |
i=1 O(si) = O(⌥). Therefore, (O(⌥),TS)

cannot be enlarged in terms of number of convoys. Similarly, if
Tn
i=1O(si) = O(⌥) then

(O(⌥),TS) cannot be enlarged in terms of objects. Consequently, (O(⌥),TS) is a closed
swarm of disjointed convoys because |O(⌥)| ∏mino, |TS| ∏minc and (O(⌥),TS) cannot
be enlarged (Definition 6). Finally, if (O(⌥),TS) satisfies condition (5) then it is a valid
group pattern due to Definition 4.

As mentioned before, the main difference in periodic pattern mining is the input data
while the definition is similar to that of closed swarm. The cluster matrix which is used for
periodic mining can be defined as follows:

Definition 6. Periodic Cluster Matrix (PCM). Periodic cluster matrix is a cluster matrix with
some differences as follows: 1) Each object o is a sub-trajectory st, 2) STdb is a set of all sub-
trajectories in dataset.

For instance, see Table 3.2, an object’s trajectory is decomposed into 4 sub-trajectories
and from them a periodic cluster matrix can be generated by applying clustering tech-
niques. Assume that we can extract a frequent itemset ⌥ = {c1,c2, . . . ,cp} from periodic
cluster matrix, the periodic pattern can be defined as follows:

28 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

Property 5. Periodic Pattern. Given a mininum weight minwei, a frequent itemset ⌥ =
{c1,c2, . . . ,cp} which is extracted from periodic cluster matrix. (ST(⌥),(T)⌥) is a periodic
pattern if and only if (ST(⌥),(T)⌥) is a closed swarm. Note that ST(⌥)=

Tp
i=1 ci

Above, we presented some useful properties to extract object movement patterns from
itemsets. Now we will focus on the fact that from an itemset mining algorithm we are able
to extract the set of all movement patterns. We thus start the proof process by analyzing
the swarm extracting issue. This first lemma shows that from a set of frequent itemsets we
are able to extract all the swarms embedded in the database.

Lemma 1. Let FI = {⌥1,⌥2, . . . ,⌥l} be the frequent itemsets being mined from the cluster
matrix with minsup=mino. All swarms (O,T) can be extracted from FI.

Proof. Let us assume that (O,T) is a swarm. Note, T = {t1,t2, . . . ,tm}. According to the
Definition 1 we know that |O|∏mino. If (O,T) is a swarm then 8ti 2 T,9ct

i

s.t. Oµ ct
i

with
t(ct

i

) = ti therefore
Tm
i=1 cti =O. Additionally, we know that 8ct

i

, ct
i

is an item so 9⌥=Sm
i=1 cti is an itemset and O(⌥) =

Tm
i=1 cti =O,T⌥ =

Sm
i=1 ti = T . Therefore, (O(⌥),T⌥) is

a swarm. So, (O,T) is extracted from⌥. Furthermore, �(⌥) = |O(⌥)|= |O|∏mino then⌥
is a frequent itemset and⌥ 2 FI. Finally, 8(O,T) s.t. if (O,T) is a swarm then 9⌥ s.t. ⌥ 2 FI
and (O,T) can be extracted from⌥, we can conclude 8 swarm (O,T), it can be mined from
FI.

We can consider that by adding constraints such as "consecutive lifetime", "time-
closed", "object-closed", "integrity proportion" to swarms, we can retrieve convoys, closed
swarms and moving clusters. Therefore, ifSwarm,CSwarm,Convoy,MCluster respec-
tively contain all swarms, closed-swarms, convoys and moving clusters then we have:
CSwarm µ Swarm, Convoy µ Swarm and MCluster µ Swarm. By applying Lemma
5, we retrieve all swarms from frequent itemsets. Since, a set of closed swarms, a set of
convoys and a set of moving clusters are subsets of swarms and they can therefore be com-
pletely extracted from frequent itemsets. Additionally, all periodic patterns also can be
extracted because they are similar to closed swarms. Now, we will consider group patterns
and we show that all of them can be directly extracted from the set of all frequent itemsets.

Lemma 2. Given FI= {⌥1,⌥2, . . . ,⌥l} contains all frequent itemsets mined from cluster ma-
trix with minsup=mino. All group patterns (O,TS) can be extracted from FI.

Proof. 8(O,TS) is a valid group pattern, we have 9TS= {s1,s2, . . . ,sn} and TS is a set of dis-
jointed convoys of O. Therefore, (O,Ts

i

) is a convoy and 8si 2 TS,8t 2 Ts
i

,9ct s.t. O µ ct.
Let us assume Cs

i

is a set of clusters corresponding to si, we know that 9⌥,⌥ is an itemset,
⌥=

Sn
i=1Cs

i

and O(⌥) =
Tn
i=1O(Cs

i

) =O. Additionally, (O,TS) is a valid group pattern;
therefore, |O|∏mino so |O(⌥)|∏mino. Consequently, ⌥ is a frequent itemset and ⌥ 2 FI
because ⌥ is an itemset and �(⌥) = |O(⌥)| ∏mino. Consequently, 8(O,TS),9⌥ 2 FI s.t.

3.2. FREQUENT CLOSED ITEMSET-BASED OBJECT MOVEMENT PATTERN MINING
ALGORITHM 29

(O,TS) can be extracted from ⌥ and therefore all group patterns can be extracted from
FI.

As we have shown that patterns such as swarms, closed swarms, convoys, group pat-
terns can be similarly mapped into frequent itemset context. However, mining all frequent
itemsets is cost prohibitive in some cases. Fortunately, the set of frequent closed itemsets
has been proved to be a condensed collection of frequent itemsets, i.e., both a concise and
lossless representation of a collection of frequent itemsets [58]. They are concise since a
collection of frequent closed itemsets is orders of magnitude smaller than the correspond-
ing collection of frequents. This allows the use of very low minimum support thresholds.
Moreover, they are lossless, because it is possible to derive the identity and the support of
every frequent itemsets in the collection from them. Therefore, we only need to extract
frequent closed itemsets (FCIs) and then to scan them with properties to obtain the corre-
sponding object movement patterns instead of having to mine all frequent itemsets (FIs).

3.2 Frequent Closed Itemset-based Object Movement
Pattern Mining Algorithm

Recently, patterns have been redefined in the itemset context. In this section, we pro-
pose two approaches i.e., GeT_Move and Incremental GeT_Move, to efficiently extract pat-
terns. The global process is illustrated in Figure 3.3.

In the first step, a clustering approach (Figure 3.3-(1)) is applied at each time-stamp to
group objects into different clusters. For each timestamp t, we have a set of clusters Ct.
Moving object data can thus be converted to a cluster matrix CM (Table 3.1).

3.2.1 GeT_Move

After generating the cluster matrix CM, a FCI mining algorithm is applied on CM to
extract all the FCIs. By scanning FCIs and checking properties, we can obtain the patterns.

In this chapter, LCM algorithm[38] is applied to extract FCIs as it is known to be a very
efficient algorithm. The key feature of the LCM algorithm is that after discovering a FCI
X, it generates a new generator X[i] by extending X with a frequent item i,i 62 X. Using a
total order relation on frequent items, LCM verifies if X[i] violates this order by performing
tests using only the tidset 1 of X, called T(X), and those of the frequent items i. If X[i] is
not discarded, then X[i] is an order preserving generator of a new FCI. Then, its closure is
computed using the previously mentioned tidsets.

In this process, we discard some useless itemset candidates. In object movement pat-
terns, items (resp. clusters) must belong to different timestamps and therefore items (resp.

1. Called tidlists in [38].

30 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

Figure 3.3: The main process.

clusters) which form a FCI must be in different timestamps. In contrast, we are not able
to extract patterns by combining items in the same timestamp. Consequently, FCIs which
include more than 1 item in the same timestamp will be discarded.

Thanks to the above characteristic, we now have the maximum length of the FCIs which
is the number of timestamps |Tdb|. Additionally, the LCM search space only depends on the
number of objects (transactions) |Odb| and the maximum length of itemsets |Tdb|. Con-
sequently, by using LCM and by applying the property, GeT_Move is not affected by the
number of clusters and therefore the computing time can be greatly reduced.

The pseudo code of GeT_Move is described in Algorithm 5. The core of GeT_Move al-
gorithm is based on the LCM algorithm which has been slightly modified by adding the
pruning rule and by extracting patterns from FCIs. The initial value of FCI X is empty and
then we start by putting item i into X (lines 2-3). By adding i into X, we have X[i] and if
X[i] is a FCI then X[i] is used as a generator of a new FCI, call LCM_Iter(X,T(X), i(X)) (lines
4-5). In LCM_Iter, we first check properties presented in Section 3.1 (line 8) for FCI X. Next,
for each transaction t 2 T(X), we add all items j, which are larger than i(X) and satisfy the
pruning rule, into occurrence set J[j] (lines 9-11). Next, for each j 2 J[j], we check to see if
J[j] is a FCI, and if so, then we recall LCM_Iter with the new generator (lines 12-14). After
terminating the call for J[j], the memory for J[j] is released for the future use in J[k] for
k< j (lines 15).

Regarding to the PatternMining sub-function (lines 16-37), the algorithm basically
checks properties of the itemset X to extract patterns. If X satisfies the mint condition

3.2. FREQUENT CLOSED ITEMSET-BASED OBJECT MOVEMENT PATTERN MINING
ALGORITHM 31

(a) The entire dataset.

(b) Data after applying frequent closed itemsets mining
on Blocks.

Figure 3.4: A case study example. (b)-ci1 (resp. ci2,ci3) is a frequent closed itemset ex-
tracted from block 1 (resp. block 2).

then X is a closed swarm (lines 18-19). After that, we check the consecutive time constraint
for convoy and moving cluster (lines 21-22) and then if the convoy satisfies mint condi-
tion and correctness in terms of object containing (line 31), outputs convoy (line 32). Next,
we put the convoy into a group pattern gPattern (line 33) and then output gPattern if it
satisfies the minc condition and minwei condition at the end of scanning X (line 37). Re-
garding to the moving cluster mc, we check the integrity at each pair of consecutive times-
tamps (line 24). If mc satisfies the condition then the previous item xk will be merged into
mc (line 25). If not, we check the mint condition for mc[xk and if it is satisfied then we
output mc[xk as a moving cluster.

3.2.2 Incremental GeT_Move

Usually, the transaction length can be large corresponding to |Tdb|. Furthermore, FCI
mining approaches can be slowed down when working with long transactions. Thus, the
problem here is that if we apply GeT_Move on the whole dataset, the extraction of the item-
sets can be very time consuming.

To deal with this issue, we propose the Incremental GeT_Move algorithm. The basic
idea is to shorten the transactions by splitting the trajectories (resp. cluster matrix CM) into

32 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

Algorithm 1: GeT_Move
Input : Occurrence sets J, int min

o

, int min
t

, set of items C
db

, double ✓, int min
c

, double min
wei

1 begin
2 X := I(T(;)); //The root
3 for i := 1 to |C

db

| do
4 if |T(X[i])|∏min

o

and |X[i]| is closed then
5 LCM_Iter(X[i],T(X[i]), i);
6 LCM_Iter(X,T(X), i(X))
7 begin
8 PatternMining(X,min

t

); /*X is a pattern?*/
9 foreach transaction t 2T(X) do

10 foreach j 2 t,j> i(X), j.time 62 time(X) do
11 insert j to J[j];
12 foreach j 2 J[j] in the decreasing order do
13 if |T(J[j])|∏min

o

and J[j] is closed then
14 LCM_Iter(J[j],T(J[j]), j);
15 Delete J[j];
16 PatternMining(X,min

t

)
17 begin
18 if |X|∏min

t

then
19 output X; /*Closed Swarm*/
20 gPattern :=;;convoy :=;;mc :=;;
21 for k := 1 to |X-1| do
22 if x

k

.time= x(k+1).time-1 then
23 convoy := convoy[x

k

;

24 if |T(x
k

)\T(x
k+1

)|
|T(x

k

)[T(x
k+1

)|
∏ ✓ then

25 mc :=mc[x
k

;
26 else
27 if |mc[x

k

|∏min
t

then
28 output mc[x

k

; /*MovingCluster*/
29 mc :=;;
30 else
31 if |convoy[x

k

|∏min
t

and |T(convoy[x
k

)|= |T(X)| then
32 output convoy[x

k

; /*Convoy*/
33 gPattern := gPattern[(convoy[x

k

);
34 if |mc[x

k

|∏min
t

then
35 output mc[x

k

; /*MovingCluster*/
36 convoy :=;;mc :=;;
37 if |gPattern|∏min

c

and size(gPattern)
|T

db

|
∏min

wei

then

38 output gPattern; /*Group Pattern*/
39 Where: X is itemset, X[i] :=X[i,i(X) is the last item of X,T(X) is list of tractions that X belongs to, J[j] :=

T(X[j]), j.time is time index of item j, time(X) is a set of time indexes of X, |T(convoy)| is the number of
transactions that the convoy belongs to, |gPattern| and size(gPattern) respectively are the number of
convoys and the total length of the convoys in gPattern.

short intervals, called blocks. By applying FCI mining on each short interval, the data can
then be compressed into local FCIs. Additionally, the length of itemsets and the number of
items can be greatly reduced.

For instance, see Figure 3.4, if we consider [t1,t100] as a block and [t101,t200] as another
block, the maximum length of itemsets in both blocks is 100 (insteads of 200). Additionally,

3.2. FREQUENT CLOSED ITEMSET-BASED OBJECT MOVEMENT PATTERN MINING
ALGORITHM 33

Table 3.3: Closed Itemset Matrix.

Block B b1 b2
Frequent Closed Itemsets CI ci1 ci2 ci3

Odb

o1 1 1
o2 1 1
o3 1 1
o4 1 1

the original data can be greatly compressed (i.e. Figure 3.4b) and only 3 items remain:
ci1,ci2,ci3. Consequently, the process is much improved.

Definition 7. Block. Given a set of timestamps Tdb = {t1,t2, . . . ,tn}, a cluster matrix CM.
CM is vertically split into equivalent (in terms of intervals) smaller cluster matrices and
each of them is a block b. Assume Tb is a set of timestamps of block b, Tb = {t1,t2, . . . ,tk},
thus we have |Tb|= k∑ |Tdb|.

Assume that we obtain a set of blocks B = {b1,b2, . . . ,bp} with |Tb
1

| = |Tb
2

| = . . . =
|Tb

p

|,
Sp
i=1bi=CM and

Tp
i=1bi=;. Given a set of FCI collections CI= {CI1,CI2, . . . ,CIp}

where CIi is mined from block bi. CI is presented as a closed itemset matrix which is
formed by horizontally connecting all local FCIs: CIM=

Sp
i=1CIi.

Definition 8. Closed Itemset Matrix (CIM). Closed itemset matrix is a cluster matrix with
some differences as follows: 1) Timestamp t now becomes a block b, 2) Item c is a frequent
closed itemset ci.

For instance, see Table 3.3, we have two sets of FCIs CI1 = {ci1},CI2 = {ci2,ci3} which
are respectively extracted from blocks b1,b2. Closed itemset matrix CIM = CI1 [CI2
means that CIM is created by horizontally connecting CI1 and CI2. Consequently, we
have CIM as in Table 3.3.

We have already provided blocks to compress original data. Now, by applying FCI min-
ing on the closed itemset matrix CIM, we are able to retrieve all FCIs from corresponding
data. Note that items (in CIM) which are in the same block cannot be in the same frequent
closed itemset.

Lemma 3. Given a cluster matrix CM which is vertically split into a set of blocks B =
{b1,b2, . . . ,bp} so that 8⌥,⌥ is a frequent closed itemset and⌥ is extracted from CM then⌥
can be extracted from closed itemset matrix CIM.

Proof. Let us assume that 8bi,9Ii is a set of items belonging to bi and therefore we have
T|B|
i=1 Ii = ;. If 8⌥,⌥ is a FCI extracted from CM then ⌥ is formed as ⌥= {�1,�2, . . . ,�p}

where �i is a set of items s.t. �i µ Ii. Additionally, ⌥ is a FCI and O(⌥) =
Tp
i=1O(�i) then

8O(�i),O(⌥) µO(�i). Furthermore, we have |O(⌥)| ∏mino; therefore, |O(�i)| ∏mino

34 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

so �i is a frequent itemset. Assume that 9�i,�i 62 CIi then 9 , 2 CIi s.t. �i µ and
�(�i)=�(),O(�i)=O(). Note that , �i are from bi. Remember that O(⌥)=O(�1)\
O(�2)\. . .\O(�i)\. . .\O(�p) then we have: 9⌥ 0 s.t. O(⌥ 0)=O(�1)\O(�2)\. . .\O()\
. . .\O(�p). Therefore, O(⌥ 0)=O(⌥) and�(⌥ 0)=�(⌥). Additionally, we know that�i µ
so ⌥ µ ⌥ 0. Consequently, we obtain ⌥ µ ⌥ 0 and �(⌥) = �(⌥ 0). Therefore, ⌥ is not a FCI.
That violates the assumption and therefore we have: if 9�i,�i 62CIi therefore⌥ is not a FCI.
Finally, we can conclude that 8⌥,⌥= {�1,�2, . . . ,�p} is a FCI extracted from CM, 8�i 2⌥,
�i must belong to CIi and �i is an item in closed itemset matrix CIM. Therefore,⌥ can be
retrieved by applying FCI mining on CIM.

By applying Lemma 3, we can obtain all the FCIs and from the itemsets, patterns can
be extracted. Note that the Incremental GeT_Move does not depend on the length restric-
tion mint. The reason is that mint is only used in Pattern Mining step. Whatever mint

(mint ∏ block size or mint ∑ block size), Incremental GeT_Move can extract all the FCIs
and therefore the final results are the same.

The pseudo code of Incremental GeT_Move is described in Algorithm 2. The main
difference between the code of Incremental GeT_Move and GeT_Move is the Update sub-
function. In this function, we, step by step, generate the closed itemset matrix from blocks
(line 14 and lines 22-26). Next, we apply GeT_Move to extract patterns (line 5).

3.3 Preliminarily Experimental Results

A comprehensive performance study has been conducted on real datasets and syn-
thetic datasets. All the algorithms are implemented in C++, and all the experiments are
carried out on a 2.8GHz Intel Core i7 system with 4GB Memory. The system runs Ubuntu
11.10 and g++ version 4.6.1.

The implementations of our proposed algorithms are also integrated in our demon-
stration system[8] and it is public online 2. As in [23] [33], the two following datasets 3 have
been used during experiments: Swainsoni dataset includes 43 objects evolving over 764
different timestamps. The dataset was generated from July 1995 to June 1998. Buffalo
dataset concerns 165 buffaloes and the tracking time from year 2000 to year 2006. The
original data has 26610 reported locations and 3001 timestamps.

Similar to [23] [18], we first use linear interpolation to fill in the missing data. For study
purposes, we needed the objects to stay together for at least mint timestamps. As in [23]
[18], DBScan[4] (MinPts = 2,Eps = 0.001) is applied to generate clusters at each times-
tamp.

2. www.lirmm.fr/~phan/index.jsp
3. http://www.movebank.org

3.3. PRELIMINARILY EXPERIMENTAL RESULTS 35

Algorithm 2: Incremental GeT_Move
Input : Occurrence sets K, int mino, int mint, double ✓, set of Occurrence sets

(blocks) B, int minc, double minwei

1 begin
2 K :=;;CI :=�; int item_total := 0;
3 foreach b 2B do
4 LCM(b,mino,Ib);
5 GeT_Move(K,mino,mint,CI,✓,minc,minwei);
6 LCM(Occurrence sets J, int �0, set of items C)
7 begin
8 X := I(T(;)); //The root
9 for i := 1 to |C| do

10 if |T(X[i])|∏mino and |X[i]| is closed then
11 LCM_Iter(X[i],T(X[i]), i);
12 LCM_Iter(X,T(X), i(X))
13 begin
14 Update(K,X,T(X), item_total++);
15 foreach transaction t 2T(X) do
16 foreach j 2 t,j> i(X), j.time 62 time(X) do
17 insert j to J[j];
18 foreach j,J[j] 6=� in the decreasing order do
19 if |T(J[j])|∏mino and J[j] is closed then
20 LCM_Iter(J[j],T(J[j]), j);
21 Delete J[j];
22 Update(K,X,T(X), item_total)
23 begin
24 foreach t 2T(X) do
25 insert item_total into K[t];
26 CI :=CI[item_total;

3.3.1 Effectiveness

We proved that mining object movement patterns can be similarly mapped into item-
set mining issue. Therefore, in theoretical way, our approaches can provide the correct re-
sults. Experimentally, we do a further comparison, we first obtain the object movement
patterns by employing traditional algorithms such as, CMC,CuTS§ 4 (convoy mining),
ObjectGrowth (closed swarm mining) as well as our approaches. To apply our algo-
rithms, we split the cluster matrix into blocks such as each block b contains 25 consecutive

4. The source code of CMC,CuTS§ is available at http://lsirpeople.epfl.ch/jeung/source codes.htm

36 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

(a) One of discovered closed swarms.

(b) One of discovered convoys.

(c) One of discovered group patterns.

Figure 3.5: An example of patterns discovered from Swainsoni dataset.

3.3. PRELIMINARILY EXPERIMENTAL RESULTS 37

timestamps. Additionally, to retrieve all the patterns, in the reported experiments, the de-
fault value of mino is set to 2 (two objects can form a pattern), mint is 1. Note that the
default values are the hardest conditions for examining the algorithms. Then in the follow-
ing we mainly focus on different values of mint in order to obtain different sets of convoys,
closed swarms and group patterns. Note that for group patterns, minc is 1 and minwei is
0.

The results show that our proposed approaches obtain the same results compared to
the traditional algorithms. An example of patterns is illustrated in Figure 3.5. For instance,
see Figure 3.5a, a closed swarm is discovered within a frequent closed itemset. We can
consider that the three Swainsonies move together from North America to South America
and some time they leave each other, e.g. at the beginning of Mexico. Furthermore, from
the itemset, a convoy and a group pattern are also extracted (i.e. Figures 3.5b, 3.5c). In the
convoy pattern, the three object move together consecutively from Guatemala to Argentina
meanwhile in group pattern, there are two consecutive segments: 1) from USA to Mexico,
2) from Guatemala to Argentina.

3.3.2 Efficiency

Incremental GeT_Move and GeT_Move

To show the efficiency of our algorithms, we generate larger synthetic datasets using
Brinkhoff’s network 5-based generator of moving objects as in [23]. We generate 500 objects
(|Odb|= 500) for 104 timestamps (|Tdb|= 104) using the generator’s default map with low
moving speed (250). There are 5£106 points in total. DBScan (MinPts= 3,Eps= 300) is
applied to obtain clusters for each timestamp.

In the efficiency comparison, we employ CMC,CuTS§ and ObjectGrowth. Note
that, in [23], ObjectGrowth outperforms VG-Growth[32] (a group patterns mining al-
gorithm) in terms of performance and therefore we will only consider ObjectGrowth and
not both. Note that GeT_Move and Incremental GeT_Move extracted closed swarms,
convoys and group patterns meanwhile CMC,CuTS§ only extracted convoys and
ObjectGrowth extracted closed swarms.

Efficiency w.r.t. mino,mint. Figures 3.6a, 3.7a, 3.8a show running time w.r.t. mino. It
is clear that our approaches outperform other algorithms. ObjectGrowth is the lowest one
and the main reason is that with lowmint (defaultmint= 1), the Apriori Pruning rule (the
most efficient pruning rule) is no longer effective. Therefore, the search space is greatly
enlarged (2|Odb

| in the worst case). Additionally, there is no pruning rule for mino and
therefore the change of mino does not directly affect the running time of ObjectGrowth. A
little bit further, GeT_Move is lower than Incremental GeT_Move. The main reason is that
GeT_Move has to process with long transactions. Meanwhile, thanks to blocks, the number
of items is greatly reduced and transactions are not long as the ones in GeT_Move.

5. http://iapg.jade-hs.de/personen/brinkhoff/generator/

38 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

(a) Running time w.r.t. mino (b) Running time w.r.t. mint

(c) Running time w.r.t. |Odb| (d) Running time w.r.t. |Tdb|

Figure 3.6: Running time on Swainsoni dataset.

Figures 3.6b, 3.7b, 3.8b show running time w.r.t. mint. In almost all cases, our ap-
proaches outperform other algorithms. See Figures 3.7b, 3.8b, with low mint, our algo-
rithm is much faster than the others. However, when mint is higher (mint > 200 in Figure
3.7b, mint > 20 in Figure 3.8b) our algorithms take more time than CuTS* and Object-
Growth. This is because with high value of mint, the number of patterns is significantly
reduced, i.e. Figures 3.9b, 3.10b, 3.11b, and therefore CuTS* and ObjectGrowth is faster.
Meanwhile, GeT_Move and Incremental GeT_Move have to work with FCIs.

Efficiency w.r.t. |Odb|, |Tdb|. Figures 3.6c-d, Figures 3.7c-d, Figures 3.8c-d show the run-
ning time when varying |Odb| and |Tdb| respectively. In all figures, Incremental GeT_Move
outperforms other algorithms. However, with synthetic data (Figure 3.8d) and lowest val-
ues of mino= 2 and mint= 1, GeT_Move is a little bit faster than Incremental GeT_Move.
This is the clue to the fact that Incremental GeT_Move does not have any information to
obtain the better partitions (blocks).

Scalability w.r.t. mino. We can consider that the running time of algorithms does not
change significantly when varied mint, |Odb|, |Tdb| in synthetic data (Figures 3.8). How-
ever, they are quite different when varying mino (default mint = 1). Therefore, we gener-
ate another large synthetic data to test the scalability of algorithms on mino. The dataset

3.3. PRELIMINARILY EXPERIMENTAL RESULTS 39

(a) Running time w.r.t. mino (b) Running time w.r.t. mint

(c) Running time w.r.t. |Odb| (d) Running time w.r.t. |Tdb|

Figure 3.7: Running time on Buffalo dataset.

includes 50,000 objects moving during 10,000 timestamps and it contains 500 million lo-
cations in total. The executions of CMC and CuTS* stop due to a lack of memory capacity
after processing 300 milion locations. Additionally, ObjectGrowth cannot provide the re-
sults after 1day running. The main reason is that with low mint (= 1), the search space is
significant larger (º 250,000). Meanwhile, thanks to the LCM approach, our algorithms can
provide the results within hours (Figure 3.12).

Efficiency w.r.t. Block-size. To investigate the optimal value of block-size, we examine
Incremental GeT_Move by using the default values of mino,mint with different block-
size values on real datasets and synthetic dataset (|Odb|= 500, |Tdb|= 1,000). The optimal
block-size range can be from 20 to 30 timestamps within which Incremental GeT_Move
obtains the best performance for all the datasets (Figure 3.13). This is because objects
tend to move together in suitable short interval (from 20 to 30 timestamps). Therefore, by
setting the block-size in this range, the data is efficiently compressed into FCIs. Meanwhile,
with larger block-size values, the objects’ movements are quite different; therefore, the data
compressing is not so efficient. Regarding to small block-size values (from 5 to 15), we have
to face up to a large number of blocks so that the process is slowed down. In the previous
experiments, block-size is set to 25.

40 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

(a) Running time w.r.t. mino (b) Running time w.r.t. mint

(c) Running time w.r.t. |Odb| (d) Running time w.r.t. |Tdb|

Figure 3.8: Running time on Synthetic dataset.

3.3.3 Toward A Parameter Free Incremental GeT_Move Algorithm

Until now, we have presented the Incremental GeT_Move which split the original clus-
ter matrix into different equivalent blocks. The experiment results show that the algorithm
is efficient. However, the disadvantage of this approach is that we do not know what is the
optimal block size. To identify the optimal block sizes, different techniques can be applied,
such as data sampling in which a sample of data is used to investigate the optimal block
sizes. Even if this approach is appealing, extracting such a sample is very difficult.

To tackle this problem, we propose an innovative solution to dynamically assign blocks
to Incremental GeT_Move. First of all, we would like to propose the definition of a fully
nested cluster matrix (resp. block) (Figure 3.14c) as follows.

Definition 9. Fully nested cluster matrix (resp. block). An n£m 0-1 block b is fully nested if
for any two column ri and ri+1 (ri,ri+1 2b) we have ri\ri+1= ri+1.

We can consider that the LCM is very efficient when it is applied on dense (resp. (fully)
nested) datasets and blocks. Let E be the universe of items, consisting of items 1,. . . ,n.
A subset X of E is called an itemset. In the LCM algorithm process on a common cluster

3.3. PRELIMINARILY EXPERIMENTAL RESULTS 41

(a) # of patterns w.r.t. mino (b) # of patterns w.r.t. mint

(c) # of patterns w.r.t. |Odb| (d) # of patterns w.r.t. |Tdb|

Figure 3.9: Number of patterns on Swainsoni dataset. Note that # of frequent closed item-
sets is equal to # of closed swarms.

matrix, for any X, we make the recursive call for X[i] for each i 2 {i(X)+1,. . . , |E|} because
we do not know which X[i] will be a closed itemset when X is extended by adding i to X.
Meanwhile, for a fully nested cluster matrix, we know that only the recursive call for item
i= i(X)+1 is valuable and the other recursive calls for each item i 2 {i(X)+2,. . . , |E|} are
useless. Note that i(X) returns the last item of X.

Property 6. Recursive Call. Given a fully nested cluster matrixnCM (resp. block), a universe
of items E of nCM, an itemset X which is a subset of E. All the FCIs can be generated by
making a recursive call of item i= i(X)+1.

Proof. After construction, we have 8i 2E,O(i)\O(i+1)=O(i+1); thus, O(i+1)µO(i).
Additionally, 8i 0 2 {i(X)+2,. . . , |E|}we need to make a recursive call forX[i 0] and let assume
that we obtain a frequent itemsetX[i 0[X 0 withX 0 µ {i(X)+3,. . . , |E|}. We can consider that

O(i 0)µO(i(X)+1) and therefore O(X[i 0[X 0)=O(X[(i(X)+1)[i 0[X 0). Consequently,

X[i 0 [X 0 is not a FCI because (X[i 0 [X 0)Ω (X[(i(X)+1)[i 0 [X 0) and O(X[i 0 [X 0)=

42 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

(a) # of patterns w.r.t. mino (b) # of patterns w.r.t. mint

(c) # of patterns w.r.t. |Odb| (d) # of patterns w.r.t. |Tdb|

Figure 3.10: Number of patterns on Buffalo dataset. Note that # of frequent closed itemsets
is equal to # of closed swarms.

O(X[(i(X)+ 1)[i 0 [X 0). Furthermore, (X[(i(X)+ 1)[i 0 [X 0) can be generated by

making a recursive call for i(X)+1. We can conclude that it is useless to make a recursive
call for 8i 0 2 {i(X)+2,. . . , |E|} and additionally, all FCIs can be generated only by making a
recursive call for i(X)+1.

By applying Property 6, we can consider that LCM is more efficient on a fully nested
matrix because it reduces unnecessary recursive calls. Therefore, our goal is to retrieve
fully nested blocks to improve the performance of Incremental GeT_Move. In order to
reach this goal, we first apply the nested and segment nested Greedy algorithm 6 ([37]) to
re-arrange the cluster matrix (Figure 3.14a) so that it now becomes a nested cluster matrix
(Figure 3.14b). Then, we propose a sub-function Nested Block Partition (Figure 3.3-(4)) to
dynamically split the nested cluster matrix into fully nested blocks (Figure 3.14c).

By following the Definition 9 and scanning the nested cluster matrix from the beginning
to the end, we are able to obtain all fully nested blocks. We start from the first column of
nested cluster matrix, then we check the next column and if the nested condition is held

6. http://www.aics-research.com/nestedness/

3.3. PRELIMINARILY EXPERIMENTAL RESULTS 43

(a) # of patterns w.r.t. mino (b) # of patterns w.r.t. mint

(c) # of patterns w.r.t. |Odb| (d) # of patterns w.r.t. |Tdb|

Figure 3.11: Number of patterns on Synthetic dataset. Note that # of frequent closed item-
sets is equal to # of closed swarms.

Figure 3.12: Running time w.r.t mino on large Synthetic dataset.

44 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

Figure 3.13: Running time w.r.t block size.

Algorithm 3: Fully Nested Block Partition
Input : a nested cluster matrix CMN

Output: a set of blocks B
1 begin
2 B :=;;NestedB :=;;SpareB :=;;
3 foreach item i 2CMN do
4 if i\ (i+1)= (i+1) then
5 NestedB :=NestedB[i;
6 else
7 NestedB :=NestedB[i;
8 if |NestedB|∑ 1 then
9 SpareB.push_all(NestedB);

10 NestedB :=;
11 else
12 B :=B[NestedB;
13 NestedB :=;
14 return B :=B[SpareB;
15 where the purpose SpareB.push_all(NestedB) function is to put all items in

NestedB to SpareB.

then the block is expanded; otherwise, the block is set and we create a new block. Note that
all small blocks containing only 1 column are merged into a sparse block SpareB. At the
end, we obtain a set of fully nested blocks NestedB and a sparse block SpareB. Finally,
the Incremental GeT_Move is applied on B=NestedB[SpareB.

The pseudo code of Fully Nested Block Partition sub-function is described in Algorithm
3.

3.3. PRELIMINARILY EXPERIMENTAL RESULTS 45

(a) (b) (c)

Figure 3.14: Examples of non-nested , almost nested, fully nested datasets [37]. Black = 1,
white = 0. (a) Original, (b) Almost nested, (c) Fully nested.

Table 3.4: An example of FCI binary presentation.

FCIsdb FCIsdb 0

binary(FCI) b(ci1) b(ci2) b(ci 01) b(ci 02)

Odb

o1 1 0 1 0
o2 1 0 1 1
o3 0 1 0 1
o4 0 1 0 1

3.3.4 Object Movement Pattern Mining Algorithm Based on Explicit
Combination of FCI Pairs

In real world applications (e.g. cars), object locations are continuously reported by
using Global Positioning System (GPS). Therefore, new data is always available. Let us
denote the new movement data as (Odb,Tdb 0). Naturally, it is cost-prohibitive and time
consuming to execute Incremental GeT_Move (or GeT_Move) on the entire database (de-
noted (Odb,Tdb[Tdb 0)) which is created by merging (Odb,Tdb 0) into the existing database
(Odb,Tdb). To tackle this issue, we provide an approach which efficiently combines the
existing frequent closed itemsets FCIsdb with the new frequent closed itemsets FCIsdb 0 ,
which are extracted from db 0, to obtain the final results FCIsdb[db 0 .

For instance, in Table 3.4, we have two sets of frequent closed itemsets FCIsdb and
FCIsdb 0 . Each FCI will be presented as a |Odb|-bit binary numeral. Let us define a set of
operations that will be used for object movement pattern mining based on explicit combi-
nation of FCI pairs. Given two FCIs ci and ci 0, we have that:

– ci^ci 0: returns b(ci)^b(ci 0).
– ci_ci 0: returns b(ci)_b(ci 0).
– ci[ci 0: returns a set of clusters that are the union of ci1 and ci 01.
– Size(ci) returns the number of ’1’s in ci. Note that Size(ci)=O(ci)=�(ci).
The principle function of our algorithm is to explicitly combine all pairs of FCIs(ci,ci 0)

to generate new FCIs. Let us assume that ci^ci 0 = �, �= ci[ci 0 is a FCI if �(�) is larger

46 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

Figure 3.15: An example of the explicit combination of pairs of FCIs-based approach.

thanmino and that there are no subsets ofO(ci),O(ci 0) so that they are supersets ofO(�).
Here is an explicit combination of a pair of FCIs(ci,ci 0):

Property 7. Explicit Combination of a pair of FCIs. Given FCIs ci and ci 0 so that ci 2
FCIsdb,ci

0 2 FCIsdb 0 , a . ci[ci 0 is a FCI that belongs to FCIsdb[db 0 if and only if:
8
>><

>>:

if ci^ci 0 =� then
(1) : Size(�)∏mino.
(2) : ÿp :p 2 FCIsdb,O(�)µO(p)µO(ci).
(3) : ÿp 0 :p 0 2 FCIsdb 0,O(�)µO(p 0)µO(ci 0).

(3.5)

where ci= {c1,c2, . . . ,cp} and ci 0 = {c 0
1,c

0
2, . . . ,c

0
p}.

Proof. After construction, we have ÿp : p 2 FCIsdb,O(�)µO(p)µO(ci). We assume that
9i s.t. i 2 Cdb,O(�) µ i and i › ci therefore 9p s.t. p = {8i|i 2 Cdb,O(�) µ i,i › ci}[
ci,O(�) µO(p). Consequently, 8i 2Cdb,O(�) µ i then i 2 p and therefore p is a FCI and
p 2 FCIsdb. This violates the assumption and therefore ÿi s.t. i 2Cdb,O(�) µ i and i › ci
or 8i s.t. i 2Cdb,O(�)µ i then i 2 ci. Similarly, if ÿp 0 :p 0 2 FCIsdb 0,O(�)µO(p 0)µO(ci 0)
then 8i 0 s.t. i 0 2Cdb 0,O(�) µ i 0 then i 0 2 ci 0. Consequently, if 8i 2Cdb[db 0 ,O(�) µ i then
i 2 ci[ci 0. Additionally, Size(�)=�(�)∏mino and therefore ci[ci 0 is a FCI and ci[ci 0 2
FCIsdb[db 0 .

We can consider that if ci[ci 0 is a FCI, they must respectively be the two longest FCIs
which contain O(�) in FCIsdb and FCIsdb 0 . (O(�),ci[ci 0) is a new FCI and it will be
stored in a set of new frequent closed itemsets, named FCIsnew. To efficiently make all
combinations, we first partition FCIsdb,FCIsdb 0 and FCIsnew into different partitions in
terms of support so that the FCIs, that have the same support value, will be in the same
partition (Figure 3.15). Secondly, partitions are combined from the smallest support val-
ues (resp. longest FCIs) to the largest ones (resp. shortest FCIs). New FCIs will be added
into the right partition in FCIsnew. By using this approach, it is guaranteed that the first
time there is ci^ci 0 = �,Size(�) ∏mino then ci[ci 0 is a new FCI because they are the
two longest FCIs which contain O(�). Therefore, we just ignore the later combinations
which return � as the result. Furthermore, to ensure that � already exists in FCIsnew or
not, we only need to check items in the FCIsnew partition whose support value is equal to

3.3. PRELIMINARILY EXPERIMENTAL RESULTS 47

Size(�). We can consider that by partitioning FCIsdb,FCIsdb 0 and FCIsnew, the process is
much improved. Additionally, we also propose a pruning rule to speed up the approach by
ending the combination running of a FCI ci 0 as follows:

Lemma 4. The combination running of ci 0 is ended if:

9ci 2 FCIsdb s.t. ci^ci 0 = ci 0,ci[ci 0 is a FCI. (3.6)

Proof. Assume that 9⌥ :⌥ 2 FCIsdb,�(⌥) ∏ �(ci),⌥^ci 0 = ci 0. If O(ci) µO(⌥) then we
have ci 2 FCIsdb,O(ci 0) µ O(ci) µ O(⌥) and this violates the condition 2 in Property 7,
therefore ⌥[ci 0 is not a FCI. If O(ci) * O(⌥) then 9i 2 Cdb s.t. O(ci 0) µ i and i › ⌥.
Furthermore, 9p :p= {8i|i 2Cdb,O(ci 0)µ i,i ›⌥}[⌥. So, 8i,i 2Cdb,O(ci 0)µ i then i 2p
and therefore p is a FCI and p 2 FCIsdb. Additionally, O(ci 0)µO(p)µO(⌥). This violates
the condition 2 in Property 7, therefore⌥[ci 0 is not a FCI. Consequently, we can conclude
that ÿ⌥ s.t. ⌥ 2 FCIsdb,�(⌥) ∏ �(ci),⌥^ci 0 = ci 0 and ⌥[ci 0 is a FCI. Therefore, we do
not need to continue the combination running of ci 0.

Similar to Lemma 4, in the explicit combination process, ci will be deactivated for fur-
ther combinations when there is a ci 0 so that ci^ci 0 = ci and ci[ci 0 is a FCI. After gener-
ating all new FCIs in FCIsnew, the final results FCIsdb[db 0 is created by collecting FCIs in
FCIsdb,FCIsdb 0 ,FCIsnew. In this step, some of them will be discarded such that:

Property 8. Discarded FCIs in FCIsdb[db 0 creating step. All the FCIs which satisfy the fol-
lowing conditions will not be selected as a FCIs in the final results.

�
(1) :8ci 2 FCIsdb, if 9ci 0 2 FCIsdb 0 s.t. ci^ci 0 = ci.
(2) :8ci 0 2 FCIsdb 0, if 9ci 2 FCIsdb s.t. ci^ci 0 = ci 0.

(3.7)

Note that during the explicit combination step, the FCIs which will not be selected
for the final results are removed by applying Property 8. It means that we only add
all suitable FCIs into FCIsdb[db 0 and therefore it is optimized and much less costly. In
the worst case scenario, the complexity of explicit combination of pairs of FCIs step is

O(|FCIsdb|£ |FCIsdb 0 |£ |FCIs
new

|
#partitions(FCIs

new

)). Naturally, Tdb 0 is much smaller than Tdb and
therefore FCIsdb 0,FCIsnew are very small compare to FCIsdb. Consequently, the pro-
cess can be potentially greatly improved when compare to the executing of Incremental
GeT_Move on the entire database (Odb,Tdb[db 0).

The pseudo code of the Object Movement Pattern Mining Algorithm Based on Explicit
Combination of FCI Pairs is described in Algorithm 4.

48 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

Algorithm 4: Explicit Combination of Pairs of FCIs-based Object Movement Pattern
Mining Algorithm

Input : a set of FCIs FCIsdb, Occurrence sets K, int mino, int mint, double ✓, set of
Occurrence sets (blocks) B 0, int minc, double minwei

1 begin
2 FCIsdb 0 :=;;FCIsnew :=;;FCIsdb[db 0 :=;;
3 FCIsdb 0 := Incremental GeT_Move* (K,mino,mint,CI,✓,B

0,minc,minwei);
4 foreach partition P 0 2 FCIsdb 0 do
5 foreach FCI ci 0 2P 0 do
6 foreach partition P 2 FCIsdb do
7 foreach FCI ci 2P do
8 � := ci^ci 0;
9 if Size(�)∏mino and FCIsnew.notContain(�,Size(�)) then

10 � := ci[ci 0;
11 FCIsnew.add(�,Size(�));
12 if �= ci then
13 FCIsdb.remove(ci);
14 if �= ci 0 then
15 FCIsdb.remove(ci 0);
16 go to line 5;
17 FCIsdb[db 0 := FCIsdb[FCIsdb 0 [FCIsnew;
18 foreach FCI X 2 FCIsdb[db 0 do
19 PatternMining(X,mint); /*X is a pattern?*/
20 Where: Incremental GeT_Move* is an Incremental GeT_Move without

PatternMining sub-function, FCIsnew.notContain(�,Size(�)) returns true if there
does not exists � in partition which has the support value is Size(�).

3.4 Experimental Results

3.4.1 Parameter Free Incremental GeT_Move Efficiency

The experimental results show that, so far, Incremental GeT_Move and GeT_Move out-
perform other algorithms. Additionally, our algorithms can work with low mino and mint

values. In this section, we perform another experiment to examine the efficiency of the
Parameter Free Incremental GeT_Move algorithm. In this experiment, we compare per-
formances of four algorithms: 1) Parameter free Incremental GeT_Move, named Nested
Incremental GeT_Move, 2) Nested GeT_Move which is the application of GeT_Move on
nested cluster matrix CMN, 3) Incremental GeT_Move which is executed with the optimal
block size values on original cluster matrix CM, 4) GeT_Move which is applied on original
cluster matrix CM.

3.4. EXPERIMENTAL RESULTS 49

Table 3.5: Fully nested blocks on datasets.

Dataset Matrix fill #Nested blocks avg.length
Swainsoni 17.8% 102 4.52

Buffalo 7.2% 602 2.894
Synthetic 0.1% 8 2.00

Efficient w.r.t. Real datasets. Figures 3.17, 3.18 show that Nested Incremental
GeT_Move (resp. Parameter Free Incremental GeT_Move) greatly outperforms the other
algorithms. It is due to the better performance of LCM algorithm on nested cluster ma-
trix (resp. fully nested blocks) compared to the original cluster matrix. Essentially, with
the nested cluster matrix, the number of combinations of frequent itemsets X and items
i to ensure the closeness is greatly reduced. Therefore, the performance of the LCM algo-
rithm is greatly improved. The fact is Nested GeT_Move is always better than GeT_Move
(Figures 3.17, 3.18, 3.19). Additionally, the Swainsoni and Buffalo datasets contain many
fully nested blocks (Table 3.5 and Figure 3.16). Consequently, the Nested Incremental
GeT_Move is more efficient than the other algorithms.

Efficient w.r.t. Synthetic dataset. We can consider that Nested Incremental GeT_Move
is quite similar to Nested GeT_Move (Figure 3.19). This is because: 1) Synthetic data is
very sparse, 2) there are few fully nested blocks, 3) the nested blocks contain a very small
number of items (i.e. 0.1% matrix fill by ’1’ and only 8 fully nested blocks which average
length is 2, see Table 3.5 and Figures 3.16e-f). Therefore, the processing time of nested
blocks is quite short. Meanwhile, there is a large nested sparse block which is the main
partition that need to be processed by both Nested Incremental GeT_Move and Nested
GeT_Move.

Additionally, thanks to the nested sparse block, the performance of LCM is improved a
lot. Therefore, Nested Incremental GeT_Move and Nested GeT_Move are better than the
others in most of cases. Exceptionally, with small number of objects |Odb| (i.e. |Odb|= 50,
Figure 3.19c) or high mino (i.e. mino ∏ 9, Figure 3.19a), Incremental GeT_Move is slightly
better than Nested Incremental GeT_Move and Nested GeT_Move. The main reason is
that Incremental GeT_Move splits the cluster matrix CM into different small blocks within
which there are a small number of items and FCIs. Thus, the computation cost is reduced.
On the other hand, Nested Incremental GeT_Move and Nested GeT_Move need to work
with a large nested sparse block.

3.4.2 Movement Pattern Mining Algorithm Based on Explicit
Combination of FCI Pairs

In this section, an experiment is designed to examine the object movement pattern
mining algorithm based on explicit combination of FCI pairs and to identify when we

50 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

(a) Original Swainsoni cluster matrix.

(b) Nested Swainsoni cluster matrix.

(c) Original Buffalo cluster matrix.

(d) Nested Buffalo cluster matrix.

(e) Original Synthetic cluster matrix.

(f) Nested Synthetic cluster matrix.

Figure 3.16: Original cluster matrices and nested cluster matrices.

should update the database. We first use half of Swainsoni, Buffalo and Synthetic datasets
as a db. Then the other half is used to generate db 0 which is increased step by step up to
the maximum size (Figure 3.20). In this experiment, Incremental GeT_Move is employed
to extract FCIs from db and db 0.

For real datasets (Swainsoni and Buffalo), the explicit combination algorithm is more
efficient than the Incremental GeT_Move in all cases (Figures 3.20a, b). This is because
we already have FCIsdb and therefore we only need to extract FCIsdb 0 and then combine
FCIsdb and FCIsdb 0 . Additionally, the Swainsoni and Buffalo are sufficiently dense (i.e.
17.8% and 7.2% with large number of fully nested blocks, see Table 3.5) so that the numbers
of FCIs in FCIsdb and FCIsdb 0 are not huge. Consequently, the number of combinations
is reduced and thus the algorithm is more efficient. In Figures 3.20a-b, we can consider
that the running time of the explicit combination algorithm significantly changes when
|Tdb 0 |> 15%|Tdb|. This means that it is better to update the database when |Tdb 0 |< 15%|Tdb|.

For the synthetic dataset, the explicit combination algorithm is only efficient on small
db 0 (i.e. |Tdb 0 | < 20%|Tdb|, Figure 3.20c) because the dataset is very sparse. In fact, the
number of FCIs in FCIsdb 0 is enlarged when the size of db 0 increases. Thus, the explicit
combination algorithm is not efficient because of the huge number of combinations.

Overall, we can consider that the explicit combination algorithm obtains good effi-
ciency when Tdb 0 is smaller than 15% of Tdb.

To summarize, Incremental GeT_Move and GeT_Move outperform the other algo-

3.5. DISCUSSION 51

(a) Running time w.r.t. mino (b) Running time w.r.t. mint

(c) Running time w.r.t. |Odb| (d) Running time w.r.t. |Tdb|

Figure 3.17: Running time on Swainsoni dataset.

rithms. Additionally, our algorithms can work with low values of mino and mint. To reach
the optimal efficiency, we propose a parameter free Incremental GeT_Move (resp. Nested
Incremental GeT_Move) which dynamically assigns fully nested blocks for the algorithm
from the nested cluster matrix. The experimental results show that the efficiency is greatly
improved with the Nested Incremental GeT_Move and Nested GeT_Move. Furthermore,
by storing FCIs in a closed itemset database (see Figure 3.3), it is possible to reuse them
whenever new object movements arrive. The experimental results show that it is better to
update the database when Tdb 0 is smaller than 15% of Tdb by applying the explicit combi-
nation algorithm.

3.5 Discussion

In this chapter, we propose a (parameter free) unifying incremental approach to auto-
matically extract different kinds of object movement patterns by applying frequent closed
itemset mining techniques. Their effectiveness and efficiency have been evaluated by us-

52 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

(a) Running time w.r.t. mino (b) Running time w.r.t. mint

(c) Running time w.r.t. |Odb| (d) Running time w.r.t. |Tdb|

Figure 3.18: Running time on Buffalo dataset.

ing real and synthetic datasets. Experiments show that our approaches outperform tradi-
tional ones.

Now, as we have seen, we can store the results (resp. FCIs) to improve the process
when new object movements arrive. In this approach we take the hypothesis is that the
number of objects remains the same. However in some applications these objects could
be different.

Even GeT_Move can help us extract and manage different kinds of patterns. The chal-
lenges are still remained. Indeed, in some real world cases, the existing pattern models
are not relevant enough to help us fully understand the behavior of moving objects. For
instance, they require the group of moving objects to be together for at least mint times-
tamps, i.e. could be consecutive or completely be non-consecutive, which might not be
practical in the real cases. Enforcing consecutive time constraint may results in loosing
meaningful patterns while completely relax this constrain may generate large amount of
extraneous patterns.

To deal with this issue, we propose the fuzzy moving object cluster concept which will
be clearly presented in the next Chapter.

3.5. DISCUSSION 53

(a) Running time w.r.t. mino (b) Running time w.r.t. mint

(c) Running time w.r.t. |Odb| (d) Running time w.r.t. |Tdb|

Figure 3.19: Running time on Synthetic dataset.

54 CHAPTER 3. ALL IN ONE: MINING MULTIPLE MOVEMENT PATTERNS

(a) Running time on Swainsoni (b) Running time on Buffalo

(c) Running time on Synthetic data

Figure 3.20: Explicit combination algorithm efficiency.

CHAPTER

4
Mining Fuzzy Moving Object Clusters

Preamble

Naturally, the moving objects in a cluster may actually diverge temporarily and con-
gregate at certain timestamps. Thus, there are time gaps among moving object clusters.
Existing approaches either put a strong constraint (i.e. no time gap) or completely re-
laxed (i.e. whatever the time gaps) in dealing with the gaps may result in the loss of
interesting patterns or the extraction of huge amounts of extraneous patterns. Thus it
is difficult for analysts to understand the object movement behavior.

Motivated by this issue, we propose the concept of fuzzy swarm which softens the time
gap constraint. The goal of this chapter is to find all non-redundant fuzzy swarms,
namely fuzzy closed swarm. As a contribution, we propose fCS-Miner algorithm which
enables us to efficiently extract all the fuzzy closed swarms. Conducted experiments on
real and large synthetic datasets demonstrate the effectiveness, parameter sensitive-
ness and efficiency of our methods.

4.1 Introduction

Let us consider the Figure 4.1, if we set mint = 5 and the timestamps must be con-
secutive, no moving object cluster can be found. But essentially, these two objects, o3
and o4, travel together even though they temporarily leave the cluster at some snapshots.
To address this issue, Zhenhui Li et al. [23] propose swarm in which moving objects are
not required to be together in consecutive timestamps. Therefore, swarm can capture the
movement pattern. The pattern is "o3,o4 are moving together from A to C to D to E and to
H at timestamps t1,t2,t3,t4 and t999". This pattern could be interesting since it expresses

55

56 CHAPTER 4. MINING FUZZY MOVING OBJECT CLUSTERS

Figure 4.1: An example of moving object clusters. o3,o4 are moving objects, c1, . . . ,c5,c10
are clusters which are generated by applying some clustering techniques and A, C, D, E, H
are spatial regions.

the relationship between o3 and o4. However, the issue here is that it is hard to say that o3
and o4 moving together to F since they only meet each other at F by chance after 995 times-
tamps. In other words, enforcing the consecutive time constraint may result in the loss of
interesting moving object clusters, while completely relaxing this constraint may generate
a large number of extraneous and useless patterns.

In this chapter, we propose a new movement pattern, called fuzzy closed swarm, which
softens the consecutive time constraint without generating extraneous patterns. The key
challenge is to deal with the time gap between a pair of clusters since: 1) it is difficult to
recognize which size of a time gap is relevant or not, 2) we need to know when the patterns
should be ended to eliminate uninteresting ones. To address these issues, we present the
definition of fuzzy time gap and fuzzy time gap participation index. Obtained patterns are
of the type "o1,o2 are moving together from A to B to C with 60% weak, 20% medium and
20% strong time gaps". These patterns are characterized by their time gap frequency (or
support), which is by definition the proportion of time gaps involved in the patterns. As
a contribution, we propose fCS-Miner algorithm to efficiently extract the complete set of
fuzzy closed swarms. The approach shares the same spirit with the GeT_Move algorithm
[12] [13] but is different in terms of goal and properties. The effectiveness as well as ef-
ficiency of our method are demonstrated on both real and large scale synthetic moving
object databases.

This chapter is structured as follows. Section 2 discusses the related work. The defini-
tions of fuzzy time gap and fuzzy closed swarm are given in Section 3. fCS-Miner algorithm
will be clearly presented in Section 4. Experiments testing effectiveness and efficiency are
shown in Section 5. Finally, we draw our conclusions in Section 6.

4.2. FUZZY CLOSED SWARMS 57

Figure 4.2: Membership degree functions for fuzzy time gaps.

4.2 Fuzzy Closed Swarms

In this section, we will clearly present the definition of fuzzy closed swarm. In order
to do so, we first propose the adaptation of fuzzy logic principle in which the strength of
time gaps are evaluated with a membership degree function A, see Figure 4.2. Given two
timestamps t1 and t2, a time gap x between t1 and t2 is computed as x= |t1- t2|-1 (i.e.
t1 6= t2). The fuzzy time gap is defined as follows.

Definition 10. Fuzzy Time Gap. Given two timestamps t1 and t2, a pair of one time gap x
and one corresponding fuzzy set a, denoted by [x,a], is called a fuzzy time gap if x= |t1-
t2|-1 is involved in membership function A.

For instance, see Figure 4.3, there are totally four time gaps which are x1 = 1,x2 =
4,x3 = 39 and x4 = 948. The fuzzy time gap [x2,weak], [x2,medium] and [x2, strong]
respectively are µweak(x2) = 0.8, µmedium(x2) = 0.2 and µstrong(x2) = 0. Since x4 is out of
function A, it cannot be considered as a fuzzy time gap.

Definition 11. Fuzzy Time Gap Set. Given an ordered list of timestamps T = {ta
1

,
ta

2

, . . . ,ta
m

}, a set of time gaps X = {x1, . . . ,xn},n =m- 1. (X,A) is a fuzzy time gap set
generated from T if 8i 2 {1,. . . ,n} : xi= |ta

i

-ta
i+1

|-1 and 8x 2X : x is involved in A. Note
that for any x 2X,x= 0 then x will be excluded from X without any affection.

For instance, see Figure 4.3, a proper pattern ({o1,o2}, {t2,t4,t5,t10,t50}) and a fuzzy
time gap set is X= {x1,x2,x3} and for each time gap xi 2X, there are a corresponding fuzzy
set including strong,medium andweak. Note that x4 is out of membership function and
therefore it is not included in X and ({o1,o2}, {t2,t4,t5,t10,t50,t999}) will not be considered
as a valid pattern.

To highlight the participation of time gaps given by a fuzzy set a, we further propose
an adaptation of the participation index [16] which is fuzzy time gap participation index
proposed to take into account the fuzzy time gap occurrences in the pattern.

58 CHAPTER 4. MINING FUZZY MOVING OBJECT CLUSTERS

Figure 4.3: A fuzzy closed swarm example from our running example in Figure 1.1.

Definition 12. Fuzzy Time Gap Participation Ratio. Let (X,A) be a set of fuzzy time gaps
and a be an item of A, the fuzzy time gap participation ratio for a in X denoted TGr(X,a)
can be defined as follows.

TGr(X,a)=

P
x2Xµa(x)

|X|
(4.1)

Definition 13. Fuzzy Time Gap Participation Index. Let (X,A) be a set of fuzzy time gaps
and a be an item of A, the fuzzy time gap participation index of (X,A) denoted TGi(X) can
be defined as follows.

TGi(X)=Max8a2ATGr(X,a) (4.2)

For instance, see Figure 4.3, a fuzzy time gap set X= {x1,x2,x3} and TGr(X, weak) =
1+0.8+0

3 = 0.6, TGr(X, medium) = 0+0.2+0.1
3 = 0.1, TGr(X, strong) = 0+0+0.9

3 = 0.3. Thus,
the fuzzy time gap participation index of X, TGi(X)= 0.6.

Fuzzy swarm and fuzzy closed swarm. Given a group of objects O moving together
in an ordered list of timestamps T and a set of fuzzy time gaps (X,A) generated from T .
(O,T,X) is a fuzzy swarm that contains at least mino objects (resp. |O|∏mino) during at
least mint timestamps (resp. |T |∏mint) and TGi(X)∏ ". The fuzzy swarm can be defined
as follows.

Definition 14. Fuzzy Swarm. Given integers mino,mint and a user-defined threshold ".
(O,T,X) is a fuzzy swarm if and only if:

8
>><

>>:

(1) : |O|∏mino.
(2) : |T |∏mint.
(3) : (X,A) is a fuzzy time gap set.
(4) :8i 2 {1,. . . ,n},TGi({x1, . . . ,xi})∏ ".

(4.3)

Note that ifX= {x1,x2,x3} then the condition (4) means that TGi({x1})∏ ", TGi({x1,x2})∏ "
and TGi({x1,x2,x3})∏ ".

By definition, if we set mino = 2,mint = 3 and " = 0.2 then there are totally 13
fuzzy swarms in Figure 4.3 such as ({o1,o2}, {t2,t4,t5}, {x1}), ({o1,o2}, {t4,t5,t10}, {x2}),
({o1,o2}, {t2,t5,t10,t60}, {x= 2,x2}) and so on. However, it is obviously redundant to out-
put fuzzy swarms like ({o1,o2}, {t2,t4,t5, }) since it can be enlarged to ({o1,o2}, {t2,t4,

4.3. DISCOVERING OF FUZZY CLOSED SWARMS 59

t5,t10,t50}, {x1,x2,x3}). To avoid mining redundant fuzzy swarms, we further give the def-
inition of fuzzy closed swarm. Essentially, a fuzzy swarm (O,T,X) is time-closed if fixing
T , O cannot be enlarged (ÿO 0 s.t. (O 0,T,X) is a fuzzy swarm and O Ω O 0). Similarly, a
fuzzy swarm (O,T,X) is object-closed if fixing O then T cannot be enlarged. Finally, a fuzzy
swarm (O,T,X) is a fuzzy closed swarm if it is both time-closed and object-closed. Our goal
is to find the complete set of fuzzy closed swarms. The definition is formally presented as
follows.

Definition 15. Fuzzy Closed Swarm. Given a fuzzy swarm (O,T,X), it is a fuzzy closed
swarm if and only if:

�
(1) : ÿO 0,OΩO 0^ (O 0,T,X) is a fuzzy swarm.
(2) : ÿT 0,T Ω T 0^ (O,T 0,X 0) is a fuzzy swarm.

(4.4)

For instance (Figure 4.3), a closed swarm is ({o1,o2}, {t2,t4, t5,t10,t50}, {x1, x2,x3}).

Property 9. Anti-monotonic. For all patterns (O,T,X), if (O,T,X) is not a fuzzy swarm be-
cause of the condition (3) suffering then the following holds:

For all supersets of (O,T,X) by adding a later cluster and a fuzzy time gap in terms of
time to T and X are not fuzzy swarms.

Proof. After construction, we have 9k 2 {1,. . . ,n} s.t. TGi({x1, . . . ,xk}) < ". For any X 0 =
{x1, . . . ,xn,xm}, (O,T 0,X 0) is not a fuzzy swarm since 9k 2 {1,. . . ,m} s.t. TGi({x1, . . . ,xk})<
".

4.3 Discovering of Fuzzy Closed Swarms

The patterns we are interested in here, fuzzy closed swarms, is the association of a set
of objects O, a set of timestamps T and a set of fuzzy time gaps X, denoted (O,T,X). As
first glance, we can employ ObjectGrowth algorithm [23] to extract all closed swarms and
then a post-processing step to obtain all the fuzzy closed swarms. However, moving object
databases are naturally large and thus the search space of closed swarm extracting can be
significantly increased (i.e. approximately 2|Odb

|£2|Tdb|). Additionally, a huge amount of
generated closed swarms (i.e. including extraneous patterns) can cause an expensive post-
processing task. Furthermore, in real world applications (e.g. cars), object locations are
continuously reported by using Global Positioning System (GPS). Thus, new data is always
available and we need to execute again and again the algorithms on the whole database (i.e.
including existing data and new data) to extract patterns. This is of course, cost-prohibitive
and time consuming.

60 CHAPTER 4. MINING FUZZY MOVING OBJECT CLUSTERS

Table 4.1: Cluster matrix corresponding to our example in Figure 1.1.

Tdb t1 t2 t3 t4 t5 t10 t50 t999
Clusters Cdb c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Odb

o1 1 1 1 1 1 1
o2 1 1 1 1 1 1 1
o3 1 1 1 1 1 1
o4 1 1 1 1 1

To deal with the issues, we propose fCS-Miner algorithm which is an adaptation of In-
cremental GeT_Move approach [12] [13] which has already been proved as being efficient
in large moving object databases.

Basic idea of fCS-Miner algorithm. As in [12] [13], we first present Cdb in a cluster
matrix (see Table 4.1) so that Incremental GeT_Move can be applied to extract all frequent
closed itemsets (FCIs). Next, we propose an novel property which can be used to directly
extract fuzzy closed swarms from generated FCIs without a post-processing step. The clus-
ter matrix definition is as follows.

Definition 16. Cluster Matrix [12] [13]. Given a set of clusters Cdb= {C1,C2, . . . ,Cm} where
Ci = {ci

1

t
i

,ci
2

t
i

, . . . ,ci
n

t
i

} is a set of clusters at timestamps ti. A cluster matrix is thus a
matrix of size |Odb|£ |Cdb|. Each row represents an object and each column represents a
cluster. The value of the cluster matrix cell, (oi,cj) is 1 (resp. empty) if oi is in (resp. is not
in) cluster cj.

By applying Incremental GeT_Move which mainly bases on LCM algorithm [?] on
the cluster matrix, we are able to extract all FCIs. Let us denote a frequent itemset as
⌥ = {c1,c2, . . . ,ck}, O⌥ contains the corresponding group of moving objects which are
closed each other in a set of timestamps T⌥ = {t(c1),t(c2), . . . ,t(ck)}. We can recognize
that |O⌥| = �(⌥) 1, |⌥| = |T⌥| and X⌥ is used to denote as a fuzzy time gap set generated
from T⌥. For instance, see Table 4.1, a proper frequent itemset is⌥= {c2,c5,c6,c7, c8} with
O⌥= {o1,o2}, T⌥= {t2,t4,t5,t10,t50} and X⌥= {x1,x2,x3}.

The following property, f-closed swarm, is used to verify whenever a frequent itemset⌥
can be a fuzzy closed swarm or not.

Property 10. f-Closed swarm. Given a frequent itemset ⌥ = {c1,c2, . . . ,ck}, X⌥ =

1. �(⌥) is the support value of frequent itemset⌥.

4.3. DISCOVERING OF FUZZY CLOSED SWARMS 61

{x1, . . . ,xn}. (O⌥, T⌥,X⌥) is a fuzzy closed swarm if and only if:
8
>>>>>><

>>>>>>:

(1) :�(⌥)∏mino.
(2) : |⌥|∏mint.
(3) :8x 2X,x is involved in A.
(4) :8i 2 {1,. . . ,n},TGi({x1, . . . ,xi})∏ ".
(5) : ÿ⌥ 0 s.t O⌥ ΩO⌥ 0,T⌥ 0 = T⌥ and (O⌥ 0,T⌥,X⌥) is a fuzzy swarm.
(6) : ÿ⌥ 0 s.t. O⌥ 0 =O⌥,T⌥ Ω T⌥ 0 and (O⌥,T⌥ 0,X⌥ 0) is a fuzzy swarm.

(4.5)

Proof. After construction, we have �(⌥)∏mino and thus |O⌥|∏mino since |O⌥|=�(⌥).
Additionally, |⌥|∏mint and therefore |T⌥|∏mint since |⌥|= |T⌥|. Furthermore, 8x 2X : x
is involved in A and 8i 2 {1,. . . ,n},TGi({x1, . . . ,xi}) ∏ ".. Consequently, (O⌥, T⌥,X⌥) is
a fuzzy swarm (Definition 14). Moreover, if ÿ⌥ 0 s.t O⌥ ΩO⌥ 0,T⌥ 0 = T⌥ and (O⌥ 0 ,T⌥,X⌥)
is a fuzzy swarm then (O⌥,T⌥,X⌥) cannot be enlarged in terms of objects. Therefore,
it satisfies the object-closed condition. Furthermore, if ÿ⌥ 0 s.t. O⌥ 0 = O⌥,T⌥ Ω T⌥ 0 and
(O⌥,T⌥ 0,X⌥ 0) is a fuzzy swarm then (O⌥,T⌥,X⌥) cannot be enlarged in terms of lifetime.
Therefore, it satisfies the time-closed condition. Consequently, (O⌥,T⌥,X⌥) is a fuzzy
swarm and it satisfies object-closed and time-closed conditions and therefore (O⌥,T⌥,X⌥)
is a fuzzy closed swarm according to the Definition 15.

To show the fact that from an itemset mining algorithm we are able to extract the set of
all fuzzy closed swarms, we propose the following lemma.

Lemma 5. Let FI= {⌥1,⌥2, . . . ,⌥l} be the set of frequent itemsets being mined from the clus-
ter matrix with minsup=mino. All fuzzy closed swarms (O,T,X) can be extracted from FI.

Proof. Let us assume that (O,T,X) is a fuzzy closed swarm. Note, T = {t(c1), . . . ,t(ck)}.
According to the Definition 15 we have |O|∏mino. If (O,T,X) is a fuzzy closed swarm then
8t(ci) 2 T,9ci s.t. O µ ci therefore

Tk
i=1 ci =O. Additionally, we have 8ci, ci is an item so

9⌥=
Sk
i=1 ci is an itemset andO⌥=

Tk
i=1 ci=O,T⌥=

Sk
i=1 t(ci)= T . Furthermore, we also

have X⌥=X as well. Therefore, (O⌥,T⌥,X⌥) is a fuzzy closed swarm since O⌥=O,T⌥= T
and X⌥=X. So, (O,T,X) is extracted from⌥. Furthermore, �(⌥)= |O⌥|= |O|∏mino then
⌥ is a frequent itemset and ⌥ 2 FI. Finally, 8(O,T) s.t. if (O,T,X) is a fuzzy closed swarm
then 9⌥ s.t. ⌥ 2 FI and (O,T,X) can be extracted from ⌥, we can conclude that 8 fuzzy
closed swarm (O,T,X), it can be mined from FI.

Essentially, by scanning the FCIs from the beginning to the end with the f-closed swarm
property, we are able to extract the corresponding fuzzy closed swarms. The scanning pro-
cess will be ended whenever one of conditions (3) and (4) in Property 9 is suffered, after
that the current frequent itemset ⌥, i.e. �(⌥) ∏mino, only need to be verified the condi-
tions |⌥|∏mint and ⌥ contains the same number of objects with the FCI. This is because

62 CHAPTER 4. MINING FUZZY MOVING OBJECT CLUSTERS

Algorithm 5: fCS-Miner
Input : double ", int mino, int mint, set of items Cdb

1 begin
2 Incremental GeT_Move(Cdb,mino);
3 PatternMining(FCI,",mint)
4 begin
5 f-CS :=;;
6 if |FCI|∏mint then
7 ⌥ :=;;
8 for k := 1 to |FCI| do
9 ⌥ 0 :=⌥[ck;

10 if fuzzy(X⌥ 0) = true ^ TGi(⌥ 0)∏ " then
11 ⌥ :=⌥ 0;
12 else
13 if O⌥=OFCI^ |⌥|∏mint+1 then
14 f-CS := f-CS [⌥;
15 ⌥ :=;[ck;
16 return f-CS;
17 where: fuzzy(X⌥ 0) returns true if X⌥ 0 is a fuzzy time gap set, otherwise returns false.

In this function, we only need to verify that the last time gap is involved in A instead
of all the time gaps in X⌥ 0 .

⌥ cannot be enlarged in terms of timestamps T⌥ (i.e. Property 9) and objects (i.e. FCI is
closed). Thus, it satisfies all the requirements to be a fuzzy closed swarm completely.

The pseudo-code of fCS-Miner is presented in the Algorithm 5. We first apply Incre-
mental GeT_Move on cluster matrix Cdb with minsup = mino (line 2). Then, for each
generated FCI, we directly scan it with the f-closed swarm property as mentioned before
(lines 4-16). By using fCS-Miner, we are able to extract all fuzzy closed swarms on-the-fly
without a post-processing step.

4.4 Experimental Results

A comprehensive performance study has been conducted on real and synthetic
datasets. All the algorithms are implemented in C++, and all the experiments are carried
out on a 2.8GHz Intel Core i7 system with 4GB Memory. The system runs Ubuntu 11.10
and g++ version 4.6.1. The implementation of our proposed algorithm is also integrated in
a demonstration system available online 2. As in [23] [7] [12], the following dataset 3 have

2. http://www.lirmm.fr/~phan/fcsminer.jsp
3. http://www.movebank.org

4.4. EXPERIMENTAL RESULTS 63

been used during experiments: Swainsoni dataset includes 43 objects evolving over time
and 764 different timestamps. It was generated from July 1995 to June 1998.

To the best of our knowledge, there is no previous work which addresses fuzzy closed
swarms. Therefore, in the comparison, we employ the latest pattern mining algorithms
such as CuTS§ 4 [18] (convoy mining) and ObjectGrowth [23] (closed swarm mining). As
pointed out in [23], ObjectGrowth outperforms VG-Growth [32] (group pattern mining) in
terms of performance and therefore we will only consider ObjectGrowth and not both.

Similarly to [18] [23], we first use linear interpolation to fill in the missing data. Fur-
thermore, as [18] [19] [23], DBScan [4] (MinPts = 2,Eps = 0.001) is applied to generate
clusters at each timestamp. To make fair comparison, we adapt all the algorithms to ac-
commodate clusters as input but their time complexity will remain the same. Additionally,
to retrieve all the patterns including fuzzy closed swarms, convoys and closed swarms, in
the reported experiments the fuzzy function in Figure 4.2 is applied, the default value of
mint is 1, mino= 1 and "= 0.001. Note that the default values are the hardest conditions
for examining all the algorithms.

4.4.1 Effectiveness

The effectiveness of fuzzy closed swarms can be demonstrated through our online
demo system. One of the extracted patterns from Swainsoni dataset is illustrated in Fig-
ure 4.4c. Each color represents a Swainsoni trajectory segment involved in the pattern.

To illustrate the feasibility of a fuzzy approach, we also show some of extracted closed
swarms and convoys from our system 5 [8] in Figures 4.4a, b. We can consider that closed
swarm is extraneous since the two objects meet each other at Mexico on October 1995 and
after 5 months (i.e. to March 1996) for the next meeting location (i.e. Argentina). In fact, it
is hard to say that they are moving together from Mexico to Argentina. While, the convoys
are sensitive to time gaps and usually are short deal to the consecutive time constraint (see
Figure 4.4a). Thus, they fail to describe the insightful relationship between objects. Either
be too strict or too relaxed in dealing with time gaps may result in the loss of interesting
patterns or reporting many uninteresting ones.

Distinguish from previous work, by proposing fuzzy closed swarms, we are able to re-
veal the relevant relationship between Swainsonies in a fuzzy point of view. Looking at the
illustrated pattern in Figure 4.4c, we can consider that, from United States, the two objects
are flying together along a narrow corridor through Central America and down to South
America. Furthermore, they temporally diverge at Panama and congregate again at the
Columbia central. The discovery of the fuzzy closed swarms on animal migration datasets
provides useful information for biologists to better understand and examine the relation-
ship and habits of these moving objects. Due to the space limitation, we do not provide

4. The source code of CuTS§ is available at http://lsirpeople.epfl.ch/jeung/source codes.htm
5. http://www.lirmm.fr/~phan/index.jsp

64 CHAPTER 4. MINING FUZZY MOVING OBJECT CLUSTERS

(a) A convoy. (b) A closed swarm. (c) A fuzzy closed swarm.

Figure 4.4: An example of extracted patterns from Swainsoni dataset. The two object
names are ’SW22’ and ’SW40’.

experiments by varying the fuzzy membership function A. However, in real world context,
users can express their expertise through the membership function for dealing with fuzzy
approximate reasoning issues.

4.4.2 Parameter Sensitiveness

To show the parameter sensitiveness and efficiency of the proposed algorithm, as in
[23], we also generate a large synthetic dataset using Brinkhoff’s network 6-based generator
of moving objects. We generate 500 objects (|Odb|= 500) for 104 timestamps (|Tdb|= 104)
using the generator’s default map with slow moving speed (5£106 points in total). DBScan
(MinPts= 3,Eps= 300) is applied to obtain clusters.

Sensitiveness w.r.t ". See Figure 4.5a, we can consider that fCS-Miner is not sensitive in
". This is because " is only used to scan the FCIs for fuzzy closed swarm extraction which
is much less expensive than FCI mining task.

Sensitiveness w.r.tmint. Figure 4.5b shows that ObjectGrowth is the most sensitive al-
gorithm in mint. This is because ObjectGrowth applies a mint-based pruning rule, called
Apriori Pruning, which is very sensitive in mint. Since, it is used to limit approximately
2|Tdb| candidates in total. Furthermore, with different values of mint, there are great dif-
ferences in terms of the number of extracted closed swarms (Figure 4.6b). Meanwhile,
fCS-Miner and CuTS* only use mint at the pattern reporting or verifying steps without any
pruning rule for mint. Additionally, as mentioned before the fuzzy closed swarm verify-
ing task is less expensive than the FCI extraction. Consequently, be similar to CuTS*, the
fCS-Miner sensitiveness in mint is less sensitive than ObjectGrowth.

6. http://iapg.jade-hs.de/personen/brinkhoff/generator/

4.4. EXPERIMENTAL RESULTS 65

(a) " (b) mint

(c) |Odb| (d) |Tdb|

Figure 4.5: Running time on Synthetic Dataset.

Sensitiveness w.r.t Odb, Tdb. Figures 4.5c-d show the sensitiveness in the sizes of Odb

and Tdb. We can consider that all the algorithms are quite similar to each other. How-
ever, CuTS* is a little bit less sensitive than the others. This is because, in CuTS*: 1) the
number of clusters at a certain timestamp is not exponentially increased due to the |Odb|
and |Tdb| increases, 2) for any cluster c, c can combine with the clusters at the next times-
tamp. While, for ObjectGrowth, the number of candidates is greatly increased due to the
size increase of |Odb|, |Tdb| (i.e. approximately 2|Odb

|£2|Tdb| candidates). As the results, the
number of closed swarms is significantly increased (see Figures 4.6c-d). This behavior is
similar in fCS-Miner since the number of FCIs can be large. However, thanks to the fuzzy
approach, there are not huge amount of generated patterns compared to ObjectGrowth.
Obviously, fCS-Miner is similar to ObjectGrowth and a little bit more sensitive than CuTS*
in terms of |Odb| and |Tdb|.

Influence of TGi(X) on #f-Closed swarms. Figure 4.7 shows the influence of the fuzzy
time gap participation index on the number of patterns that contain weak, medium and
strong time gaps. We can consider that the number of patterns which have TGi(X) with
weak fuzzy time gaps X, medium fuzzy time gaps X and strong fuzzy time gaps X are quite
distinguished from each other. Since, the number of patterns with weakX is smallest, more

66 CHAPTER 4. MINING FUZZY MOVING OBJECT CLUSTERS

(a) " (b) mint

(c) |Odb| (d) |Tdb|

Figure 4.6: Number of patterns on Synthetic Dataset.

Figure 4.7: Influence of TGi(X) on #patterns through ".

number of patterns with medium X and the highest number of patterns with strong X.
Therefore, the TGi(X) enable us to rank the fuzzy closed swarms well corresponding with
the membership degree function. Furthermore, if we ignore all the fuzzy closed swarms
with strong (and medium) fuzzy time gaps, a number of uninteresting patterns can be
eliminated.

To summarize, fCS-Miner is effective to extract fuzzy closed swarms which are novel

4.5. DISCUSSION 67

and useful movement patterns. By applying fuzzy function, users can express their back-
ground knowledge in order to obtain interesting patterns without generating extraneous
ones. Additionally, fCS-Miner parameter sensitiveness is quite acceptable compare to the
other model algorithms. Moreover, with the purpose to extract the complete set of f-closed
swarms, fCS-Miner is competitive in time efficiency to state-of-the-art approaches (see
Figure 4.5).

4.5 Discussion

In this chapter, to deal with the issue that enforcing the consecutive time constraint
or completely relaxing may result in the loss of interesting patterns or the generation of
uninteresting patterns, we propose the concept of fuzzy swarm which softens the time
gap constraint. These concepts enable the discovery of insightful movement patterns and
the elimination of extraneous patterns. A new method fCS-Miner is proposed to efficiently
extract all the fuzzy closed swarms. The proposed algorithm’s effectiveness, and parameter
sensitiveness are demonstrated using real and large synthetic datasets. In the near future
work, the proposed approaches can be applied on other kinds of patterns (e.g. gradual
trajectory patterns [10]).

Although the fuzzy-closed swarm and existing movement patterns are very meaningful,
they cannot help us to capture the object moving trends. To illustrate, let us consider the
Salmon 7 migration in the ocean, where the adult salmons return primarily to their natal
stream to spawn. Therefore, from time to time, more and more salmons get closed to-
gether to go to their stream origin. Obviously, by focusing only on an unchanged group of
moving objects, traditional approaches are not able to capture such kind of moving trends.
Actually, this phenomenon is involved in many real world applications such as traffic con-
gestion, animal or population migration, etc.

For instance, the pattern: "from June to July, as time passes, the more people are going to
Miami" is useful for service providers such as travel agencies, hotels, restaurants to prepare
reasonable business strategies. The extracted knowledge from the pattern "from October to
December, as time passes, the more Eagles are moving from Canada to Mexico" is especially
useful for biologists to plan conservation activities such as migration analysis, counting,
telemetry attaching, etc. Thus, what we can show is that in many scenarios, extracting
object moving trends is interesting and useful.

This issue is addressed in the next chapter where we present the time relaxed gradual
moving object cluster concept to express the object moving trends.

7. http://en.wikipedia.org/wiki/Salmon

CHAPTER

5
Mining Time Relaxed Gradual Moving

Object Clusters

Preamble

Traditionally, existing movement pattern mining methods only focus on an un-
changed group of moving objects during a time period. Thus, they cannot capture
object moving trends which can be very useful for better understanding the natural
moving behavior in various real world contexts. In this chapter, we present a novel
concept of "time relaxed gradual trajectory pattern", denoted rGpattern, which cap-
tures the object movement tendency. Moreover, this chapter proposes an algorithm,
named CLUSTERGROWTH, for the discovery of all interesting maximal rGpatterns, and
three pruning strategies to reduce the search space.

In order to enrich the utility of the rGpattern concept, we adapt the Minimum De-
scription Length (MDL) principle for mining representative rGpatterns. An encod-
ing scheme which is designed to deal with different kinds of overlapping rGpattern
structures is proposed. We show that mining representative rGpatterns is NP-Hard
and therefore we propose two heuristic algorithms to extract compressing rGpatterns.
The first algorithm, named COMPOGP, uses a greedy two-phase approach. To over-
come performance with the required candidate generation in COMPOGP we propose
an effective algorithm, called DICOMPOGP, to directly mine compressing rGpatterns.
Conducted experiments on real and large synthetic datasets demonstrate the pattern
meaning, effectiveness and efficiency of our proposed methods.

69

70 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

Figure 5.1: An example of gradual moving object clusters from running example in Figure
1.1.

5.1 Introduction

As exemplified in Figure 5.1, the retrieved knowledge from traditional patterns can be
"the two cars, o1 and o2, are moving together from t2 to t4" or "the two cars, o3 and o4, are
moving together from t1 to t4". Even if these patterns are interesting, they do not really
present the actual moving behavior which can be "from t1 to t4, as time passes, the more
objects are following the trajectory {A i C i D i E }".

In this chaper, we propose a novel movement pattern, gradual moving object cluster,
which is designed to capture the gradual object moving trend. More precisely, a gradual
moving object cluster is a list of moving object clusters which satisfy the graduality con-
straint and integrity condition during at least mint consecutive timestamps. The gradu-
ality constraint can be the increase or decrease of the number of objects and the integrity
condition can be that all the objects should remain in the next cluster. We will clearly de-
fine them in the next sections.

For instance, see Figure 5.1, given mint = 2, a list of clusters C= {c1,c3,c4,c5} can be
considered as a gradual moving object cluster. Since, the cluster sizes are continuously
increasing and the object in a cluster at time t is still grouped with the other ones at time
t+1.

Naturally, moving objects in a cluster may actually diverge temporarily and congregate
at certain timestamps. Therefore, the requirement that a gradual moving object cluster to
be at least mint consecutive timestamps, which might not be practical in the real cases.
For instance, if we set mint = 3 in Figure 5.2, no gradual moving object cluster can be
found. However, intuitively, these object moving trend is "from t1 to t6, the more time
passes, the more objects are following the trajectory {A i B i D i F}" even though they tem-
porarily diverge at some snapshots. If we relax the consecutive time constraint and still set
mint = 3, actually we can detect these object moving trend. In other words, enforcing the
consecutive time constraint may result in the loss of interesting patterns.

5.1. INTRODUCTION 71

Figure 5.2: An example of time relaxed gradual trajectory pattern.

To tackle this issue, we propose the concept of rGpattern (i.e. time relaxed gradual
trajectory pattern) which is a more general type of gradual moving object clusters. If we
denote a rGpattern as a list of clusters C then, in Figure 5.2, we have four rGpatterns:
C1 = {c1,c2,c4}, C2 = {c1,c2,c6}, C3 = {c2,c4,c6} and C4 = {c1,c2,c4,c6}. We can note that
they are redundant since C1,C2,C3 are included in C4. To avoid finding redundant rGpat-
terns, we further propose the maximal rGpattern concept. The basic idea is that if C is a
rGpattern, it is unnecessary to output any subset C 0 of C even if C 0 may also satisfy rGpat-
tern requirements. For instance, see Figure 5.2, a maximal rGpattern is C4 = {c1,c2,c4,c6}
while C1,C2 and C3 are not maximal.

Efficient extracting of complete set of maximal rGpatterns in a large moving object
database, denoted db, is a non-trivial task. First, the size of all the possible combinations
is exponential (i.e. approximately 2|Cdb

|) where |Cdb| is significantly larger than |Tdb|, |Odb|
(i.e. |Cdb|> |Tdb|£ |Odb| in some cases). Second, none of previous work (i.e. frequent pat-
tern mining [1] [15], moving object clusters [23] [18] [32] [17] [19]) solves exactly the same
issue as finding maximal rGpatterns. This is because they do not address the graduality in
terms of itemsets or moving clusters. However, graduality is a key feature in rGpattern con-
text. Thus, the discovery of rGpatterns introduces a new problem that needs to be solved
by specifically designed techniques.

Facing the huge potential search space, we propose an efficient approach, named Clus-
terGrowth. The approach shares the same spirit with the ObjectGrowth algorithm [23] but
be different in terms of design and goal. In ClusterGrowth, we design two efficient rules
which are Graduality Pruning rule and Backward Pruning rule to end unnecessary fur-
ther search. Additionally, to eliminate uninteresting patterns, we relax the time constraint
within a time-based sliding window. After the pruning rules cut a great portion of invalid
candidates, we also present an Actual Maximum Checking step that reports the interesting
maximal rGpatterns on-the-fly without extra space to store candidates and extra time for
post-processing.

In order to enrich the utility of the rGpattern concept we adopt the Minimum Descrip-

72 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

tion Length (MDL) principle for mining representative rGpatterns. An encoding scheme
which is designed to deal with different kinds of overlapping rGpattern structures is pro-
posed. We show that mining representative rGpatterns is NP-Hard and therefore we pro-
pose two heuristic algorithms to extract compressing rGpatterns. The first algorithm,
named COMPOGP, uses a greedy two-phase approach. To overcome performance with
the required candidate generation in COMPOGP we propose an effective algorithm, called
DICOMPOGP, to directly mine compressing rGpatterns.

In summary, the main contributions of this chapter are as follows.
1. We first propose the concept of rGpattern, i.e. time relaxed gradual moving object

cluster, which captures the object moving trend. To discover the complete set of rGpat-
terns, we propose the CLUSTERGROWTH approach in which three efficient pruning rules
are designed to reduce the search space.

2. We prove that mining top-K compression rGpatterns based on MDL principle [6] is
NP-Hard problem.

3. We propose a two-phase algorithm, named COMPOGP, for mining representative
rGpatterns inspired by the original Krimp algorithm [31].

4. We propose DICOMPOGP, an efficient algorithm which avoids the expensive candi-
date generation phase and directly mines representative rGpatterns from the data.

5. Experimental results on real-life and synthetic datasets demonstrate the effective-
ness and efficiency of the proposed approaches.

The remaining sections of the chapter are organized as follows. The definitions of rG-
patterns and (interesting) maximal rGpatterns are given in Section 2. ClusterGrowth will be
clearly presented in Section 3. Experiments testing effectiveness, parameter sensitiveness
and efficiency are shown in Section 4. Mining representative gradual trajectory pattern is-
sue will be presented in Section 5 and experimental results in Section 6. Finally, we draw
our conclusions in Section 7.

5.2 Problem Statement

In this section, we give the rGpattern and maximal rGpattern definitions. Let us as-
sume that we have a set of moving objects Odb = {o1,o2, . . . ,oz}, a set of timestamps
Tdb= {t1,t2, . . . ,tm}, and a gradual variation § 2 {∏,∑} (see Table 5.1).

rGpattern and maximal rGpattern. A list of clusters C§ = {c1, . . . ,cn} is said to be a
rGpattern if each pair of consecutive clusters in C§ satisfies graduality condition and C§

contains at least mint clusters. The definition of rGpattern is as follows.

Definition 17. rGpattern. Given a list of clustersC§ = {c1, . . . ,cn} and a minimum threshold

5.2. PROBLEM STATEMENT 73

Figure 5.3: An example of uninteresting rGpattern and sliding window (w= 2).

mint. C§ is a rGpattern if:

C§ =C∏ :

8
>><

>>:

(1) : |C§|∏mint.
8i 2 {1,. . . ,n-1},
(2) : ci µ ci+1.
(3) : |cn|> |c1|.

(5.1)

C§ =C∑ :

8
>><

>>:

(1) : |C§|∏mint.
8i 2 {1,. . . ,n-1},
(2) : ci ∂ ci+1.
(3) : |cn|< |c1|.

(5.2)

For instance, see Figure 5.2, there are 6 objects and 6 timestamps (Odb =
{o1, . . . ,o6},Tdb = {t1, . . . ,t6}). Given mint = 3, C∏

1 = {c1,c2,c4} is a rGpattern since
|C∏

1 | ∏ mint, c1 Ω c2 Ω c4 and |c4| = 4 > |c1| = 1. Furthermore, there are totally 4 rGpat-
terns: C∏

1 = {c1,c2,c4}, C∏
2 = {c1,c2,c6}, C∏

3 = {c2,c4,c6} and C∏
4 = {c1,c2,c4,c6}.

However, it is obviously redundant to output rGpatterns like C∏
1 ,C

∏
2 ,C

∏
3 since all of

them can be enlarged to C∏
4 . Naturally, it is necessary to ignore the redundant patterns.

Therefore, we only focus on extracting maximal rGpatterns.

Definition 18. Maximal rGpattern. Given a rGpattern C§ = {c1, . . . ,cn}. C§ is maximal if
ÿC 0§,C§ ΩC 0§ and C 0§ is a rGpattern.

For instance, in Figure 5.2, C∏
4 = {c1,c2,c4,c6} is a maximal rGpattern.

Uninteresting rGpatterns. As mentioned before, there are totally 2|Cdb

| potential pat-
tern candidates and naturally not all of them are interesting and useful for analysts. For
instance, see Figure 5.3, {c1,c2} is a rGpattern but it is not interesting and useless. Since
the objects o1,o2,o3,o4 do not essentially move together during the time following the tra-
jectory {A i F}, and they only meet each other at F by chance after 999 timestamps. To

74 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

Table 5.1: Notation Description.

Notation Description
Odb= {o1,o2, . . . ,oz} Object set
Tdb= {t1,t2, . . . ,tm} Set of timestamps

Cdb
Set of clusters

extracted from a dataset
|Odb| The size of Odb

|Tdb| The size of Tdb
|Cdb| The size of Cdb

§ 2 {∏,∑} Gradual variation

C§ = {c1, . . . ,cn}
Interesting (maximal)

rGpattern w.r.t §
TC§ = {t(c1), . . . ,t(cn)} List of timestamps w.r.t C§

mint
A minimum #timestamps within
that objects are grouped together

w (Time-based) sliding window size
oK Object key

eliminate such kind of uninteresting patterns, we propose to relax time constraint within
a time-based sliding window with size denoted w. That is, given a current cluster c, c can
combine with clusters c 0 where 1∑ t(c 0)-t(c)∑w to be candidates (see Figure 5.3). Note
that t(c 0)- t(c) ∏ 1 because two clusters at a timestamp cannot belong to a pattern. By
using this sliding window, we can ignore a number of uninteresting patterns.

For instance, see Figure 5.3, given that w = 2, {c1,c2} is a uninteresting pattern since
t(c2)-t(c1)= 998>w= 2. The interesting pattern definition is as follows.

Definition 19. Interesting Maximal rGpattern. Given a maximal rGpattern C§ =
{c1, . . . ,cn}, a time-based sliding window size w. C§ is an interesting pattern if:

8i 2 {1,. . . ,n-1} : 1∑ t(ci+1)-t(ci)∑w (5.3)

For conciseness sake, the term "sliding window" will be used to indicate the "time-
based sliding window" in the rest of this chapter.

5.3 Discovering Maximal Time Relaxed Gradual Trajectory
Patterns

The patterns we are interested in here, interesting maximal rGpattern, is a list of clus-
ters C§. At first glance, the number of different rGpatterns could be 2|Cdb

| (i.e. the size of

5.3. DISCOVERING MAXIMAL TIME RELAXED GRADUAL TRAJECTORY PATTERNS 75

Table 5.2: An example of a reconfigured spatio-temporal database in Figure 5.1.

Timestamp Object Key Cluster
t1 0011 c1
t2 1100 c2
t2 0011 c3
t3 0111 c4
t4 1111 c5

Figure 5.4: An object bit set configuration example.

the search space). Second, we need to store the object information for each cluster and
then compute the intersections between them and that is, we have to be careful in con-
cerning the structures that we use. From the analysis above we propose to reconfigure
spatio-temporal databases so that for each timestamp and for each cluster, a bit set pre-
sentation, called object key, is used to illustrate the object information (i.e. see Table 5.2,
Figure 5.4). For clarity sake, we take the database reconfiguration as a preprocessing step.

Basic idea of ClusterGrowth algorithm. For the search space of Cdb, we apply a depth-
first search of all subsets of Cdb, which is illustrated as a pre-order tree traversal in Figure
5.5: tree nodes are labeled with numbers, denoting the depth-first search order. Note that
Cdb is ordered by the time from the beginning (resp. t1) to the end (resp. tm).

Even though, the search space is huge, efficient pruning rules are demanding to speed
up the search process. We propose two pruning rules to further shrink the search space.
The former, called Graduality Pruning, is to end traversing the subtree when we find fur-
ther traversal cannot satisfy graduality and interestingness requirement (Definition 37).
The latter, called Backward Pruning, is to make use of the maximum property. This rule
checks whether there is a superset of the current list of clusters, which has been traversed.
If so, the traversal of the subtree under the current list of clusters is meaningless since all
its supersets are not maximal. Armed with these two pruning rules, the size of the search
space can be significantly reduced.

After pruning the invalid candidates, the remaining candidates may or may not be in-
teresting maximal rGpatterns. We propose an Actual Maximum checking to embed a max-
imum checking step in the search process. This checking step immediately determines
whether a rGpattern C§ is maximal after the subtrees under C§ are traversed. Thus, inter-
esting maximal rGpatterns are extracted in the search process and no extra post-processing
step is needed.

76 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

Figure 5.5: ClusterGrowth search space of the running example in Figure 5.1 with §= ’∏’,
mint= 1 and w= 3.

5.3.1 ClusterGrowth Approach

In this section, we will clearly define our proposed pruning rules. The ClusterGrowth
method is a depth-first-search (DFS) approach based on the cluster set search space.

Property 11. (Graduality Pruning Rule). Given a list of clusters C§ = {c1,c2, . . . ,cn}, a
cluster c 0 where t(c 0)> t(cn) and a window size w. There is no strict superset C 0§ ∂ (C§[c 0)
s.t. C 0§ is an interesting maximal rGpattern if:

C§ =C∏ : (t(c 0)-t(cn)>w)_ (c 0 + cn) (5.4)

C§ =C∑ : (t(c 0)-t(cn)>w)_ (cn+ c 0) (5.5)

Proof. After construction, we have (C§[c 0) is not an interesting maximal rGpattern since
cn and c 0 do not satisfy Definitions 17 and/or 37. Consequently, for any superset C 0§ of
(C§[c 0), C 0§ is not an interesting maximal rGpattern.

In Figure 5.5, the nodes with list of clusters C∏ = {c1,c2} and its subtree are pruned by
Graduality Pruning rule because c1* c2. This is similar for {c2,c4}.

Even though Graduality Pruning rule can eliminate a large number of useless candi-
dates, there are many other candidates need to be pruned to shrink the search space to
the optimal point. For instance, {c3} subtrees cannot provide any interesting maximal rG-
patterns. This is because {c1,c3} has been already traversed and {c1,c3} is a rGpattern.
Therefore, for any superset of {c3}, denoted {c3}[C§, if it is a rGpattern then we also have
{c1,c3}[C§ is a rGpattern. Thus, {c3}[C§ is not maximal and therefore {c3} subtrees need
to be pruned. The Backward Pruning rule can be formalized as follows.

Property 12. (Backward Pruning Rule). Given a list of clusters C§ = {c1,c2, . . . ,cn}. If there
exists a cluster c 0 such that t(c 0)< t(cn),c 0 62C§ and C 0§ =C§[{c 0} satisfies the condition 2

5.3. DISCOVERING MAXIMAL TIME RELAXED GRADUAL TRAJECTORY PATTERNS 77

- Definition 17 (i.e. graduality condition) then any supersets of C§ are not interesting maxi-
mal rGpatterns. Thus, C§ subtrees need to be pruned.

Proof. After construction, we have {c1, . . . ,c
0, . . . ,cn} satisfies the graduality condition (i.e.

if § = ’∏’ then c1 µ . . . µ c 0 µ . . . µ cn, or if § = ’∑’ then c1 ∂ . . . ∂ c 0 ∂ . . . ∂ cn). For any
supersets C 0§ of C§, C 0§ =C§ [C 00§, if C 0§ is a rGpattern then {c1, . . . ,c

0, . . . ,cn}[C 00§ is a
rGpattern. SinceC 0§ Ω {c1, . . . ,c

0, . . . ,cn}[C 00§,C 0§ is not an interesting maximal rGpattern
because it suffers the Definition 18. Thus, C§ subtrees need to be pruned.

Backward Pruning is efficient in the context that it only needs to examine those super-
sets of C§ with one more cluster rather than all the supersets. By applying this rule, we can
efficiently prune a significant portion of the search space for mining interesting maximal
rGpatterns.

Actual maximum checking. After pruning all useless candidates, we need to verify the
remaining ones for obtaining the complete set of interesting maximal rGpatterns. We can
consider that a list of clusters C§ is maximal and interesting if there is no superset of C§,
denoted C 0§, so that C 0§ contains at least mint clusters and the first cluster (resp. c1 2C 0§)
and the last cluster (resp. cn 2C 0§) satisfy the condition 3-Definition 17.

Property 13. (Actual Maximum Rule). Given a list of clusters C§ = {c1, . . . ,cn}. If there
exists a cluster c 0 (i.e. 1∑ t(c 0)-t(cn)∑w) so thatC 0§ is generated by adding c 0 intoC§ and
C 0§ satisfies the condition 2-Definition 17 then C§ is not an interesting maximal rGpattern.

Proof. After construction, we have C§ ΩC 0§. Additionally, if C§ is a rGpattern then C 0§ is
also a rGpattern. Therefore C§ is not maximal because it suffers the Definition 18.

Note, be different from the first two rules, this rule does not prune the list of clusters C§

subtrees in the DFS and therefore we cannot end DFS from C§. However, this rule is useful
for detecting non-interesting maximal rGpatterns.

Theorem 1. (Interesting maximal rGpattern in ClusterGrowth). Given a node with list of
clusters C§ = {c1, . . . ,cn}, C§ is an interesting maximal rGpattern if and only if it passes all
the rules Graduality Pruning, Backward Pruning, Actual Maximum rule, and |C§| ∏mint

and if c1,cn satisfy the condition 3-Definition 17 (i.e. if §= ’∏’ then |cn| > |c1|, or if §= ’∑’
then |cn|< |c1|).

Proof. For every list of clusters C§ passes Graduality Pruning, Backward Pruning and Ac-
tual Maximum rule, first of all, Graduality Pruning ensures that C§ satisfies the condition
2-Definition 17 (i.e. graduality condition) and the Definition 37 (i.e. interestingness condi-
tion). Furthermore, Backward Pruning and Actual Maximum rules ensure that C§ satisfies
the maximum property (i.e. Definition 18). If |C§| ∏mint and c1,cn satisfy the condition

78 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

3-Definition 17 (i.e. |cn|> |c1| where C§ =C∏ or |cn|< |c1| where C§ =C∑) then |C§| com-
pletely satisfies the Definition 17. Thus, C§ satisfies all the requirements (Definitions 17,
18, 37) to be an interesting maximal rGpattern.

Theorem 1 makes the discovery of interesting maximal rGpatterns well embedded in
the search process so that interesting maximal rGpatterns can be reported from the algo-
rithm directly without a post-processing step.

Figure 5.5 shows the complete ClusterGrowth algorithm for our running example in
Figure 5.1. We start traversing the search space at {} and then visit the node {c1} which
passes the Backward Pruning since it is the first cluster in Cdb. Next, we visit the node
{c1,c2} and it suffers Graduality Pruning rule since c1 6µ c2. Next, we visit the node
{c1,c3} and it satisfies Backward Pruning rule as well as Graduality Pruning rule since
0< t(c3)- t(c1)<w and c1 Ω c2. By applying Actual Maximum property {c1} is not maxi-
mal. Then, by following its subtrees we have that {c1,c3,c4,c5}passes both Backward Prun-
ing and Graduality Pruning. Furthermore, |{c1,c3,c4,c5}| ∏mint and |c5| > |c1|, and thus
{c1,c3,c4,c5} is an interesting maximal rGpattern (Theorem 1). Now, we trace back and
visit the nodes {c1,c4} and {c1,c5}. Indeed, they are not maximal rGpatterns since they suf-
fer the Backward Pruning rule. We continue visiting the nodes until we finish the traversal
of the cluster set-based DFS tree.

5.3.2 The ClusterGrowth Implementation

An object key is a list of |Odb| binary bits (see Figure 5.4) and let us define a set of oper-
ations that will be used for interesting maximal rGpattern extracting in the ClusterGrowth
algorithm. Note that & is used to denote the bitwise operation AND.

– Contain(oK1, oK2): given two object keys oK1 and oK2, returns true if oK1 & oK2 =
oK2.

– |oK|: given an object key oK, returns the number of ’1’s in oK.
– cµ c 0: given two clusters c and c 0, returns Contain(oK(c 0), oK(c)).
– c∂ c 0: given two clusters c and c 0, returns Contain(oK(c), oK(c 0)).
– |c|: given a cluster c, returns |oK(c)|.
For instance, see Table 5.2, at timestamp t1, we have three clusters c1 = {o3,o4},c2 =

{o1,o2},c3= {o3,o4}. Thus, oK(c1)= ’0011’, oK(c2)= ’1100’ and oK(c3)= ’0011’.
Algorithm 6 presents the pseudo code for the ClusterGrowth algorithm. The algo-

rithm takes as inputs a preprocessed database and parameters mint,w and §. We first
create two variables op1 and op2 to represent the gradual variation § (lines 2-5). op1
and op2 are respectively used for set operations and cluster size comparisons between
2 clusters. Then, we start the process with each cluster c 2 Cdb by calling the function
ClusterGrowth(C§,op1,op2,c,mint,w).

When traversing the node with list of clusters C§, we first check whether a cluster c
which is in the sliding window w can be added to C§ by passing Graduality Pruning rule

5.3. DISCOVERING MAXIMAL TIME RELAXED GRADUAL TRAJECTORY PATTERNS 79

Algorithm 6: Interesting Maximal rGpattern Mining Algorithm
Input : A database (Odb,Tdb), a cluster database Cdb, int mint, int w, §
Output: all interesting maximal rGpatterns

1 begin
2 if § := ’∏’ then
3 op1=µ;op2 :=∏;
4 else
5 op1=∂;op2 :=∑;
6 realGpatterns :=;;
7 foreach c 2Cdb do
8 C§ :=;;
9 C§ :=C§[c;

10 ClusterGrowth(C§,op1,op2,c,mint,w);
11 return realGpatterns;
12 ClusterGrowth(C§,op1,op2,c_last,mint,w)
13 begin
14 if Backward(C§,op1,c_last)= false then
15 return;
16 maximum := true;
17 foreach c 2Cdb s.t. t(c)-t(c_last)∑w do
18 if c_last op1 c then
19 maximum := false;
20 C 0§ :=C§[c;
21 ClusterGrowth(C 0§,op1,op2,c,mint,w);
22 if maximum= true^ |C§|∏mint^ |c_last| op2 |c_first| then
23 realGpatterns := realGpatterns[C§;
24 Backward(C§,op1,c_last)
25 begin
26 foreach c 0 62C§,c 0 < c_last do
27 if ci op1 c 0 op1 cj then
28 return false;
29 return true;
30 where: c_last,c_first respectively are cn,c1 in C§, in Backward function, ci,cj are

two clusters in C§ and they are nearest clusters to c 0 so that ci < c 0 < cj. Note that, to
extract all interesting maximal rGpatterns C∏ and C∑, we apply the algorithm with
different values of § (i.e. §= ’∏’ and §= ’∑’).

80 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

(lines 17-18). If so, we note thatC§ cannot pass the Actual Maximum rule by assigning false
to maximum (line 17). After that, we generate a superset of C§, denoted C 0§, by adding c
into C§, then start the new search process with C 0§ (lines 18-19).

Next, we check whether C§ can pass the Backward Pruning (lines 14-15). In Backward
function (lines 24-29), we only need to check whether ci,c 0 and cj satisfy the graduality
constraint instead of the entire list of clusters C§. For instance, if C§ = {c1,c2,c6,c7} and
c 0 = c4 then ci and cj respectively are c2 and c6. We only need to check that c2,c4,c6
satisfy the graduality constraint or not. If so, the current list of clusters C§ cannot pass the
Backward Pruning.

Finally, we check whether the current list of clustersC§ can satisfy the Actual Maximum
rule, mint constraint and condition 3-Definition 17 with c_last,c_first (resp. cn,c1). If
so, C§ will be imported into realGpatterns (lines 20-21) for reporting later (line 11).

5.4 Preliminarily Experimental Results

Before we continue with more theory, we will first present some results on pattern
meaning and efficiency of the ClusterGrowth algorithm. A performance study has been
conducted on real and synthetic datasets. All the algorithms are implemented in C++, and
all the experiments are carried out on a 2.8GHz Intel Core i7 system with 4GB Memory. The
system runs Ubuntu 11.10 and g++ version 4.6.1.

The implementation of our proposed algorithm is also integrated in a demonstration
system available online 1. As in [8], the two following datasets 2 have been used during
experiments: Swainsoni dataset includes 43 objects evolving over time and 764 different
timestamps. It was generated from July 1995 to June 1998. Buffalo dataset concerns 165
buffaloes with the tracking time from year 2000 to year 2006. The original data has 26,610
reported locations and 3001 timestamps.

To the best of our knowledge, there is no previous work which addresses maximal rG-
pattern. Therefore, in the comparison, we employ the latest pattern mining algorithms
such as CuTS§ 3 [18] (convoy mining) and ObjectGrowth [23] (closed swarm mining). As
pointed out in [23], ObjectGrowth outperforms VG-Growth [32] (group pattern mining) in
terms of performance and therefore we will only consider ObjectGrowth and not both.

Similarly to [23] [18], we first use linear interpolation to fill in the missing data. Fur-
thermore, as [23] [18] [12], DBScan [4] (MinPts = 2,Eps = 0.001) is applied to generate
clusters at each timestamp. To make fair comparison, we adapt all the algorithms to ac-
commodate clusters as input but their time complexity will remain the same.

Additionally, to retrieve all the patterns including interesting maximal rGpatterns, con-
voys and closed swarms, in the reported experiments, the default value of mint is 1,

1. http://www.lirmm.fr/~phan/realgp.jsp
2. http://www.movebank.org
3. The source code of CuTS§ is available at http://lsirpeople.epfl.ch/jeung/source codes.htm

5.4. PRELIMINARILY EXPERIMENTAL RESULTS 81

mino = 1 (i.e. for ObjectGrowth and CuTS*). Note that the default values are the hard-
est conditions for examining all the algorithms. Regarding to the sliding window size, the
window size can be varied depend on different applications such as cars along highways
closing each other in every an hour, or people come to same places every day, etc. In this
chapter, w is set to 10%|Tdb| for each dataset. It means that w = 76 days for Swainsoni
dataset, w= 300 days for Buffalo dataset and w= 1,000 days for Synthetic dataset. With
such window sizes, it is guaranteed that we can discover all relevant patterns.

5.4.1 Effectiveness and Pattern Meaning

The effectiveness of interesting maximal rGpatterns can be demonstrated through our
online demo system. Figures 5.9, 5.10 show the number of interesting maximal rGpatterns
extracted from the datasets. One of the extracted patterns from Swainsoni dataset is il-
lustrated in Figure 5.6c. Each color represents a Swainsoni trajectory segment involved in
the pattern. Additionally, each place mark is a cluster center with the number of objects
information. For clarity sake, we only report the locations where the number of objects
changes.

To illustrate the knowledge expressed by maximal rGpatterns, we also show some of
extracted closed swarms and convoys from our system 4 [8] in Figures 5.6a, b. We can con-
sider that the closed swarm and the convoy show two or three objects moving together
by the time. Even though they are interesting since they express the relationship between
several objects, they fail to describe the moving behavior of the class of Swainsonies.

Distinguish from previous work, by proposing interesting maximal rGpattern, we are
able to capture the moving behavior of the class of Swainsonies in a graduality point of
view. Looking at the illustrated pattern in Figure 5.6c, we can consider that they start with
8 objects from the north of America and then they group together to be 11, 14, 16, 20 and
23 objects before flying over the sea. Moreover, during the fly, they continue getting closed
each other and at the Colombia, we can observe a total of 27 objects flying together. In-
terestingly, we also can say that "from 1996-10-01 to 1996-10-25, the more time passes, the
more objects are following the trajectory {Oregoni Nevadai Utahi Arizonai Mexicoi
Colombia}". Moreover, on 1996-10-14, they group almost together at some important
places such as Mexico where they begin to fly along a narrow corridor through Central
America and down to South America. Furthermore, Panama is also important since all ob-
jects are together before arriving Colombia, South America. That is very useful knowledge
for planning research and conservation activities such as migration analysis, telemetry at-
taching, counting, etc.

The discovery of the interesting maximal rGpatterns on animal migration datasets pro-
vides useful information for biologists to better understand and examine the relationship
and habits of these moving objects. None of the other moving object patterns is able to ex-

4. http://www.lirmm.fr/~phan/index.jsp

82 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

(a) One of extracted closed swarms.

(b) One of extracted Convoy.

(c) One of extracted interesting maximal rGpatterns C∏.

Figure 5.6: An example of extracted patterns from Swainsoni dataset (best viewed in color).

5.4. PRELIMINARILY EXPERIMENTAL RESULTS 83

(a) w (b) mint

(c) |Odb| (d) |Tdb|

Figure 5.7: Running time on Buffalo Dataset.

tract this knowledge. They focus on an unchanged group of moving objects during a time
period while interesting maximal rGpattern relaxes this constraint and captures moving
trend patterns from a graduality point of view.

5.4.2 Parameter Sensitiveness

To show the parameter sensitiveness and efficiency of the proposed algorithm, as in
[6], we also generate a large synthetic dataset using Brinkhoff’s network 5-based generator
of moving objects. We generate 500 objects (|Odb|= 500) for 104 timestamps (|Tdb|= 104)
using the generator’s default map with slow moving speed (250). There are 5£106 points
in total. DBScan (MinPts= 3,Eps= 300) is applied to obtain clusters at each timestamp.

Sensitiveness w.r.t w. See Figures 5.7a, 5.8a, we can consider that ClusterGrowth is
linear in terms of sliding window size w. The reason is that, the higher window sizes w the
more patterns are extracted (see Figures 5.9a, 5.10a). This is because, for any cluster c, c
can combine with an additional number of other clusters corresponding to the increase of
w. Consequently, there are more number of candidates as well as patterns. Note that, the

5. http://iapg.jade-hs.de/personen/brinkhoff/generator/

84 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

(a) w (b) mint

(c) |Odb| (d) |Tdb|

Figure 5.8: Running time on Synthetic Dataset.

ClusterGrowth algorithm is very efficient while the Buffalo dataset is not large enough to
see the difference in terms of ClusterGrowth execution time.

Sensitiveness w.r.t mint. Figures 5.7b, 5.8b show that ObjectGrowth is the most sensi-
tive algorithm in mint. This is because ObjectGrowth applies a mint-based pruning rule,
called Apriori Pruning, which is very sensitive in mint. Since, it is used to limit approx-
imately 2|Tdb| candidates in total. Furthermore, with different values of mint, there are
great differences in terms of the number of extracted closed swarms (Figures 5.9b, 5.10b).
Meanwhile, ClusterGrowth and CuTS* only use mint at the pattern reporting step without
any pruning rule formint. Therefore, be similar to CuTS*, the ClusterGrowth sensitiveness
in mint is minimized and it is less sensitive than ObjectGrowth.

Sensitiveness w.r.t Odb, Tdb. Figures 5.7c-d, 5.8c-d show the sensitiveness in the sizes
of Odb and Tdb. Once again, ObjectGrowth is the most sensitive algorithm. The reason is
that the number of candidates is greatly increased due to the size increase of |Odb|, |Tdb| (i.e.
approximately 2|Odb

|£2|Tdb| candidates). As the results, the number of closed swarms is sig-
nificantly increased (see Figures 5.9c-d, 5.10c-d). Meanwhile, ClusterGrowth and CuTS* do
not generate much more candidates as ObjectGrowth does. This is because: 1) the num-
ber of clusters at a certain timestamp is not exponentially increased due to the |Odb| and

5.5. MINING REPRESENTATIVE GRADUAL TRAJECTORY PATTERNS 85

(a) w (b) mint

(c) |Odb| (d) |Tdb|

Figure 5.9: Number of patterns on Buffalo Dataset. For conciseness sake, #Interesting Max-
imal rGpatterns is denoted as #rGpatterns.

|Tdb| increases, 2) for any cluster c, c can combine with the clusters at the next timestamp
(i.e. for CuTS*) or the clusters within a sliding window (i.e. for ClusterGrowth). Obviously,
ClusterGrowth is similar to CuTS* and less sensitive than ObjectGrowth in terms of |Odb|
and |Tdb|.

To summarize, ClusterGrowth is effective to extract interesting maximal rGpatterns
which are novel and useful movement patterns. Additionally, ClusterGrowth is less sen-
sitive in terms of parameter setting and database sizes than the other algorithms (i.e. Ob-
jectGrowth) in almost cases. Furthermore, with the purpose to extract the complete set of
interesting maximal rGpatterns, ClusterGrowth is competitive in time efficiency to state of
the art algorithms (see Figures 5.7, 5.8).

5.5 Mining Representative Gradual Trajectory Patterns

Until now, with the CLUSTERGROWTH algorithm we can efficiently extract all interest-
ing maximal rGpatterns efficiently. However, as usual 1) the number of rGpatterns can
be large and 2) the result contains very redundant information. Thus it is difficult to use

86 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

(a) w (b) mint

(c) |Odb| (d) |Tdb|

Figure 5.10: Number of patterns on Synthetic Dataset. For conciseness sake, #Interesting
Maximal rGpatterns is denoted as #rGpatterns.

and analyze the extracted patterns. Therefore, eliminating the number of rGpatterns and
extracting representative ones is an emerging task in many real world cases.

Mining informative patterns can be classified into 3 main lines: MDL-based, statistical
approaches based on hypothesis tests and information theoretic approaches. The idea of
using data compression for data mining was first proposed by R. Cilibrasi et al. [3] for data
clustering problem. This idea was also explored by Keogh et al. [20], who propose to use
compressibility as a measure of distance between two sequences.

In the second research line, the significance of patterns is assessed by using a stan-
dard statistical hypothesis assuming that the data follows the null hypothesis. If a pattern
passes the test it is considered significant and interesting. For instance, A. Gionis et al. [5]
use swap randomization to generate random transactional data from the original data. A
similar method is proposed for graph data by R. Milo et al. [25].

Another direction looks for interesting sets of patterns that compress most the given
data (i.e. MDL principle). Examples of this direction include the Krimp algorithm [31] for
itemset data, the algorithms for sequence data [21] and the algorithms for moving object
data [11].

5.5. MINING REPRESENTATIVE GRADUAL TRAJECTORY PATTERNS 87

Like many pattern set mining approaches [34] [35] [36], Krimp follows a straightfor-
ward two-phase approach to mining code tables. First, it mines a collection of frequent
itemsets. Second, it considers these candidates in a static order, accepting a pattern if it
improves compression. This simplicity has some drawbacks. First of all, mining candi-
dates is expensive but as most candidates will be rejected and therefore this step is quite
wasteful. Second, by considering candidates only once, and in a fixed order, Krimp some-
times rejects candidates that it could have used later on.

To break through these issues, K. Smets et al. [27] propose SLIM which is an improve-
ment of KRIMP. SLIM starts with a set of single items in code table CT . Every iteration, it
considers all pairwise combinations ofX,Y 2CT as candidates in descending order of gain.
Iteratively, if a candidate improves the compression then it will be added into the code ta-
ble CT . Next, elements in CT will be reconsidered and the candidate list is updated. The
process continues until no candidate decreases the total compressed size.

In sequence data context, H. T. Lam et al. propose GOKRIMP [21] which greedily con-
structs a pattern by extending a candidate with the most frequent correlated item such
that compression is improved. In this work, we will focus on designing an MDL-based
approach to extract top-K representative rGpatterns.

5.5.1 Problem Statement

First of all, let us start explaining the MDL principle in the following:

Definition 20. Hypothesis. A hypothesis D is a set of patterns D= {p1,p2, . . . ,ph}.

Given a scheme S, let LS(D) be the description length of hypothesis D and LS(Odb|D)
be the description length of data Odb when encoded with the help of the hypothesis and
an encoding scheme S. Informally, the MDL principle proposes that the best hypothesis
always compresses the data most. Therefore, the principle suggests that we should look
for hypothesis D and the encoding scheme S such that LS(Odb) = LS(D)+ LS(Odb|D)
is minimized. For clarity sake, we will omit S when the encoding scheme is clear from
the context. Additionally, the description length of Odb given D is denoted as LD(Odb) =
L(D)+L(Odb|D).

In this chapter, the hypothesis is considered as a dictionary of rGpatterns D. Further-
more, as in [21] [11], we assume that any number or character in data has a fixed bit length
representation which requires a unit memory cell. In our context, the description length of
a dictionary D can be calculated as the total lengths of the patterns and the number of pat-
terns, i.e. L(D)=

P
C§2D |C§|+ |D|. Furthermore the length of the data Odb when encoded

with the help of dictionary D can be calculated as L(Odb|D)=
P

o2O
db

|o|.
The problem of finding compression rGpatterns can be formulated as follows:

Definition 21. Compression rGpattern Problem. Given a moving object data Odb, a set of
rGpatterns F= {C§

1 , . . . , C
§
m}. Discover an optimal dictionary D# µ F s.t.

88 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

Figure 5.11: An example of two types of rGpatterns. c and o respectively are cluster and
object, (oi,cj)= 1 means oi belongs to cluster cj. Blurred rectangle is the overlapping part
between two rGpatterns.

D# = argminD (L#
D
(Odb)) = argminD (L#(D)+L#(Odb|D))

A key issue in designing an MDL-based algorithm is: how can we encode data given a
dictionary? The issue here is that we have two different types of patterns (i.e. C∏ and C∑)
and traditional algorithms [31] [27] [21] do not supply multi-pattern types in the dictionary
that may lead to losing interesting ones. Furthermore, enforcing non-overlapping patterns
may result in not optimal compression. To deal with these challenges, we propose an en-
coding scheme which is able to deal with different types of rGpatterns and the overlapping
among them.

5.5.2 Encoding Scheme

Before discussing our encoding for moving object data given rGpatterns, we revisit the
encoding scheme used in the Krimp algorithm [31]. An itemset I is encoded with the help
of itemset patterns by replacing every non-overlapping instance of a pattern occurring in
I with a pointer to the pattern in a code table (dictionary). In this way, an itemset can be
encoded to a more compact representation and decoded back to the original itemset.

In this chapter we use a similar dictionary-based encoding scheme. Given a dictionary
consisting of rGpatterns D = {C§

1 , . . . ,C
§
m}, an object o 2Odb containing a list of clusters

is encoded by replacing instances of any pattern C§
i in o with pointers to the dictionary.

An important difference in our context is that we have two types of rGpatterns which have
their own characteristics. Indeed, an object o can involve in the some first part of a C∑ or
in the some last part of a C∏.

For instance, see Figure 5.11a and Table 5.3, we can consider that o2 joins the C∏
2 =

c4c5c6c7 at c5c6c7. While, the C∑
1 = c1c2c3 occurs in o3 at c1c2.

5.5. MINING REPRESENTATIVE GRADUAL TRAJECTORY PATTERNS 89

Table 5.3: An illustrative example of data and dictionary in Figure 5.11. 1̄ and 2̄ respectively
are pattern types: C∏ and C∑.

Odb Encoded Odb Dictionary D
o1= c1c4c5c6c7 o1= [C1,0][C2,0]
o2= c1c2c3c5c6c7 o2= [C1,2][C2,1] C∑

1 = c1c2c3, 2̄
o3= c1c2c7 o3= [C1,1][C2,3] C∏

2 = c4c5c6c7, 1̄
o4= c1 o4= [C1,0]

Property 14. (Encoding Property). Given an object o which contains a list of clusters and a
rGpattern C§ = c1 . . .cn. C§ occurs in o or o contributes to C§ if:

�
(1) :§=∏,9i 2 [1,n]|8j∏ i,cj 2 o.
(2) :§=∑,9i 2 [1,n]|8j∑ i,cj 2 o.

(5.6)

Proof. Case (1): we have ci µ ci+1 µ . . . µ cn. Additionally, o 2 ci. Consequently, o 2
ci+1, . . . ,cn and therefore 8j ∏ i,o 2 cj. In Case (2): we have c1 ∂ c2 ∂ . . . ∂ ci-1. Addi-
tionally, o 2 ci-1. Consequently, o 2 c1, . . . ,ci-1 and therefore 8j∑ i,o 2 cj.

For instance, see Table 5.3, we can see that for each pattern, we need to store an extra
bit to indicate the pattern type. Additionally, by applying Property 14, in the object o we
also need to store an additional index with the pointer to indicate the cluster ci. Essentially,
ci plays the role of a starting involving point (resp. ending involving point) of the object o
in a C∏ (resp. C∑).

As an example, consider dictionary D in Table 5.3. Using D, o2 can be encoded as
o2 = [C1,2][C2,1] where 2 in [C1,2] indicates the cluster at index 2 in C∑

1 , i.e. c3, and 1 in
[C2,1] indicates the cluster at index 2 in C∏

2 , i.e. c5.
Until now, we have already presented the encoding scheme for an object o given a rG-

pattern C§. Furthermore, the encoding scheme also allows overlapping rGpatterns in the
data compression. For instance, in Figure 5.11, C∏

2 = c4c5c6c7 and C∑
1 = c1c2c5c6 overlap

each other. Let us assume that C∏
2 2D and C∑

1 2 F, so object o1 will be first encoded given
C∏
2 s.t. o1 = c1[C2,0]. We can consider that even C∑

1 overlaps C∏
2 at c5c6, C∑

1 can still be
used to encode o1 s.t. o1= [C1,0][C2,0].

Data description length computation. Until now, we have defined an encoding
scheme for rGpatterns. The description length of the dictionary in Table 5.3 is calculated
as L(D) = |C∑

1 |+1+ |C∏
2 |+1+ |D|= 3+1+4+1+2= 11. Similarly, description length of

o2 is L(o2|D)= |[C∑
1 ,2]|+ |[C∑

2 ,1]|= 4.
Note: for each pattern, we need to consider an extra memory cell of pattern type. Ad-

ditionally, for any given dictionary D and the data Odb, the cost of storing the timestamp
for each cluster is always constant regardless the size of the dictionary.

90 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

5.5.3 Complexity Analysis

This section discusses the complexity of the mining compression rGpattern problem.
The main result states that finding optimal dictionary D is NP-Hard.

Lemma 6. Finding compression rGpattern problem and the optimal dictionary D is NP-
Hard.

Proof. Given a set of elements {1,2, . . . ,m} (called the universe) and n sets whose union
comprises the universe, the set cover problem [26] is to identify the smallest number of
sets whose union still contains all elements in the universe.

We can easily reduce the mining optimal compression rGpattern problem to the set
cover problem by setting each ’1’ in the dataset as an element, the universe as a set of
all elements in the dataset, each rGpattern as a set of elements, i.e. ’1’s, and the encod-
ing function as the number of ’1’s in a rGpattern. The problem now becomes finding the
smallest number of rGpatterns whose union still contains all the elements, i.e. ’1’s, in the
universe. In doing so, finding the optimal compression rGpatterns is as hard as solving the
corresponding instance of the set cover problem. This proves the NP-hardness property of
the given problem.

5.5.4 Mining top-K Representative rGpatterns

Since mining optimal dictionary D is NP-Hard, we propose two heuristic algorithms,
named COMPOGP and DICOMPOGP. The first one is inspired by the idea of the Krimp
algorithm and it is described in the following.

The Two-Phase Approach

The greedy approach takes as input a database Odb, a set of pattern candidates F and
a parameter K. The result is the optimal dictionary which encodes Odb best. Now, at each
iteration of COMPOGP, we select candidate C§ which compresses the database best. Next,
C§ will be added into the dictionary D and then the database Odb will be encoded given
C§. The process is repeated until we obtain K rGpatterns in D.

For each candidate C§ 2 F at each iteration, OC§ and OC§ respectively are the set of
objects that do not contribute to C§ and the set of objects contribute to C§. The number
of clusters in o 2OC§ can be replaced by a pointer to C§ is denoted as involveo,C§ . For
instance, see Table 5.3, involveo

1

,C∏
2

= 4 since c4,c5,c6 and c7 are replaced by [C2,0].
The compression gain which is the number of memory cells we earned when addingC§

into dictionary D can be defined as gain(C§,D) = LD(Odb)-LD[C§(Odb). gain(C§,D)
can be computed as follows:

Property 15. (Compression Gain). Given a dictionary D, a rGpattern C§ 2 F. gain(C§,D)
is computed as: gain(C§,D)=

P
o2O

C

§ involveo,C§ - (2£ |OC§ |+ |C§|+2)

5.5. MINING REPRESENTATIVE GRADUAL TRAJECTORY PATTERNS 91

Figure 5.12: COMPOGP algorithm in action.

Proof. After construction we have LD[C§(Odb) = L(D [C§) + L(Odb|D [C§) =
(L(D)+ |C§|+2)+L(OC§ |D)+L(OC§ |D[C§). Note that L(OC§ |D)= L(OC§ |D[C§). Fur-
thermore, 8o 2 OC§ : L(o|D[C§) = L(o|D)- involveo,C§ + 2. Thus L(OC§ |D[C§) =
L(OC§ |D) -

P
o2O

C

§ involveo,C§ + 2 £ |OC§ |. Therefore we have LD[C§(Odb) =
L(D) + L(Odb|D)-

P
o2O

C

§ involveo,C§ + 2£ |OC§ |+ |C§|+ 2. Consequently, we have
gain(C§,D)= LD(Odb)-LD[C§(Odb)=

P
o2O

C

§ involveo,C§-(2£ |OC§ |+ |C§|+2).

By applying Property 15, we can compute the compression gain when adding a new
rGpattern C§ into the dictionary D. Essentially, the gain(C§,D) depends on how many
items an object o 2 OC§ contribute to C§, the number of objects in OC§ , and the size of
C§ and all of them can be computed by scanning C§ with objects o 2OC§ . COMPOGP is
presented in Algorithm 7.

Directly Mining Representative rGpatterns

Although the COMPOGP algorithm enables us to mine representative rGpatterns, it has
some drawbacks: 1) Mining candidates is expensive. As more candidates correspond to a
larger search space, lower mint correspond to better final results. However, it is difficult
to keep the number of candidates feasible for large and dense databases and especially a
small drop of mint can lead to an enormous increase in rGpatterns. Moreover, as most
candidates will be rejected, this step is quite wasteful. 2) We need to scan the whole search
space F at every iteration that is a very expensive task and time consuming since most of
them are redundant. Thus, it quickly becomes infeasible for larger candidate collections.

With DICOMPOGP, we address these issues and propose an efficient algorithm for min-
ing representative rGpatterns directly from data. In order to do so, we first present a way to
efficiently compute the compression gain for candidates C§.

Directly Evaluating Candidate Compression Gain. given an object oi 2 OC§ and a rG-
pattern C§, the basic idea is to compute the involveo

i

,C§ , i.e. in Property 15, directly

92 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

Algorithm 7: CompoGp Algorithm
Input : Odb, Cdb, set of patterns F, int K, int mint, int minw, §
Output: Compressing patterns D

1 begin
2 F �ClusterGrowth(Cdb,mint,minw,§);
3 D �;;
4 while |D|<K do
5 foreach p 2 F do
6 L§(Odb|p) �Benefit(Odb,p);
7 p§ � argmaxpL§(Odb|p);
8 D �p§; F � F\{p§};
9 Replace all instances of p§ in Odb by its pointers;

10 output D;
11 Benefit(Odb,p)
12 begin
13 b � 0;
14 foreach o 2Odb do
15 if p.involved(o)= true then
16 b �b+benefit(o,p)-2;
17 b �b- (|p|+2);
18 output b;

without scanning oi on C§. Let us assume that there is a list of clusters Cused
o
i

µ C§

which have been replaced in the compression of oi before, last(Cused
o
i

) = cj is the last
indexed cluster in Cused

o
i

and index(cj,C∏)= j (see Figure 5.13). By applying the encoding
scheme for C∏, i.e. Property 14, only cj+1, . . . ,cn can be used to compress oi and therefore
involveo

i

,C∏ = |C∏|-index(cj,C∏)=n-j. The gain(C∏,D) can be computed as follows:

Property 16. (Compression Gain for C∏
). Given a dictionary D, a rGpattern C∏ 2 F.

gain(C∏,D) is computed as:
P

o2O
C

∏ (|C
∏|-index(last(Cused

o),C∏))-(2£|OC∏ |+|C∏|+
2)

In the implementation, instead of storing a list of clusters Cused
o
i

, we store a list of ob-
jects Oused

c
j

each of them already replaced cj by some pointers before (Figure 5.13). The
gain computation function for C∏ is as follows:

1. For each cluster c 2C∏

a. For each object o 2 c, involveo,C∏ += 1.
b. For each object o 2Oused

c , involveo,C∏ = 0.
2. gain(C∏,P) is computed as

P
o2O

C

∏ involveo,C∏ -(2£ |OC∏ |+ |C∏|+2).

5.5. MINING REPRESENTATIVE GRADUAL TRAJECTORY PATTERNS 93

Figure 5.13: An example of directly evaluating compression gain of C∏. Cused
o
i

and Oused
c
j

are lists of blurred rectangles.

In this function, involveo,C∏ will be increased by 1 whenever o belongs to the cluster
c. Then for each o which already replaced c by some pointer, involveo,C∏ will be reset to 0
since all of the clusters, before c in the objecto, cannot be used in the compression. Finally,
the gain(C∏,D) is easily computed based on involveo,C∏ .

Similarly, we also have a property for C∑ and the difference is that involveo,C∑ =
index(first(Cused

o),C∑).

Property 17. (Compression Gain for C∑
). Given a dictionary D, a rGpattern C∑ 2 F.

gain(C∑,D) is computed as: gain(C∑,D) =
P

o2O
C

∏ index(first(C
used
o),C∑)- (2 £

|OC∏ |+ |C∏|+2).

The DICOMPOGP Algorithm. Until now, given a rGpattern, we can evaluate the com-
pression gain without scanning the database. In this section, we will present an heuristic
solution to directly extract top-K representative rGpatterns.

First of all, let us denote a list of clusters as C= {c1, . . . ,cn} such that c1 ∂ . . . ∂ cn. We
have that

– 8i 2 [1,n-1] :
– if 1∑ t(ci+1)-t(ci)∑w then C is a C∑.

– if 1∑ t(ci)-t(ci+1)∑w then
 �
C = {cn,. . . ,c1} is a C∏.

From now, C= {c1, . . . ,cn} will be consider as a candidate which is refinable to rGpatterns
and furthermore c1 is the largest cluster in C.

Basic idea of DICOMPOGP. Given a largest cluster ci 2Cdb which has not been used for
data covering before. We first extract all the candidatesC= {ci,ci+1, . . . ,ci+n} and compute
their compression gains by applying Properties 16 and 17. The best candidate C which has
the highest compression gain will be chosen to cover the data. If compression is improved,
the candidate is accepted otherwise it is rejected. If accepted, all the clusters c 2 C will be

94 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

Table 5.4: An illustrative example of moving object data.

t1 t2 t3 t4 t5 t6 t7 t8
c1 c2 c3 c4 c5 c6 c7 c8

o1 1 1
o2 1 1 1 1 1
o3 1 1 1 1
o4 1 1 1 1 1 1

Figure 5.14: An illustration of DICOMPOGP in Table 5.4. c5 is the largest cluster among
c1, . . . ,c8.

considered as used clusters. The process continues with the other largest clusters and will
end when there are K interesting maximal rGpatterns in D.

DICOMPOGP also employs depth-first-search approach on the cluster set Cdb. To re-
duce the search space, we adapt the proposed pruning rules in the CLUSTERGROWTH. Let
us first consider the Di-Graduality Pruning rule as follows:

Property 18. (Di-Graduality Pruning). Given a candidate C = {c1,c2, . . . ,cn} with c1 ∂
. . . ∂ cn, a cluster c 0, and a window size w. There is no strict superset C 0 ∂ (C[c 0) s.t. C 0

(resp.
 �
C 0) is a rGpattern if:

� �
C =C∏ : (t(cn)-t(c 0)>w)_ (cn+ c 0)
C=C∑ : (t(c 0)-t(cn)>w)_ (cn+ c 0)

(5.7)

For instance, see Table 5.4 and Figure 5.14, the node {c5,c4,c3} is pruned since it suffers
the graduality, i.e. c4 6∂ c3. For conciseness reason, we do not show the nodes pruned by
Di-Graduality Pruning. Furthermore, the Di-Backward Pruning can be defined as follows:

5.5. MINING REPRESENTATIVE GRADUAL TRAJECTORY PATTERNS 95

Property 19. (Di-Backward Pruning). Given a candidate C= {c1,c2, . . . ,cn} with c1 ∂ . . .∂
cn. If there exists a cluster c 0 such that:

� �
C =C∏ : t(c1)> t(c 0)> t(cn)^C 0 =

 ���
C[c 0

C=C∑ : t(c1)< t(c)< t(cn)^C 0 =C[c 0 (5.8)

and C 0 satisfies the condition 2 - Definition 17 (i.e. graduality condition) then any supersets
of C are not maximal rGpatterns. Thus, C subtrees need to be pruned.

For instance, see Figure 5.14, all the subtrees of the node labeled 5 {c5,c3,c1} are pruned

since
 ��������
{c5,c3,c2,c1} = {c1,c2,c3,c5} satisfies the graduality condition. Similarly, we also

have the Di-Actual Maximum rule as follows:

Property 20. (Di-Actual Maximum Rule). Given a candidateC= {c1, . . . ,cn}with c1 ∂ . . .∂
cn. If there exists a cluster c 0 such that:

� �
C =C∏ : t(cn)> t(c 0)^C 0 =

 ���
C[c 0

C=C∑ : t(cn)< t(c 0)^C 0 =C[c 0 (5.9)

and C 0 satisfies the condition 2 - Definition 17 (i.e. graduality condition) then C is not max-
imal.

For instance, the node labeled 3 {c5,c3} is not maximal since
 ������
{c5,c3,c2}= {c2,c3,c5} also

satisfies the graduality condition. Similar to Theorem 1, we also have that if a candidate
passes all the pruning rules then it is an interesting maximal rGpattern. The adaptation of
the three pruning rules above efficiently eliminates a large number of useless candidates.

For instance, see Table 5.4 and Figure 5.14, we have 5 candidates
�
{c5,c3,c2,c1},

{c5,c4}, {c5,c6}, {c5,c7}, {c5,c8}

. Since C= {c5,c3,c2,c1} has the highest compression gain

and the compression is improved, it is considered as the best candidate.
 �
C is a represen-

tative interesting maximal rGpattern C∏. We give the pseudo-code in Algorithm 8.
Memory consumption analysis. Let us denote F=

P
p2F |p|, Odb =

P
o2O

db

|o|, Cdb =P
c2C

db

|oK(c)|, D=
P

C§2P |C
§|. Additionally, |F|, |Tdb| and |Cdb| respectively are the num-

ber of candidates in F, the number of timestamps in Tdb and the number of clusters in
Cdb.

For the COMPOGP, we need to store F,Odb,Cdb,Tdb and D in memory. Thus, the
needed memory is F+Odb+ Cdb + |Tdb|+ D. In the other hand, instead of storing all
the candidates F, at a specific moment DICOMPOGP only needs to store a set of candi-
dates C containing the largest cluster ci. In average, the number of candidates which
contain a specific cluster ci is F

|C
db

|
and average size of a candidate is F

|F| . Thus, the

average size of all the candidates C is F£F
|C

db

|£|F| ø F since |Cdb|£ |F| ¿ F. Additionally,

F ¿ Odb,Cdb,D, |Tdb| usually. Consequently, the average needed memory for DICOM-
POGP is F£F

|C
db

|£|F|+Odb+Cdb+ |Tdb|+D which is greatly smaller than the one of COMPOGP.

96 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

Algorithm 8: DiCompoGp Algorithm
Input : Database Odb, cluster database Cdb, int K, int mint, int w
Output: Compressing patterns P

1 begin
2 P �;;
3 while |P|<K do
4 c1 �biggestCluster(Cdb);
5 if c1 6=; then
6 Cands � extractCandidate(Cdb,c1,mint,w);
7 C �argmaxC 02Cands(compression_gain(C 0));
8 else
9 output P;

10 P �P[C;
11 Replace all instances of C in Odb by its pointers;
12 Remark all clusters in C as used clusters in Cdb;
13 output P;

5.6 Experimental Results on Mining Representative
rGpatterns

In the comparison, we compare the set of patterns produced by DICOMPOGP, COM-
POGP and CLUSTERGROWTH 6. Additionally, to retrieve all the patterns, in the reported
experiments the default value of mint is 1.

To show the parameter sensitiveness and efficiency of the proposed algorithms, as in
[23] [8] [12], we also generate a large synthetic dataset using Brinkhoff’s network 7-based
generator of moving objects. We generate 500 objects (|Odb| = 500) for 104 timestamps
(|Tdb|= 104) using the generator’s default map, i.e. Copenhagen road network, with slow
moving speed. There are 5£106 points in total. DBScan (minpts= 3,eps= 300) is applied
to obtain clusters at each timestamp. Note that w= 1,000 days for this synthetic dataset.

Compressibility

We measure the compressibility of the algorithms by using their top-K patterns as dic-
tionaries for encoding the data. The compression gain could be calculated as the sum of
the compression gain returned after each step. Additionally, to illustrate the difference be-

6. Note that in [10], the CLUSTERGROWTH algorithm outperforms traditional algorithms such as CuTS*
[18] (convoy mining) and ObjectGrowth [23] (closed swarm mining) in terms of performance and thus we
will only consider the CLUSTERGROWTH and not all.

7. http://iapg.jade-hs.de/personen/brinkho↵/generator/

http://iapg.jade-hs.de/personen/brinkhoff/generator/

5.6. EXPERIMENTAL RESULTS ON MINING REPRESENTATIVE RGPATTERNS 97

(a) Swainsoni dataset. (b) Buffalo dataset.

(c) Synthetic dataset.

Figure 5.15: Compressibility (higher is better) of different algorithms.

tween MDL-based approaches and standard support-based approaches, we also employ
the set of top-K highest covering area rGpatterns which stands for the CLUSTERGROWTH

algorithm.
Figure 6.5 shows the compression gain of different algorithms. We can consider that

DICOMPOGP, COMPOGP are significantly better than CLUSTERGROWTH. Another impor-
tant property is that COMPOGP algorithm gives highly compressing patterns when K is
small. However, with larger K it is clear that DICOMPOGP is more effective and outper-
forms the other algorithms. The reason is that by considering largest clusters which have
not been used for data covering before, DICOMPOGP tends to choose patterns which do
not overlap with the other ones in the dictionary P. Therefore, new patterns which will
be added into P usually cover non-overlapping part of the data. Meanwhile, COMPOGP

does not take into account this point. However, the largest cluster-based rGpatterns are
not always the best candidates and therefore with small K, COMPOGP is more effective.

Running time

Figure 5.16 shows that the DICOMPOGP is the most efficient algorithm meanwhile
COMPOGP is the worst. This is because: 1) COMPOGP is a post-processing algorithm which

98 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

(a) Swainsoni dataset. (b) Buffalo dataset.

(c) Synthetic dataset.

Figure 5.16: Running time of different algorithms.

Table 5.5: The number of all the rGpatterns in datasets.

Dataset Swainsoni Buffalo Synthetic
#rGpatterns 207 784 91,114

needs extra time to obtain top-K representative rGpatterns. 2) DICOMPOGP is better than
CLUSTERGROWTH since it only needs to extract K, i.e. K is usually small, rGpatterns in-
stead of a large number of all the candidates (see Table 5.5). 3) the DICOMPOGP algorithm
computes the candidate compression gain without scanning the database.

Additionally, Figure 5.17 shows that the differences between rGpattern generation task
by applying CLUSTERGROWTH, mining top-K representative patterns from all the candi-
dates and DICOMPOGP are significant. Although CLUSTERGROWTH is known as a very
efficient algorithm [10], it is wasteful to extract all the rGpatterns and then select top-K
informative ones from them.

5.6. EXPERIMENTAL RESULTS ON MINING REPRESENTATIVE RGPATTERNS 99

Figure 5.17: rGpattern generation task vs post-processing task vs DICOMPOGP on Synthetic
dataset.

(a) |Odb|. (b) |Tdb|.

Figure 5.18: The DiCompoGp scalability on Synthetic dataset.

Scalability

In order to show the scalability of the DICOMPOGP algorithm, we compare COMPOGP

and DICOMPOGP by varying the size, i.e. |Odb| and |Tdb|, of the synthetic dataset. Fig-
ure 5.18 shows that the DICOMPOGP is almost linear in terms of execution time. Another
important point is that COMPOGP is more sensitive than DICOMPOGP. This is because
COMPOGP has to scan the database to compute the compression gain for each candidate
at each iteration. Therefore, when the data size increases, it takes more computation time.
Meanwhile, DICOMPOGP can avoid the database scanning by applying Properties 16 and
17 and thus it is less sensitive.

100 CHAPTER 5. MINING TIME RELAXED GRADUAL MOVING OBJECT CLUSTERS

5.7 Discussion

In this chapter, we propose the concepts of rGpattern and interesting maximal rGpat-
tern. These concepts enable the discovery of interesting movement patterns which capture
the object moving trends. A novel method, ClusterGrowth is proposed to efficiently dis-
cover a complete set of interesting maximal rGpatterns. The proposed algorithm effective-
ness, efficiency, parameter sensitiveness as well as the pattern meaning are demonstrated
using real and large synthetic datasets.

This chapter opens up several avenues for short time research. One of the future direc-
tions is to apply maximal rGpattern in different applications. For instance, in bibliographic
network analysis, ClusterGrowth algorithm can be exploited to analyze temporal evolution
of research communities regarding specific topics. In this direction, an example of patterns
could be "from 2010 to 2012, the more time passes, the more papers are published in big data
analysis field".

Another direction is to categorize maximal rGpatterns into different representative pat-
tern groups. Naturally, the number of maximal rGpatterns properly is large and therefore
it can be time consuming for analysts to exploit the moving object behaviors. Meanwhile,
many patterns could be similar to each other since they share common objects and routes.
The open issue here is to provide maximal rGpattern similarity (resp. dissimilarity) defini-
tion so that we can report distinct groups of similar patterns to end-users.

Nevertheless, after the extraction, the end user can be overwhelmed by a huge number
of different movement patterns, i.e. convoys, closed swarms, group patterns, rGpatterns,
although only a few of them are useful. However, relatively few researchers have addressed
the problem of reducing movement pattern redundancy. In another context, i.e. frequent
itemsets, the Krimp algorithm [31], using the minimum description length (MDL) prin-
ciple [6], proposes to reduce the amount of itemsets by using an efficient encoding and
then provide the end-user only with a set of informative patterns. However, they only work
well with individual kind of patterns, i.e. itemset. Meanwhile there are different move-
ment patterns and thus considering only specific kind of patterns results in not optimal
compression patterns. Additionally, they can be overlap each other as well so enforcing
non-overlapping patterns may cause losing meaningful patterns.

All of these challenging issues are expressed in the next chapter, "Mining Representative
Movement Patterns through Compression".

CHAPTER

6
Mining Representative Movement

Patterns through Compression

Preamble

As we have seen in the previous chapter, mining trajectories (or moving object pat-
terns) from spatio-temporal data is an active research field. Most of the researches are
devoted to extract trajectories that differ in their structure and characteristic in order
to capture different object behaviors. The first issue is constituted from the fact that all
these methods extract thousand of patterns resulting in a huge amount of redundant
knowledge that poses limit in their usefulness. The second issue is supplied from the
nature of spatio-temporal database from which different types of patterns could be ex-
tracted. This means that using only a single type of patterns is not sufficient to supply
an insightful picture of the whole database.

Motivating by these issues, we develop a Minimum Description Length (MDL)-based
approach that is able to compress spatio-temporal data combining different kinds of
moving object patterns. The proposed method results in a rank of the patterns involved
in the summarization of the dataset. In order to validate the quality of our approach,
we conduct an empirical study on real data to compare the proposed algorithms in
terms of effectiveness, running time and compressibility.

6.1 Introduction

In this chapter, we adapt the MDL principle for mining representative movement pat-
terns. However, one of the key challenges in designing an MDL-based algorithm for mov-
ing object data is that the encoding scheme needs to deal with different pattern structures

101

102
CHAPTER 6. MINING REPRESENTATIVE MOVEMENT PATTERNS THROUGH

COMPRESSION

Figure 6.1: An example of moving object
database. Shapes are movement pat-
terns, oi,ci respectively are objects and
clusters.

Figure 6.2: An example of pattern over-
lapping, between closed swarms (rect-
angles) and rGpatterns (step shapes),
in Figure 1.1. Overlapping clusters are
c1,c3,c4,c5 and c6.

which can cover different parts of the data. If we only consider different kinds of patterns
individually then it is difficult to obtain an optimal set of compression patterns.

For instance, see Figure 6.1, we can notice that there are three different patterns, with
different structures, that cover different parts of the moving object data. If we only keep
patterns having a rectangular shape then we lose the other two patterns and viceversa.

Furthermore, although patterns express different kinds of knowledge, they can overlap
each other as well. Thus, enforcing non-overlapping patterns may result in losing inter-
esting patterns. For instance, see Figure 6.2, there are four overlapping patterns. Unfortu-
nately, Krimp algorithm does not allow overlapping patterns and thus it has to select one
and obviously loses the other one. However, they express very different knowledge and
thus, by removing some of them, we cannot fully understand the object movement behav-
ior. Therefore, the proposed encoding scheme must to appropriately deal with the pattern
overlapping issue.

Motivated by these challenges, we propose an overlapping allowed multi-pattern struc-
ture encoding scheme which is able to compress the data with different kinds of patterns.
Additionally, the encoding scheme also allows overlapping between different kinds of pat-
terns. To extract compression patterns, a naive greedy approach, named NAIVECOMPO, is
proposed. To speed up the process, we also propose the SMARTCOMPO algorithm which
takes into account several useful properties to avoid useless computation. Experimental
results on real-life datasets demonstrate the effectiveness and efficiency of the proposed
approaches by comparing different sets of patterns.

The remaining sections of the chapter are organized as follows. Problem statement will
be presented in Section 2. Encoding scheme and mining compression movement pattern
algorithms will be respectively presented in Sections 3 and 4. Sections 5 and 6 show our
comprehensive experiments and discussion.

6.2. PROBLEM STATEMENT 103

6.2 Problem Statement

Eliminating the number of uninteresting patterns is an emerging task in many real
world cases. One of the proposed solutions is the MDL principle [4]. Let us start explaining
this principle in the following definition:

Definition 22. (Hypothesis). A hypothesis P is a set of patterns P= {p1,p2, . . . ,ph}.

Given a scheme S, let LS(P) be the description length of hypothesis P and LS(Odb|P)
be the description length of data Odb when encoded with the help of the hypothesis and
an encoding scheme S. Informally, the MDL principle proposes that the best hypothe-
sis always compresses the data most. Therefore, the principle suggests that we should
look for hypothesis P and the encoding scheme S such that LS(Odb)= LS(P)+LS(Odb|P)
is minimized. For clarity sake, we will omit S when the encoding scheme is clear from
the context. Additionally, the description length of Odb given P is denoted as LP(Odb) =
L(P)+L(Odb|P).

In this chapter, the hypothesis is considered as a dictionary of movement patterns P.
Furthermore, as in [21], we assume that any number or character in data has a fixed length
bit representation which requires a unit memory cell. In our context, the description length
of a dictionary P can be calculated as the total lengths of the patterns and the number
of patterns (i.e. L(P) =

P
p2P |p|+ |P|). Furthermore, the length of the data Odb when

encoded with the help of dictionary P can be calculated as L(Odb|P)=
P

o2O
db

|o|.
The problem of finding compressing patterns can be formulated as follows:

Definition 23. (Compressing Pattern Problem). Given a moving object databaseOdb, a set of
pattern candidates F= {p1,p2, . . . ,pm}. Discover an optimal dictionary P§ which contains
at most K movement patterns so that:

P§ = argmin
P

(L§
P(Odb)) = argmin

P
(L§(P)+L§(Odb|P)),P

§ µ F (6.1)

A key issue in designing an MDL-based algorithm is: how can we encode data given a
dictionary? The fact is that if we consider closed swarms individually, Krimp algorithm can
be easily adapted to extract compression patterns. However, the issue here is that we have
different patterns (i.e. closed swarms and rGpatterns) and Krimp algorithm has not been
designed to deal with rGpatterns. It does not supply multi-pattern types in the dictionary
that may lead to losing interesting ones. Furthermore, as mentioned before, we also have
to address the pattern overlapping issue. In this work, we propose a novel overlapping
allowed multi-pattern structures encoding scheme for moving object data.

104
CHAPTER 6. MINING REPRESENTATIVE MOVEMENT PATTERNS THROUGH

COMPRESSION

Table 6.1: An illustrative example of database and dictionary in Figure 6.2. 0̄, 1̄ and 2̄ re-
spectively are pattern types: closed swarm, rGpattern∏ and rGpattern∑.

Odb Encoded Odb Dictionary P
o1= c2c5c6c7c8c9 o1= c2[p2,4]
o2= c2c4c5c6c7c8c9 o2= c2c4[p2,4] p1= c1c3c4c5, 1̄
o3= c1c3c4c5c6c10 o3=p3c6 p2= [p1,3]c6c7c8c9, 2̄
o4= c1c3c4c5c10 o4=p3 p3= [p1,0]c10, 0̄

6.3 Encoding Scheme

6.3.1 Movement Pattern Dictionary-based Encoding

Before discussing our encoding for moving object data, we revisit the encoding scheme
used in the Krimp algorithm [31]. An itemset I is encoded with the help of itemset patterns
by replacing every non-overlapping instance of a pattern occurring in I with a pointer to
the pattern in a code table (dictionary). In this way, an itemset can be encoded to a more
compact representation and decoded back to the original itemset.

In this chapter we use a similar dictionary-based encoding scheme for moving object
database. Given a dictionary consisting of movement patterns P= {p1, . . . ,pm}, an object
o 2 Odb containing a list of clusters is encoded by replacing instances of any pattern pi
in o with pointers to the dictionary. An important difference between itemset data and
moving object data is that there are different kinds of movement patterns which have their
own characteristic. The fact is that if a closed swarm cs occurs in an object o then all the
clusters in cs are involved in o. While an object can involve in only a part of a rGpattern
and viceversa.

For instance, see Figure 6.1, we can consider that o2 joins the rGpattern∏ = c1c4c6 at
c4c6. While, the closed swarm cs= c2c5c7c9 occurs in o4 and o5 entirely.

Property 21. (Encoding Properties). Given an object o which contains a list of clusters and
a pattern p= c1 . . .cn. p occurs in o or o contributes to p if:

8
<

:

(1) :p is a rGpattern∏,9i 2 [1,n]|8j∏ i,cj 2 o.
(2) :p is a rGpattern∑,9i 2 [1,n]|8j∑ i,cj 2 o.
(3) :p is a closed swarm,8j 2 [1,n],cj 2 o.

(6.2)

Proof. Case (1): after construction we have o(ci) µ o(ci+1) µ . . . µ o(cn). Additionally,
o 2 o(ci). Consequently, o 2 o(ci+1), . . . ,o(cn) and therefore 8j ∏ i,cj 2 o. Furthermore,
in Case (2): we have o(c1)∂ o(c2)∂ . . .∂ o(ci-1). Additionally, o 2 o(ci-1). Consequently,
o 2 o(c1), . . . ,o(ci-1) and therefore 8j ∑ i,cj 2 o. In Case (3), we have o 2O(cs) =

Tn
i=1 ci

and therefore 8j 2 [1,n],cj 2 o.

6.3. ENCODING SCHEME 105

Figure 6.3: An example of the approach.

For instance, see Table 6.1, we can see that for each pattern, we need to store an extra
bit to indicate the pattern type. Regarding to closed swarm, by applying Property 21, in
the object o we only need to replace all the clusters, which are included in closed swarm,
by a pointer to the closed swarm in the dictionary. However, in gradual trajectories (i.e.
rGpattern∏, rGpattern∑), we need to store with the pointer an additional index to indi-
cate the cluster ci. Essentially, ci plays the role of a starting involving point (resp. ending
involving point) of the object o in a rGpattern∏ (resp. rGpattern∑).

6.3.2 Overlapping Movement Pattern Encoding

Until now, we have already presented the encoding function for different patterns when
encoding an object o given a pattern p. In this section, the encoding scheme will be com-
pleted by addressing the pattern overlapping problem so that overlapped patterns can exist
in the dictionary P.

See Figure 6.3, a selected pattern p 2 P and a candidate p 0 2 F overlap each other at
c1c2c3 on object o. Assume that o is encoded given p then o = pc4c5. As in Krimp al-
gorithm, p 0 is still remained as origin and then p 0 cannot be used to encode o despite of
p 0 occurs in o. This is because they are mismatched (i.e. o = pc4c5,p

0 = c1c2c3c4). To
solve the problem, we propose to encode p 0 given p so that o and p 0 will contain the same
pointer to p (i.e. p 0 = pc4). Now, the regular encoding scheme can be applied to encode
o given p 0 (i.e. o= p 0c5). We can consider that p and p 0 are overlapping but both of them
can be included in the dictionary P. Note: in our context, overlapped clusters are counted
only once.

Main idea. Given a dictionary P and a chosen pattern p (i.e. will be added into P), a
set of pattern candidates F. The main idea is that we first encode the database Odb given

106
CHAPTER 6. MINING REPRESENTATIVE MOVEMENT PATTERNS THROUGH

COMPRESSION

Table 6.2: Correlations between pattern p and pattern p 0 in F. O,� and X respectively
mean "overlapping allowed, regular encoding", "overlapping allowed, no encoding" and
"overlapping not allowed".

p
cs rGpattern∏ rGpattern∑

p 0
cs X O O

rGpattern∏ � X O
rGpattern∑ � O X

pattern p. Secondarily, we propose to encode all candidates p 0 2 F given p in order to in-
dicate the overlapping clusters between p and p 0. After that, there are two kinds of pattern
candidates which are encoded candidates and non-encoded candidates. Next, the best
candidate in F will be put into P and used to encode Odb and F. The process will be repeat
until obtaining top-K patterns in the dictionary P.

Let us consider the correlations between a pattern p 2P and a candidate p 0 2 F to iden-
tify whenever encoding p 0 given p is needed. The correlation between p and p 0 is illus-
trated in Table 6.2. First of all, we do not allow overlap between two patterns of the same
kind since they represent the same knowledge that may lead to extracting redundant infor-
mation.

Next, if p is a closed swarm then p 0 do not need to be encoded given p. This is because
there are objects which contribute to gradual trajectories p 0 but not closed swarm. These
objects cannot be encoded using p and therefore p 0 needs to be remained the same and
the regular encoding scheme can be applied. Otherwise, p 0 will never be chosen later since
there are no objects in Odb which match p 0. For instance, see Figure 6.2, the objects o1
and o4 do not contribute to the closed swarm p = c4c5c6. Thus, if the gradual trajectory
p 0 = c1c3c4c5 is encoded given p to indicate the overlapping clusters c4c5 then that leads
to a mismatched statement between o1,o4 and the gradual trajectory p 0.

Until now, we already have two kinds of candidates p 0 2 F (i.e. non-encoded and en-
coded candidates). Next, some candidates will be used to encode the database Odb. To
encode an object o 2Odb given a non-encoded candidate p 0, the regular encoding scheme
mentioned in Section 6.3.1 can be applied. However, given an encoded candidate p 0, we
need to perform an additional step before so that the encoding scheme can be applied reg-
ularly. This is because the two pointers referring to the same pattern p 2 P from o (e.g.
[p,k]) and from p 0 (e.g. [p,l]) can be different (i.e. k 6= l) despite the fact that p 0 is essen-
tially included in o. That leads to a mismatched statement between o and p 0 and thus o
cannot be encoded given p 0.

For instance, see Figure 6.2 and Table 6.1, given a gradual trajectory pattern
rGpattern∏ p = p1 = c1c3c4c5, a rGpattern∑ p 0 = p2 = c5c6c7c8c9, the object
o2 = c2c4c5c6c7c8c9. We first encodes o2 given p such that o2 = c2[p,2]c6c7c8c9. Then,

6.3. ENCODING SCHEME 107

p 0 is encoded given p, i.e. p 0 = [p,3]c6c7c8c9. We can consider that the two pointers
referring to p from o2 (i.e. [p,2]) and from p 0 (i.e. [p,3]) are different and thus o2 and p 0 are
mismatched. Therefore, o2 cannot be encoded given p 0 despite the fact that p 0 essentially
occurs in o2.

To deal with this issue, we simply recover uncommon clusters between the two point-
ers. For instance, to encode o2 by using p 0, we first recover uncommon cluster such that
o2 = c2c4[p,3]c6c7c8c9. Note that [p,2] = c4[p,3]. Since p 0 = [p,3]c6c7c8c9, o2 is encoded
given p 0 such that o2= c2c4[p 0,4].

Definition 24. (Uncommon Clusters for rGpattern∏). Given a rGpattern∏, p= c1 . . .cn
and two pointers refer to p, [p,k] and [p,l] with k ∑ l. uncom(p,k,l) = ckck+1 . . .cl-1

is called an uncommon list of clusters between [p,k] and [p,l]. Note that [p,k] =
ckck+1 . . .cl-1[p,l].

Similarly, we also have uncom(p,k,l) in the case p is a rGpattern∑. Until now, we are
able to recover uncommon clusters between two pointers which refer to a pattern. Now,
we start proving that given an object o 2Odb and a candidate p 0 2 F, if p 0 occurs in o then o
can be encoded using p 0 even though they contain many pointers to other patterns. First,
let us consider if p is a rGpattern∏ and p 0 is a closed swarm.

Lemma 7. Given a rGpattern∏, p = c1 . . .cn, an object o and a closed swarm p 0 2 F. In
general, if o and p 0 refer to p then o= xo[p,k]yo and p 0 = xp 0[p,l]yp 0 . Note that xo,yo,xp 0

and yp 0 are lists of clusters. If o contributes to p 0 then:

k∑ l^o= xo uncom(p,k,l)[p,l] yo (6.3)

Proof. After construction if k> l then 9ci 2 {cl, . . . ,ck}(µ p) s.t. ci 2 p 0^ci 62 o. Therefore,
o does not contribute to p 0 (Property 21). That suffers the assumption and thus we have
k ∑ l. Deal to the Definition 24, [p,k] = uncom(p,k,l)[p,l]. Consequently, we have o=
xo uncom(p,k,l)[p,l] yo.

By applying Lemma 7, we have o = xo uncom(p,k,l)[p,l] yo and p 0 = xp 0[p,l]yp 0 .
Then we can apply the regular encoding scheme to encode o given p 0. let us assume

that each object o 2 Op 0 has a common list of pointers to other patterns as
���!
(p 0,o) =�

([p1,l1], [p1,k1]), . . . ,([pn,ln], [pn,kn])

where 8i 2 [1,n], [pi,li] is the pointer from p 0 to
pi and [pi,ki] is the pointer from o to pi. If we respectively apply Lemma 7 on each pointer

in
���!
(p 0,o) then o can be encoded given p 0. Similarly, we also have the other lemmas for

other pattern types.
Data description length computation. Until now, we have defined an encoding

scheme for movement patterns. The description length of the dictionary in Table 6.1 is

108
CHAPTER 6. MINING REPRESENTATIVE MOVEMENT PATTERNS THROUGH

COMPRESSION

calculated as L(P)= |p1|+1+ |p2|+1+ |p3|+1+ |P|= 4+1+6+1+3+1+3= 19. Similarly,
description length of o2 is L(o2|P)= 2+ |[p2,4]|= 4.

Note: for each pattern, we need to consider an extra memory cell of pattern type. Ad-
ditionally, for any given dictionary P and the data Odb, the cost of storing the timestamp
for each cluster is always constant regardless the size of the dictionary.

6.4 Mining Compression Object Movement Patterns

In this section we will present the two greedy algorithms which have been designed to
extract a set of top-K movement patterns that compress the data best.

6.4.1 Naive Greedy Approach

The greedy approach takes as input a database Odb, a candidate set F and a parameter
K. The result is the optimal dictionary which encodes Odb best. Now, at each iteration of
NaiveCompo, we select candidate p 0 which compresses the database best. Next, p 0 will be
added into the dictionaryP and then the databaseOdb and Fwill be encoded givenp 0. The
process is repeated until we obtain K patterns in the dictionary.

To select the best candidate, we generate a duplication of the database Od
db and for

each candidate p 0 2 F, we compress Od
db. The candidate p 0 which returns the small-

est data description length will be considered as the best candidate. Note that p 0 =
argminp§2F(Lp§(Odb)). The NAIVECOMPO is presented in Algorithm 9.

6.4.2 Smart Greedy Approach

The disadvantage of naive greedy algorithm is that we need to compress the duplicated
database Od

db for each pattern candidate at each iteration. However, we can avoid this
computation by considering some useful properties as follows.

Given a patternp 0, Op 0 andOp 0 respectively are the set of objects that do not contribute
to p 0 and the set of objects involving in p 0. The compression gain which is the number of
memory cells we earned when adding p 0 into dictionary can be defined as gain(p 0,P) =
LP(Odb)-LP[p 0(Odb).

The fact is that we can compute the compression gain by scanning objects o 2Op 0 with
p 0. Each pattern type has its own compression gain computation function. Let us start
presenting the process by proposing the property for a closed swarm p 0.

Property 22. Given a dictionary P, a closed swarm p 0 2 F. gain(p 0,P) is computed as:

gain(p 0,P)= |Op 0 |£ |p 0|- (

O
p

0X

o

���!
(p 0,o)X

i

|li-ki|+ |p 0|+ |Op 0 |+2) (6.4)

6.4. MINING COMPRESSION OBJECT MOVEMENT PATTERNS 109

Algorithm 9: NaiveCompo
Input : Database Odb, set of patterns F, int K
Output: Compressing patterns P

1 begin
2 P �;;
3 while |P|<K do
4 foreach p 2 F do
5 Od

db �Odb;

6 L§(Od
db|p) �CompressionSize(Od

db,p);

7 p§ � argminpL
§(Od

db|p);
8 P �p§; F � F\{p§};
9 Replace all instances of p§ in Odb by its pointers;

10 Replace all instances of p§ in F by its pointers;
11 output P;
12 CompressionSize(Od

db,p)
13 begin
14 size � 0;
15 foreach o 2Odb do
16 if p.involved(o)= true then
17 Replace instance of p in o by its pointers;
18 foreach o 2Odb do
19 size � size+ |o|;
20 size � size+ |p|+1;
21 output size;

Proof. After construction we have LP[p 0(Odb)= L(P[p 0)+L(Odb|P[p 0)= (L(P)+ |p 0|+

2)+L(Op 0 |P)+L(Op 0 |P[p 0). Note that L(Op 0 |P)= L(Op 0 |P[p 0). Furthermore, 8o 2Op 0 :

L(o|P[p 0)= L(o|P)- |p 0|+1+
P���!

(p 0,o)
i |li-ki|. Thus, L(Op 0 |P[p 0)=

P
o2O

p

0 L(o|P[p 0)=

L(Op 0 |P)- |Op 0 |£ |p 0|+
PO

p

0
o

P���!
(p 0,o)
i |li- ki|+ |Op 0 |. Therefore, we have LP[p 0(Odb) =

L(P)+L(Op 0 |P)+L(Op 0 |P)- |Op 0 |£ |p 0|+(
PO

p

0
o

P���!
(p 0,o)
i |li-ki|+ |p 0|+ |Op 0 |+ 2). Note

that L(Odb|P) = L(Op 0 |P)+L(Op 0 |P). Consequently, we have gain(p 0,P) = |Op 0 |£ |p 0|-

(
PO

p

0
o

P���!
(p 0,o)
i |li-ki|+ |p 0|+ |Op 0 |+2).

By applying Property 22, we can compute the compression gain when adding a new
closed swarm p 0 into the dictionary P. In the Equation 6.4, the compression gain(p 0,P)

110
CHAPTER 6. MINING REPRESENTATIVE MOVEMENT PATTERNS THROUGH

COMPRESSION

Algorithm 10: SmartCompo
Input : Database Odb, set of patterns F, int K
Output: Compressing patterns P

1 begin
2 P �;;
3 while |P|<K do
4 foreach p 2 F do
5 L§(Odb|p) �Benefit(Odb,p);
6 p§ � argminpL

§(Odb|p);
7 P �p§; F � F\{p§};
8 Replace all instances of p§ in Odb by its pointers;
9 Replace all instances of p§ in F by its pointers;

10 output P;
11 Benefit(Od

db,p)
12 begin
13 b � 0;
14 foreach o 2Odb do
15 if p.involved(o)= true then
16 b �b+benefit(o,p);
17 b �b+ |p|+1;
18 output b;

depends on the size of p 0, O(p 0) and the number of uncommon clusters that can be com-
puted by scanning p 0 with objects o 2 O(p 0) without encoding Odb. Due to the space
limitation, we will not describe properties and proofs for the other pattern types (i.e.
rGpattern∏,rGpattern∑) but they can be easily derived in a same way as Property 22.

To select the best candidate at each iteration, we need to chose the candidate which
returns the best compression gain. SMARTCOMPO is presented in the Algorithm 10.

6.5 Experimental Results

A comprehensive performance study has been conducted on real-life datasets. All the
algorithms are implemented in C++, and all the experiments are carried out on a 2.8GHz
Intel Core i7 system with 4GB Memory. The system runs Ubuntu 11.10 and g++ 4.6.1.

As in [23] [10], the two following datasets 1 have been used during experiments: Swain-
soni dataset includes 43 objects evolving over 764 different timestamps. The dataset was
generated from July 1995 to June 1998. Buffalo dataset concerns 165 buffaloes and the

1. http://www.movebank.org

6.5. EXPERIMENTAL RESULTS 111

(a) rGpattern∏ (b) Closed swarm (c) rGpattern∑

Figure 6.4: Top-3 typical compression patterns.

tracking time from year 2000 to year 2006. The original data has 26610 reported locations
and 3001 timestamps. Similarly to [18] [23], we first use linear interpolation to fill in the
missing data. Furthermore, DBScan [4] (MinPts= 2;Eps= 0.001) is applied to generate
clusters at each timestamp. In the comparison, we compare the set of patterns produced
by SmartCompo with the set of closed swarms extracted by ObjectGrowth [23] and the set
of gradual trajectories extracted by ClusterGrowth [10].

Effectiveness. We compare the top-5 highest support closed swarms, the top-5 highest
covered area gradual trajectory patterns and the top-5 compression patterns from Swain-
soni dataset. Each color represents a Swainsoni trajectory involved in the pattern.

Top-5 closed swarms are very redundant since they only express that Swainsonies move
together from North America to Argentina. Similarly, top-5 rGpatterns are also redundant.
They express the same knowledge that is "from 1996-10-01 to 1996-10-25, the more time
passes, the more objects are following the trajectory {Oregoni Nevadai Utahi Arizonai
MexicoiColombia}".

Figure 6.4 illustrates 3 patterns among 5 extracted ones by using SmartCompo. The
rGpattern∏ expresses the same knowledge with the mentioned rGpattern in the top high-
est covered area. The closed swarm expresses new information that is "after arriving South
America, the Swainsonies tend to move together to Argentina even some of them can leave
their group". Next, the rGpattern∑ shows that "the Swainsonies return back together to
North America from Argentina (i.e. 25 objects at Argentina) and they will step by step leave
their group after arriving Guatemala (i.e. 20 objects at Guatemala) since they are only 2
objects at the last stop, i.e. Oregon State".

Compressibility. We measure the compressibility of the algorithms by using their top-
K patterns as dictionaries for encoding the data. Since NaiveCompo and SmartCompo
provides the same results, we only show the compression gain of SmartCompo.

Regarding to SmartCompo, the compression gain could be calculated as the sum of the
compression gain returned after each greedy step with all kinds of patterns in F. For each

112
CHAPTER 6. MINING REPRESENTATIVE MOVEMENT PATTERNS THROUGH

COMPRESSION

(a) Swainsoni dataset (b) Buffalo dataset

Figure 6.5: Compressibility (higher is better) of different algorithms.

individual pattern type, compression gain is calculated according to the greedy encoding
scheme used for SmartCompo. They are respectively denoted as SmartCompo_CS (i.e.
for closed swarms), SmartCompo_rGi (i.e. for rGpattern∏) and SmartCompo_rGd
(i.e. for rGpattern∑). Additionally, to illustrate the difference between MDL-based ap-
proaches and standard support-based approaches, we also employ the set of top-K high-
est support closed swarms and top-K highest covered area gradual trajectories patterns.

Figure 6.5 shows the compression gain of different algorithms. We can consider that
top-K highest support or covered area patterns cannot provide good compression gain
since they are very redundant. Furthermore, if we only consider one pattern type, we
cannot compress the data best since the compression gains of SmartCompo_CS, Smart-
Compo_rGi and SmartCompo_rGd are always lower than SmartCompo. This is because
the pattern distribution in the data is complex and different patterns can cover different
parts of the data. Thus, considering one kind of patterns results in losing interesting pat-
terns and not good compression gain. By proposing overlapping allowed multi-pattern
structure encoding scheme, we are able to extract more informative patterns.

One of the most interesting phenomena is that the Swainsonies and Buffaloes have
quite different movement behavior. See Figure 6.5a, we can consider that rGpattern∏ is
the most representative movement behavior of Swainsonies since they compress the data
better than the two other ones. While closed swarm is not as representative as the other
patterns. This is because it is very easy for Swainsonies which are birds to leave the group
and congregate again at later timestamps. However, this movement behavior is not really
true for Buffaloes. See Figure 6.5b, it clear that the compression gains of closed swarms,
rGpattern∏ and rGpattern∑ have changed. The three kinds of patterns have more simi-
lar compression gain than the ones in Swainsonies. It means that Buffaloes are more closed
to each other and they move in a dense group. Thus closed swarm is more representative
compare to itself in Swainsoni dataset. Furthermore, the number of Buffaloes is very diffi-
cult to increase in a group and thus SmartCompo_rGi is lower than the two other ones.

6.6. DISCUSSION 113

(a) Swainsoni dataset (b) Buffalo dataset

Figure 6.6: Running time.

Running Time. In our best knowledge, there are no previous work which address min-
ing compression movement pattern issue. Thus, we only compare the two proposed ap-
proaches in order to highlight the differences between them. Running time of each algo-
rithm is measured by repeating the experiment in compression gain experiment.

As expected, SmartCompo is much faster than NaiveCompo (i.e. Figure 6.6). By ex-
ploiting the properties, we can directly select the best candidate at each iteration. Conse-
quently, the process efficiency is speed up.

6.6 Discussion

We have explored an MDL-based strategy to compress moving object data in order to:
1) select informative patterns, 2) combine different kinds of movement patterns with over-
lapping allowed. We supplied two algorithms NaiveCompo and SmartCompo. The latter
one exploits smart properties to speed up the whole process obtaining the same results
to the naive one. Evaluations on real-life datasets show that the proposed approaches are
able to compress data better than considering just one kind of patterns.

Even if SmartCompo is an effective algorithm, it is a straightforward approach and we
need to handle the efficiency issue. Indeed, with dense and large datasets, the number of
generated patterns is exponential and thus efficiency issue will be a key challenge. In this
report we will address this issue by providing only a potential solution without experimen-
tal results in the Perspective Chapter.

As an extra work, we also present the notion of multi-relational gradual patterns. Grad-
ual patterns highlight co-variations of attributes of the form "The more/less X, the more/less
Y". Existing techniques require all the interesting data to be in a single database relation or
table. In the next chapter, we will extends the notion of gradual pattern to the case in which
the co-variations are possibly expressed between attributes of different database relations.

CHAPTER

7
Mining Multi-Relational Gradual

Patterns

Preamble

In this chapter, we will extends the notion of gradual pattern expressed between at-
tributes of different database relations. Even this work do not directly relate to trajec-
tory mining problem, it provide a way to understand the correlation between behav-
iors in a graduality point of view.

Gradual patterns highlight co-variations of attributes of the form “The more/less X,
the more/less Y". Their usefulness in several applications has recently stimulated
the synthesis of several algorithms for their automated discovery from large datasets.
However, existing techniques require all the interesting data to be in a single database
relation or table. This chapter extends the notion of gradual pattern to the case in
which the co-variations are possibly expressed between attributes of different database
relations. The interestingness measure for this class of “relational gradual patterns" is
defined through two different criteria: Kendall’s ⌧ and gradual support. Moreover, this
chapter proposes two algorithms, named ⌧RGp and gRGp, for the discovery of rela-
tional gradual rules, and introducing efficient pruning strategies to reduce the search
space. The efficiency of the algorithms is empirically validated, and the quality of re-
lational gradual patterns is proved on real-world databases.

7.1 Introduction

Nowadays, most of information systems are based on the relational database technol-
ogy. The logical models of the data are sets of relations or tables possibly linked by foreign
key constraints. This contrasts with the usual practice in Data Mining of organizing data in

115

116 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

a single relation when they are analyzed. Relational data mining approaches [45] are char-
acterized by both their direct applicability to “multi-relational data" (MRD), i.e., standard
relational databases, and their capability of looking for patterns which involve multiple
relations.

Most of the studies on relational data mining focus on relational patterns at the tuple
level, i.e., they express relationships between tuples of different database relations. Rela-
tional association rules [43], relational naïve Bayesian classifiers [46], relational regression
models [40] and relational subgroups [56], all express patterns as either SQL queries or
first-order logic clauses with constraints between tuples or facts. Similarly, the probabilis-
tic relational models [47] define a distribution over a set of instances of a schema, and
consider the structure at the level of attribute values.

In this chapter, we focus on patterns expressing the relational structure at the attribute
level. In particular, we consider relational extensions of the class of gradual dependencies,
which express covariations of attributes of the form “The more/less X, the more/less Y" [49].
This class of patterns has a wide range of applications. For instance, with reference to the
Financial database in Figure 7.1, the gradual pattern “the higher the average salary in a dis-
trict, the bigger the deals made by inhabitants living in the district" could be useful for busi-
ness planning, while the gradual pattern “the smaller the district, the longer the duration
of the loans" provides financial promoters with some useful insights. Interestingly, these
two examples show gradual dependencies between attributes from different relations (the
average salary, the size of districts, the deal and the loan), hence they could be discovered
only in a MRD setting.

To discover this kind of patterns, we first introduce the concept of relational gradual
pattern (mrGP), and its associated support measures based on Kendall’s ⌧ [42] and grad-
ual support [44]. Then we propose an algorithm, called RGp, to discover mrGPs directly
from MRD. Mining the complete set of mrGPs is a non-trivial task since the size of the
search space is exponential in the number of numerical attributes of the multi-relational
database. To tame computational complexity, we introduce three efficient pruning strate-
gies named Complementary Pruning, Apriori Pruning and Backward Pruning to reduce
the search space and prevent unnecessary computation. RGp has two instances, named
⌧RGp and gRGp. Experiments conducted on real datasets demonstrate the effectiveness,
pattern meaning and efficiency of our methods.

The remain of this chapter is organized as follows. I will give the preliminarily defini-
tions of relational data, multi-relational gradual pattern in Section 2. Pattern occurrence
and pattern support will be introduced in Sections 3 and 4. Section 5 focuses on propos-
ing an efficient algorithm to extract multi-relational gradual patterns. Experimental results
will be conducted in Section 6 and Section 7 is our conclusion.

7.2. PRELIMINARILY DEFINITIONS 117

7.2 Preliminarily Definitions

In this section we formalize the data model, the notion of relational gradual pattern,
and its associated interestingness measure.

7.2.1 Multi-Relational Data

In this work, we assume that a database db consists of a set of tables, db= {T1, . . . ,Tn},
each of which has a schema S(Ti) = (PKi,FKi,Ai) consisting of a primary key (or sim-
ply key) PKi, possibly some foreign keys (set FKi), and at least one attribute (set Ai). For
instance, with reference to Figure 7.1, the Loan table has a key loan-ID, a foreign key
account-ID and attributes date, amount, duration, payment, status.

Foreign keys define the only possible joins between two tables. Without loss of gener-
ality, we assume that any pair of tables have at most one foreign key linking them. Indeed,
databases can always be losslessly recoded such that this assumption holds.

Moreover, we assume that all attributes have a numerical domain, since we are not
interested in finding patterns among categorical attributes. The numerical domain of
the attribute Ai

j is denoted as Dom(Ai
j). Similarly, the domain of table Ti is denoted by

Dom(Ti), and corresponds to the Cartesian product of all domains involved, i.e.,

Dom(Ti)=Dom(PKi)£
Y

FKi

j

2FKi

Dom(FKi
j)£

Y

Ai

j

2Ai

Dom(Ai
j) (7.1)

Each table is also associated with a set of tuples, the table extension. Henceforth, the
distinction between the table and its extension is blurred, and we use the notation t 2 Ti to
indicate that a tuple t is in extension of table Ti.

The database as whole should satisfy referential integrity, i.e., foreign-key values in a
tuple refer to existing tuples in the table for which this foreign key refers to. Formally, if
t 2 Ti and S(Ti) = (PKi,FKi,Ai), then for each FKi

j 2 FKi whose domain is Dom(PKl),

the following condition must hold: there exists a tuple t 0 2 Tl such that ⇡FKi

j

(t) =⇡PKl

(t 0),

where ⇡ is the usual projection operator of relational algebra.

7.2.2 Gradual Pattern: Single Relation vs Multi-Relations

Mining gradual pattern from single relation data has been studied for a long time [44]
[42] [57]. However, existing approaches cannot be directly applied on multi-relational data
context. One of potential solutions is to join the relations to be a single table and then
traditional approaches such as GRITE [44] and proposed algorithms in [42] can be applied
to extract gradual patterns. This simplicity has some drawbacks.

First of all, joining all the relations will generate a huge amounts of data even for
small dataset. The number of transaction after joining all the relations in the database

118 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

db = {T1, . . . ,Tn} can reach to
Qn

i |T
i| where |Ti| is the number of transactions in rela-

tion Ti. For instance, see Financial database illustrated in Figure 7.1, there could be 1026

transactions totally in this case. It rapidly becomes inefficient for existing gradual pattern
mining algorithms.

Second, the total number of pattern candidates is 22
P

n

i=1

|Ai| where |Ai| is the number
of attributes in Ai. Computing such large number of candidates from such huge single-
relational database quickly becomes infeasible for larger databases or candidate collec-
tions. Moreover, as many patterns which have support values lower than support threshold
will be ignored, joining all the relations together is quite wasteful.

Another important issue is that joining all the relations will lead to an incorrect mean-
ing of pattern support. Indeed, each tuple is considered as an object in single relational
data and therefore all possible pairs of tuples will be taken into account in pattern support
definition [44] [42] [57]. However, different tuples in the joining table can represent the
same object since they can have the same primary key that results in a set of confusing
gradual patterns. This issue will be clearly explained in Section 4: Pattern Support.

In this chapter, we address these issues. First of all we generalize gradual pattern defini-
tion from single relation data to multi-relational data. Then we further design an efficient
algorithm to directly extract the complete set of all gradual patterns from a multi-relational
dataset.

7.2.3 Multi-Relational Gradual Pattern

In our context, an increasing attribute Ai
j is denoted as Ai

j

>
and a decreasing attribute

is denoted as Ai
j

<
. Notice that Ai

j

<
and Ai

j

>
complement each other. Let Ei is the set of all

single gradual attributes which are generated by Ai from table Ti, we have:

Ei=
|Ai|[

j=1

{Ai
j

<
}[{Ai

j

>
} (7.2)

Naturally, in a single table, a mono relational gradual pattern qi is a set of gradual at-
tributes such that qi = {Ai

1

>
,Ai

2

<
, . . . ,Ai

m
>
} where Ai

1

>
,Ai

2

<
, . . . ,Ai

m
> 2 Ei. The set of all

potential gradual patterns Qi contains all the possible gradual patterns which are gener-
ated by combining the elements in Ei. Furthermore, "proper" relational gradual patterns
must cross multiple tables and perhaps without considering some mono relational gradual
pattern at some tables.

For instance, see Figure 7.1, a potential pattern could be {District.avg-
salary>,Loan.amount<} which does not contain any mono relational gradual patterns
from Account table.

To express this phenomenon, we propose a crossing element, denoted as ⌦,
for each relation Ti 2 db and of course ⌦ 2 Qi. The pattern {District.avg-

7.2. PRELIMINARILY DEFINITIONS 119

salary>, Account.⌦,Loan.amount<} can be presented as {District.avg-salary>,
Loan.amount<}.

Definition 25. (Relational Gradual Pattern). Let db= {T1, . . . ,Tn} be a database for which
each table Ti has a schema S(Ti)= (PKi,FKi,Ai).

1. Mono relational gradual pattern (mono-rGp). p=qi where qi 2Qi.
2. Relational gradual pattern between two relations.
a. 1:N relation. p=qiqj where qi 2Qi, qj 2Qj and PKi µFKj.
b. M:N relation. p = qiqj where qi 2 Qi, qj 2 Qj and 9Tk 2 db s.t. (PKi µ PKk and

PKj µPKk) or (PKi µFKk and PKj µFKk).
3. Multi-Relational gradual pattern (rGp). p = q1q2 . . .qm where 8i 2 {1,. . . ,m- 1} :

qi 2Qi andqiqi+1 verifies the second case. Note thatq1 can be extracted from any relation
T 2db.

In the Definition 25, we define the patterns that can be extracted in a single relation,
in two relations as well as in multi-relations. In the first case, the patterns p are extracted
from a single relation Ti. Then, the combination of two patterns from two relations is the
second case. The relations from Ti to T j in 2.a and 2.b respectively are 1:N and M:N rela-
tionships. Note that, in 2.b, the table Tk is a connection relation between Ti and T j. Finally,
the third case is a generalization of the second case so that the pattern p is defined as a
mrGp in which all pairs of consecutive mono-rGps verifies the second case. For instance,
see Figures 7.1, potential interesting mrGps are as follows.

1:N example. In table Loan, we have a mono-rGp such asq2= {amount>,duration>}.
Additionally, we can have a larger pattern by connecting Loan table to Account table over
foreign key accountID (i.e. Account.PK = Loan.FK). The pattern candidate can be
p = q1q2 = {Account.frequency>,Loan.amount>,Loan.duration>}. The meaning
is "the more frequently the accounts are used, the more amount and the longer duration
loans are".

M:N example. Another example is p = {Client.birthdate<,Account.frequency>}
since (PKClient µFKDisposition and PKAccount µFKDisposition), the meaning is "the older
clients are, the more frequently they use their accounts".

mrGp. A potential mrGp is p = {District.#people>, Account.frequency>,
Loan.amount>}. The meaning is "the more number of inhabitants the districts have,
for the habitants living in the districts, the more frequently their accounts are used and the
more amount of loans they have".

In common, relational patterns are defined as alphabet patterns that select one at-
tribute and assign it one value [50] [54] [55]. However, in relational gradual pattern, we
are working at attribute level. Therefore, the pattern domain is quite different from the
common alphabet pattern domain.

Definition 26. (Gradual Pattern Domain). Given a set of gradual attributes s =
{A§

1 ,A
§
2 , . . . ,A

§
n} where 8A§

i 2 s, A§
i can belong to any relation in db. The domain of a

120 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

Figure 7.1: A Financial database (from PKDD CUP 99).

pattern p which is formed by combining the elements in s, denoted Dom(p), is defined as
follows.

8A§
i 2 s,Dom(A§

i)= {A§
i
>,A§

i
<}.Dom(p)=

Y

A§
i

2s
Dom(A§

i) (7.3)

7.3 Pattern Occurrences

The common relational patterns usually are rather complicated structures. For in-
stance, a pattern can contain a set of tuples (e.g. as in [54]) or a set of sets of sets of ...
of tuples (e.g. as in [50]). However, our patterns can become more complicated, since it
requires to consider at least two tuples at the same time to evaluate the graduality of an
attribute. Thus, a pair of tuples is used to examine the graduality of a set of attributes. The
gradual tuple pair can be defined as follows:

Definition 27. (Gradual Tuple Pair). Given a gradual variant ~ 2 {<,>} and a mono-rGp
qi = {Ai

1

~
, . . . ,Ai

m
~
} 2 Qi. A pair of distinct tuples (tx,ty) s.t. tx,ty 2 Ti, is gradual in

respect to qi if:
8l 2 {1,. . . ,m},⇡Ai

l

(tx) ~ ⇡Ai

l

(ty) (7.4)

7.4. PATTERN SUPPORT 121

Given a mrGp p= q1q2 . . .qm, a pair of tuples (tx,ty) s.t. tx,ty 2 (T1 ./ T2 .// Tm), is
gradual in respect to p if:

8l 2 {1,. . . ,m},(⇡T l(t1),⇡T l(t2)) respects ql (7.5)

Definition 28. (Crossing Element Occurrence). Given a crossing element ⌦ 2Qi, 8(tx,ty)
where tx,ty 2 Ti, (tx,ty) 2 occ(⌦).

Definition 29. (Pattern Occurrence). Let db = {T1, . . . ,Tn} be a database for which each
table Ti has a schema S(Ti) = (PKi,FKi,Ai). Given a mrGp p = q1q2 . . .qm where 8i 2
[1,m] : qi 2 Ti, the occurrence of p, denoted occ(p), is a set of gradual tuple pairs (tx,ty) in
respect to p. Note that tx,ty 2 (T1 ./ T2 .// Tm).

For brevity, we only report primary key and foreign keys in a pattern occurrence. For
instance, see Figure 7.2, let us assume that the pattern q1 = {Account.frequency>}
and one of the occurrences of q1 is (t1,t2). Similarly, we also have the occurrences
of q2 = {Loan.amount>}. Moreover, if we have the pattern p = q1q2 then an occur-
rence of p is ((t1,t2),(t 01,t

0
3)) and ⇡account

ID

(t1) = ⇡account
ID

(t 01) = 10,⇡account
ID

(t2) =
⇡account

ID

(t 03) = 11. Obviously, we can compute the occurrences of p as illustrated in Fig-
ure 7.2.

A relational gradual pattern can thus contain sets of gradual tuple pairs. Hence, it is
illustrative to consider what the domain of such patterns is. That is, "what does an instance
look like?" Essentially, the definition of these domains follows the structure of the pattern
occurrence.

Definition 30. (Pattern Occurrence Domain). Let db= {T1, . . . ,Tn} be a database for which
each table Ti has a schema S(Ti) = (PKi,FKi,Ai). Furthermore, let p = q1q2 . . .qm be a
mrGp. The domain of p occurrences, denoted DomOcc(p) is given by

DomOcc(p)= (Dom(T1 ./ T2 .// Tm),Dom(T1 ./ T2 .// Tm)) (7.6)

7.4 Pattern Support

Generalization gradual pattern support definition from single relation to multi-
relational data context is a non-trivial task. Naturally, traditional support of a gradual
pattern [42] [44] is defined as the number of pattern occurrences over all possible cases,
i.e. supp(p) = |occ(p)|

|all possible cases| . That fact’s that defining the |all possible cases| in a single ta-

ble Ti is quite simple, i.e. equal to (
|T i|
2
) as in [42] or |Ti| as in [44]. However, it is completely

different and becomes a challenging issue in multi-relational data context.
Let us consider the example in Figure 7.2, to compute the support for the pattern

{Account.frequency>,Loan.amount>}, one of potential solutions is to join two tables

122 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

Figure 7.2: A 1:N relation example (best view in color).

Figure 7.3: Loan ./Account.

7.4. PATTERN SUPPORT 123

Account and Loan, i.e. see Figure 7.3, then apply existing algorithms [42] [44]. It is easy
to consider that the tuple pairs (t 001 ,t

00
2) and (t 00a,t

00
b) are still counted in |all possible cases|

in existing algorithms [42] [44]. However, they should not been counted since they come
from the same account which has a unique account frequency value, i.e. ⇡account

ID

(t 001)=
⇡account

ID

(t 002) = 11 and ⇡account
ID

(t 00a) = ⇡account
ID

(t 00b) = 12, so they never support the
pattern. This is because the relationship between Account and Loan is 1:N. Furthermore,
the |all possible cases| also depends on the relationship between two tables, i.e. 1:N or
M:N. Thus, what we show here is that defining gradual pattern support definition in multi-
relational data context is not straightforward and it demands an innovative definition.

Breakthrough these problems, in this chapter we propose novel support measures to
effectively evaluate the graduality of a mrGp so that the pattern meaning is still remained.

7.4.1 Kendall’s ⌧-based Multi-Relational Gradual Pattern Support

We start this section by reviewing the Kendall’s ⌧-based support in [42]. Assume that
Ai

1 and Ai
2 are two numerical attributes in table Ti. The measure can now be defined as

follows:

supp⌧(A
i
1,A

i
2)=

|{(tx,ty) 2 (Ti)2|⇡Ai

1

(tx)<⇡Ai

1

(ty)^⇡Ai

2

(tx)<⇡Ai

2

(ty)}|

(
|T i|
2
)

(7.7)

We can consider that (
|T i|
2
) is the |all possible cases| which contain whatever the tuple

pair while all gradual tuple pairs (tx,ty) will be consider in the pattern occurrence. Now,
let us define a set of operations that will be used in the multi-relational gradual pattern
support definition.

– distinct(PKi,T j): given two tables Ti and T j so that PKi µ FKj (1:N relationship).
distinct(PKi,T j) returns a set of distinct values pk 2PKi so that 9t 0 2 T j :pk=⇡PKi

(t 0).
distinct(PKi,T j) � Select distinct PKi from T j.

– count(pk,T j): given a primary key value pk 2 PKi, returns the number of tuples
t 0 2 T j s.t. pk=⇡PKi

(t 0). We only consider pk having count(pk,T j)> 1.
count(pk,T j) � Select count(*) from T j where PKi = pk having count(*) > 1.

Definition 31. (Kendall’s ⌧ support of mrGp). Let db= {T1, . . . ,Tn} be a database for which
each table Ti has a schema S(Ti)= (PKi,FKi,Ai).

1. Mono-rGp. p=qi.

supp⌧(p)=
|occ(p)|

(
|T i|
2
)

(7.8)

2. Relational gradual pattern between two relations.

124 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

a. 1:N relation. p=qiqj where qi 2Qi, qj 2Qj and PKi µFKj.

supp⌧(p)=
|occ(p)|

(
|T j|
2
)-

P
pk2distinct(PKi,T j) (

count(pk,T j)
2

)
(7.9)

b. M:N relation. p = qiqj where qi 2 Qi, qj 2 Qj and 9Tk 2 db s.t. (PKi µ PKk and
PKj µPKk) or (PKi µFKk and PKj µFKk).

supp⌧(p)=
|occ(p)|

(
|distinct(PKi,Tk)|

2
)£ (

|distinct(PKj,Tk)|
2

)
(7.10)

c. Crossing element, ⌦. p= qi⌦ where qi 2Qi, ⌦ 2Qj and Ti,T j respects the cases 2a,
2b then we only need to transform instances (tx,ty) 2 occ(p) to (t 0x,t

0
y) with t 0x,t

0
y 2 T j as

follows:
Case 2a: occ(p) � Select (T j.t 0x,T

j.t 0y) from occ(qi),T j where ⇡PKi

(occ(qi).tx) =

⇡PKi

(T j.t 0x) and ⇡PKi

(occ(qi).ty)=⇡PKi

(T j.t 0y).
Case 2b: occ(p) � Select (T j.t 00x ,T

j.t 00y) from occ(qi),T j,Tk where (⇡PKi

(occ(qi).tx) =

⇡PKi

(Tk.t 0x) and ⇡PKi

(occ(qi).ty) = ⇡PKi

(Tk.t 0y)) and (⇡PKj

(Tk.t 0x) = ⇡PKj

(T j.t 00x)

and ⇡PKj

(Tk.t 0y)=⇡PKj

(T j.t 00y)).
3. mrGp. p=q1q2 . . .qm-1qm.

8
>>>>>><

>>>>>>:

(1) : If qm-1qm respects the case 2a then

supp⌧(p)=
|occ(p)|

(
|Tm|

2

)-
P

pk2distinct(PKm-1

,T

m)
(
count(pk,Tm)

2

)

(2) : If qm-1qm respects the case 2b then

supp⌧(p)=
|occ(p)|

(
|distinct(PKm-1

,T

k)|

2

)£(
|distinct(PKm

,T

k)|

2

)

(7.11)

Explanation. Regarding to a mono-rGp, we take all gradual tuple pairs (tx,ty) which
support p, i.e. occ(p). This number is then divided by the maximal possible number of

such pairs which is (
|T i|
2
), and not |Ti|(|Ti|- 1) since it is not possible that both (tx,ty)

and (ty,tx) support pattern p. For instance, see Figure 7.2, p= {Account.frequency>},
|occ(p)|= 5 and supp⌧(p)=

5
6 .

1:N relation. We can consider that the number of all possible gradual tuple pairs sup-

ports p is (
|T j|
2
). However, as mentioned before we need to ignore pairs of tuples which

come from the same object, i.e. same primary key pk 2 PKi. Since they will never

support p and the number of total of them is
P

pk2distinct(PKi,T j) (
|count(pk,T j)|

2
). Thus,

|all possible cases| in this situation is (
|T j|
2
)-

P
pk2distinct(PKi,T j) (

|count(pk,T j)|
2

).

7.4. PATTERN SUPPORT 125

Figure 7.4: A M:N relation example. (t 03,t
0
5) does not support the pattern p =

{Book.price>,Client.birthday<} since (C2,C3) 62 occ(Client.birthday<)

.

For instance, see Figure 7.2, mrGp p = q1q2 = {Account.frequency>,
Loan.amount>}. We have |occ(q1)| = 5, |occ(q2)| = 10, |occ(p)| = 8 and
distinct(PK1,T2) = {10,11,12}, count(10,T j) = 2, count(11,T j) = 1, count(12,T j) = 2.
Thus, the Kendall’s ⌧ support of p is supp⌧(p) = 8

10-(2
2

)-(2
2

)
= 1. Note that count(11,T j) =

1 is not taken into account.
M:N relation. Essentially, identifying an instance ((tx,ty),(t 0x,t

0
y)) 2 occ(p) is to com-

bine a pair of distinct keys (pkx,pky) : pkx 6= pky,pkx,pky 2Dom(PKi) and another pair
of distinct keys (pk 0

x,pk
0
y) : pk

0
x 6= pk 0

y, pk 0
x,pk

0
y 2Dom(PKj). Indeed, all the distinct pri-

mary key values PKi which have relationship with some object in T j are distinct(PKi,Tk).

Thus the number of all possible combinations (pkx,pky) is (
|distinct(PKi,Tk)|

2
). Similarly, we

also have the number of all possible combinations (pk 0
x,pk

0
y) is (

|distinct(PKj,Tk)|
2

). Thus,

|all possible cases| in this situation is (
|distinct(PKi,Tk)|

2
)£ (

|distinct(PKj,Tk)|
2

).
For instance, see Figure 7.4, a mrGp pattern p = {Book.price>,Client.birthday<}

is generated from two tables Book and Client with an M:N relationship via Buy table. In

126 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

Buy table, there are only two books B1,B2 are bought by clients and we need to ignore B3

since it has not existed in Buy. So, distinct(PK1,Tk) = {B1,B2}. Similarly, we also have
distinct(PK2,Tk) = {C1,C2,C3}. Now we combine tuples (t 0x,t

0
y) in Tk = Buy to check

whether they support the pattern p. Indeed, ⇡client
ID

(t 0x) 6= ⇡client
ID

(t 0y) and thus all

the combinations of (t 0x,t
0
y) in terms of clientID can support p are (

|distinct(PK2,Tk)|
2

) = 3,
i.e. (C1,C2),(C1,C3) and (C2,C3). Similarly, all the combinations of (t 0x,t

0
y) in terms

of bookID can support p are (
|distinct(PK1,Tk)|

2
) = 1. Gathering two attributes together,

|all possible cases| of (t 0x,t
0
y) in terms of clientID and bookID which can support p are

(
|distinct(PK1,Tk)|

2
)£ (

|distinct(PK2,Tk)|
2

) = 1£3= 3. Consequently, supp⌧(p)= 2
3 .

Crossing element⌦. We only need to transform the occurrences of p when⌦ is added
to p since ⌦ is used to pass the relation T j. Then, we can add other mono-rGps qj+1 2
Qj+1 to p = qi where T j+1 has a relation from T j. The meaning of pattern p = qi⌦qj+1

remains the same to p= qiqj+1. By applying crossing element⌦, we can extract patterns
with combine attributes from indirect connected relations. Consequently, it supplies an
insightful picture of the data structure in relational databases.

Multi-relational gradual pattern supp⌧ is just a generalization of the case 2. Further-
more, the following theorem gives the expected supp⌧, denoted esupp⌧, in the case of sta-
tistically independent attributes. This expected support under independence can be used
as a reference point to assess the quality of a mrGp.

Theorem 2. (Expected supp⌧). Given a set of statistically independent numerical attributes
s= {A1,A2,. . . ,An}, Ps = {p1, . . . ,pm} is the set of all possible independent mrGps 1 gener-
ated from s where ~= {>,<}[{=}. The expected supp⌧ of a pattern p 2 Ps is esupp⌧(p) =

1
(2n-1+n(3n-1-1)+1)

.

Proof. After construction, we have that if ~ = {>,<} then for each element Ai there are
two gradual items which are A>

i and A<
i . Therefore, there are 2n possible gradual pat-

terns. However, for each gradual pattern p, there is always a complement pattern p 0 s.t.
supp⌧(p) = supp⌧(p 0). For instance, A>

x and A<
x or A>

i A
<
j and A<

i A
>
j , etc, see Defini-

tion 39. Therefore, the number of independent patterns becomes 2n

2 = 2n-1. Additionally,
8i 2 [1 : n] s.t. A=

i , there are 3n-1 possible gradual patterns formed from s without {Ai}

where ~ 2 {>,<}[{=}. Thus, there additionally are n3n-1 independent gradual patterns.
However, the pattern {A=

1 , . . . ,A
=
n } is counted n times instead of once. Consequently, we

have that the total number of independent gradual patterns is (2n-1+n3n-1-n+1) =
(2n-1+n(3n-1-1)+1).

Let us assume that there is (T1 .// Tm) which is formed by joining all tables
containing all attributes A1,. . . ,An. Thus, 8p 2 Ps : DomOcc(p) = (Dom(T1 .//
Tm),Dom(T1 .// Tm)).

1. p and p 0 are independent mrGps if DomOcc(p)=DomOcc(p 0)^occ(p)\occ(p 0)=;.

7.4. PATTERN SUPPORT 127

Table 7.1: Gradual support vs Kendall’s ⌧ support.

Hotel price distance from center
t1 150 1
t2 50 4
t3 200 3
t4 125 5

Given a pair of distinct tuples (tx,ty) 2 occ(p), ÿp 0 6= p : (tx,ty) 2 occ(p 0). Indeed, let
us assume that 9A~

1

i 2 p,A~
2

i 2 p 0 s.t. ~1 6=~2, if ⇡A
i

(tx)~1⇡A
i

(ty) then it is impossible
to have ⇡A

i

(tx)~2⇡A
i

(ty). So, (tx,ty) 62 occ(p 0). Thus, we have that
Tm
i=1occ(pi)=;.

So, all the patterns p 2 Ps share the same domain and their occurrences are dis-
joint and therefore

P
p2P

s

supp⌧(p) = 1. Consequently, 8p 2 Ps the esupp⌧(p) =
1

(2n-1+n(3n-1-1)+1)
.

7.4.2 Gradual Support

Until now, we have proposed the definition of Kendall’s ⌧ support for a multi-relational
gradual pattern. However, in some case the Kendall’s ⌧ does not help us to fully understand
the graduality of patterns.

For instance, see Table 7.1, let us assume the pattern p = {price<, distance>} with
the support threshold �min = 0.6. So we have the occurrence occ(p) = 4 and supp⌧(p) =
2£4
4£3 = 0.67 > �min. Therefore, the pattern p = {price<,distance>} is interesting and we
can conclude that "the more expensive hotels are, the nearer to the center the hotels are" with
67%. However, Kendall’s ⌧ support does not emphasize the consecutiveness in changing of
attributes over the values. Thus, we may only have granulative gradual tuple pairs, i.e.
(t1,t2) is granulative since there is no other gradual tuple pairs such that (tx,t1) or (t2,tx),
tx 2 {t1, . . . ,t4}. That is similar for (t1,t4),(t3,t2) and (t3,t4). Therefore the pattern only
rely on comparing two hotels and not for three or more than three hotels. However, in
real world applications, we usually have a pool of objects to compare and in some specific
situations supp⌧ may not be effective.

Motivated by this issue, we propose a novel support for mrGps inspired by the previous
work in [44] to evaluate the consecutiveness of graduality. First of all, let us define a list of
tuples that support a gradual pattern as follows:

Definition 32. (List of Ordered Tuples for a mono-rGp) [44]. Let qi 2Qi is a mono-rGp. A
list of tuples L= {t1, . . . ,tn} respects qi if 8i 2 {1,. . . ,n-1},(ti,ti+1) 2 occ(qi).

Definition 33. (Gradual Support) [44]. Let Gqi = {L1, . . . ,Lh} be the set of all the lists re-

128 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

specting a mono-rGp qi. The gradual support is defined as follows.

suppg(q
i)=

max1∑e∑h(|Le|)

|Ti|
(7.12)

By generalizing the idea of Lisa et al., we propose the definition of list of ordered tuples
for a mrGp as follows:

Definition 34. (Correlating Lists of Ordered Tuples). Given two relations Ti,T j, two lists of
ordered tuples Lqi = {t1, . . . ,tn},L

qj = {t 01, . . . ,t
0
n} with qi 2 Qi,qj 2 Qj. Lqi and Lqj are

called correlating each other if:
a. 1:N relation. PKi µFKj.

8x 2 [1,n],⇡PKi

(tx)=⇡PKi

(t 0x) (7.13)

b. M:N relation. 9Tk 2 db s.t. (PKi µ PKk and PKj µ PKk) or (PKi µ FKk and PKj µ
FKk).

8x 2 [1,n],9ty 2 Tk :⇡PKi

(tx)=⇡PKi

(ty)^⇡PKj

(t 0x)=⇡PKj

(ty) (7.14)

Definition 35. (Set of Lists of Ordered Tuples for a mrGp). Let p=q1 .. .qm is a mrGp. A set
of lists of ordered tuples (Lq1 , . . . ,Lqm) which respects p if 8i 2 [1,m] :Lqi respects qi and
8j 2 [1,m-1] :Lqj correlates to Lqj+1

.

From Definitions 34 and 35, we can consider that |Lq1 |= . . .= |Lqm |.

Property 23. (Anti-monotonicity) [44]. Let q and q 0 be two mono-rGps, Gq and Gq 0 respec-
tively support q and q 0. We have if qµq 0 then maxL

e

2G
q

(|Le|)∏maxL
e

2G
q

0 (|Le|).

Note that the anti-monotonicity is also true for mrGps. Now, let us define the definition
of mrGp gradual support as follows:

Definition 36. (Gradual support of mrGp). Let db = {T1, . . . ,Tn} be a database for which
each table Ti has a schema S(Ti)= (PKi,FKi,Ai).

1. Mono-rGp. p=qi. Let Gp= {L1, . . . ,Lh}.

suppg(p)=
max1∑e∑h(|Le|)

|Ti|
(7.15)

2. Relational gradual pattern between two relations.
a. 1:N relation. p = qiqj where qi 2 Qi, qj 2 Qj and PKi µ FKj. Let Gp =

{(Lqi

1 ,Lqj

1), . . . ,(Lqi

h ,Lqj

h)}.

suppg(p)=
max1∑e∑h(|L

qi

e |)

|distinct(PKi,T j)|
(7.16)

7.4. PATTERN SUPPORT 129

b. M:N relation. p = qiqj where qi 2 Qi, qj 2 Qj and 9Tk 2 db s.t. (PKi µ PKk and
PKj µPKk) or (PKi µFKk and PKj µFKk).

suppg(p)=
max1∑e∑h(|L

qi

e |)

min(|distinct(PKi,Tk)|, |distinct(PKj,Tk)|)
(7.17)

c. Crossing element, ⌦. p= qi⌦ where qi 2Qi, ⌦ 2Qj and Ti,T j respects the cases 2a,
2b then we only need to transform the occ(p) similar to Definition 31-2c

3. mrGp. p=q1q2 . . .qm. Let Gp= {(Lq1

1 , . . . ,Lqm

1), . . . ,(Lq1

h , . . . ,Lqm

h)}.
8
>>>>>><

>>>>>>:

(1) : If q1q2 respects the case 2a then

suppg(p)=
max

1∑e∑h(|L
q

1

e

|)
|distinct(PK1,T2)|

(2) : If q1q2 respects the case 2b then

suppg(p)=
max

1∑e∑h(|L
q

1

e

|)

min(|distinct(PK1,Tk)|,|distinct(PK2,Tk)|)

(7.18)

Explanation and examples.

Property 24. (1:N relation). Given a set of lists ordered tuples (Lqi = {t1, . . . ,tn},L
qj =

{t 01, . . . ,t
0
n}) respects to the pattern p=qiqj, we have that |Lqj |∑ |distinct(PKi,T j)|.

Proof. Indeed, let us assume that |Lqj | > |distinct(PKi,T j)|, it means that 9t 0x,t 0y 2 Lqj

s.t. ⇡PKi

(t 0x) = ⇡PKi

(t 0y) and thus 9tx,ty 2 Lqi s.t. ⇡PKi

(tx) = ⇡PKi

(t 0x)^ ⇡PKi

(ty) =

⇡PKi

(t 0y). Therefore, ⇡PKi

(tx) = ⇡PKi

(ty) and so (tx,ty),(ty,tx) 62 occ(qi). Then, Lqi

does not respect qi that violates the assumption. Consequently, we have that |Lqj | ∑
|distinct(PKi,T j)| and ’=’ happens when 8pk 2 distinct(PKi,T j),9tx 2 Lqi : ⇡PKi

(tx) =
pk.

By applying Property 24, we have the |all possible cases| in this situation is

|distinct(PKi,T j)| and thus suppg(p)=
max

1∑e∑h(|L
q

i

e

|)
|distinct(PKi,T j)|

.

For instance, see Figure 7.2, we have Li
1 = {10,11,12} the maximal tuple list re-

specting qi = {Account.frequency>} and Lj
1 = {30,32,33},Lj

2 = {30,32,34},Lj
3 =

{31,32,33},Lj
4 = {31,32,34} the maximal tuple lists respecting qj = {Loan.amount>}.

Next, (Li
1, L

j
1), (L

i
1, L

j
2), (L

i
1,L

j
3), (L

i
1,L

j
4) are maximal sets of lists of ordered tu-

ples respecting to pattern p = {Account.frequency>,Loan.amount>}. Furthermore,
distinct(PKi,Tqj)= {10,11,12} and thus the support suppg(p)= 3

3 = 1.
M:N relation. Essentially, M:N relationship is an adaptation of 1:N relationship so that

we take the minimum number between |distinct(PKi,Tk)| and |distinct(PKj,Tk)|.

130 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

Multi-relational gradual pattern. By applying Property 23, we have q1q2 µ p then

max
L
q

1

e

2G
p

(|Lq1

e |) ∑max
L
q

1

e

2G
q

1

q

2

(|Lq1

e |) ∑ |distinct(PK1,T2)|. Thus, |all possible cases|

in this situation is |distinct(PK1,T2)| and therefore suppg(p)=
max

L
q

1

e

2G
p

(|Le

1

|)

|distinct(PK1,T2)|
. Similarly,

we have the the suppg as in Equation 7.18.
Until now, we have proposed the multi-relational gradual pattern definition. Naturally,

we can extract many patterns from a MRD db. However, only some of them are interesting.
In this chapter, we focus on extracting interesting patterns which satisfy the interestingness
condition defined as follows:

Definition 37. (Interesting Pattern). Given a predefined minimal support threshold �min

and a pattern p=q1q2 . . .qm. p is an interesting pattern if:

8i 2 {1,. . . ,m} : supp(q1 .. .qi)∏�min (7.19)

where the notation supp is used to denote any of measures supp⌧ and suppg.

For instance, given a pattern p=q1q2q3, if p is an interesting pattern then supp(q1)∏
�min,supp(q1q2)∏�min and supp(q1q2q3)∏�min.

7.5 Multi-Relational Gradual Pattern Mining Algorithms

Efficient extracting of complete set of mrGps is a non-trivial task. At first glance, the
number of potential mrGps is exponential, i.e. approximately 22£|Adb

| where Adb is a set
of all numerical attributes in the MRD db.

Basic idea. Facing the huge potential search space, we propose an approach, named
RGp. In RGp algorithm, we first extract mono-rGps from single tables. Then db is trans-
formed into a graph G = (V,E) where V is a set of vertices and E is a set of edges. Each
vertex vi 2 V stands for table Ti 2 db and each edge can be considered as a relationship
between two vertices (resp. tables) via keys and foreign keys. Next, we apply a depth-
first search on the set of vertices V following E to combine mono-rGps together to be
mrGps. In the process, we design three efficient rules which are Complementary Pruning
rule, Apriori Pruning rule and Backward Pruning rule to avoid unnecessary computation
and further search. Complementary Pruning is used to avoid the support computation for
complement patterns (Definition 39). Then, Apriori Pruning is used to eliminate uninter-
esting patterns (Definition 37). Finally, Backward Pruning avoids computing redundant
patterns which have been traversed before.

7.5.1 Mining Mono-Relational Gradual Patterns

To compute the mono-rGps in single relations, we apply GRITE algorithm [44] which
is known as a very efficient algorithm. The main idea of GRITE is using a bitmap repre-

7.5. MULTI-RELATIONAL GRADUAL PATTERN MINING ALGORITHMS 131

(a) Mp
1

={price<} (b) Mp
2

={distance>} (c) Mp
3

={price<,distance>}

Figure 7.5: An illustrative example of Binary matrix of orders in Table 7.1.

sentation, named binary matrix of orders, to manage all gradual tuple pairs respecting a
gradual pattern. The definition of binary matrix of orders is defined as follows:

Definition 38. (Binary matrix of orders [44]). Let p be a mono-rGp, TG
p

is a set of distinct
tuples in Gp. Gp can be represented by a binary matrix MG

p

= (ma,b)a2TG
p

,b2TG
p

, where
ma,b 2 {0,1}.

If there exists an order relation between a and b, then the bit corresponding to
the line of a and the column of b is set to 1, and to 0 otherwise. For instance, let
us consider the gradual 1-attribute pattern p1 = {Hotel.price<} in Table 7.1, Gp

1

=�
{t2,t4,t1,t3}, {t4,t1,t3}, . . . , {t1,t3}

and TG

p

1

= {t1,t2,t3,t4}. This set of orders is modeled
by means of a binary matrix of size 4£4, represented by Figure 7.5a. Mp

2

={Hotel.distance>}
is illustrated in Figure 7.5b.

The joining between two mono-rGps p1 and p2 consists in computing all the common
orders from two input matrices Mp

1

and Mp
2

. Common orders between matrices are rep-
resented by bits set to 1 for each of the input matrices. This can be achieved by the AND
bitwise operation.

Theorem 3. [44]. Letp=pxpy be the mono-rGp generated using the two mono-rGpspx and
py. The following relation holds: Mp=Mp

x

AND Mp
y

.

Theorem 3 allows to efficiently perform the join operation using the level-wise method.
Figure 7.5c shows the result of the join operation between Mp

1

and Mp
2

. This Theorem is
also true for mrGps.

Essentially, the Kendall 0s ⌧-based pattern occurrence is the number of ’1’s in the bi-
nary matrix of orders that is easy to be computed. While the gradual occurrence, i.e. for
suppg, is the longest list fromMG

p

. To compute the gradual occurrence, GRITE proposes a
RecursiveCovering function which is very efficient since each tuple fromMG

p

is considered
only once. Until now, we are able to efficiently evaluate the Kendall 0s ⌧-based pattern oc-
currence and gradual support-based pattern occurrence. Consequently, we can compute
supp⌧(p) and suppg(p) by applying Definitions 31 and 36.

132 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

The search space of all mono-rGps can be eliminated by avoiding the computation of
complement pattern support and uninteresting patterns, i.e. Properties 25, 26. Conse-
quently, given a vertex v, Qv is a set of interesting mono-rGps. Note that the crossing ele-
ment⌦ is included in Qv.

7.5.2 Discovering Multi-Relational Gradual Patterns

In this section, we will clearly present RGp algorithm designed to extract mrGps. RGp
is a depth-first search approach based on the set of vertices V following E to combine
mono-rGps to be mrGps.

In Figure 7.7 the pre-order tree traversal is illustrated: tree nodes are labeled with num-
bers, denoting the depth-first search order. Each node is a list of vertices (resp. tables)
r= {v1,v2, . . . ,vn}. route(r) is the route of r in the graph G,route(r)= v1! v2! . . .! vn
where v1 and vn respectively are the head and the destination of r, head(r) = v1 and
dest(r)= vn.

In order to start the search process, vertices in V are collected into two different cat-
egories, source vertices and leaf vertices. The source vertices are not pointed from the
other vertices while the leaf vertices do not point to any other nodes. The search pro-
cess is started with source vertices. Note that the vertex vn+1 can be added into the node
r= {v1, . . . ,vn} if there is an edge from vn to vn+1.

Let us define some operations which will be used in the algorithm, note that ’./’ means
Cartesian product, as follows:

– Qr: given a current node r= {v1,v2, . . . ,vn}, returns the set of all interesting mrGps
at node r. Qr is generated by combining mono-rGps in Qv

1 , . . . ,Qv
n such that Qr =

Qv
1 ./Qv

2 .//Qv
n .

– Given a superset r 0 of r, r 0 = r[v 0 where v 0 62 r, we have Qr 0 =Qr ./Qv 0 .
– comm(r 0,r) and diff(r 0,r): given two nodes r and r 0, comm(r 0,r) returns the com-

mon relations between r 0 and r, i.e. comm(r 0,r)= r 0\r. diff(r 0,r) returns the relations
that are in r 0 but not in r, i.e. diff(r 0,r)= r 0 \r.

– Qr
v
n

: given a current node r= {v1,v2, . . . ,vn}, return all interesting mrGps p at node
r so that 9q 2p^q 2Qv

n .
– p•p 0: given two mrGps p=q1,. . . ,qm and p 0 = q 01, . . . ,q 0m, return the extension of

p by adding p 0 at the rear, i.e. p•p 0 =q1,. . . ,qmq 01, . . . ,q 0m.

Definition 39. (Complement Pattern). Given a gradual variant ~= {<,>} and its comple-
ment 2 ~, two mono-rGps qi

x,q
i
y 2Qi and two mrGps p= q1q2 . . .qm, p 0 = q 01q 02 . . .q 0m.

qi
x and qi

y complement each other, qi
y=qi

x, if:

|qi
x|= |qi

y| and 8A~
j 2qi

x,9A~
j 2qi

2 (7.20)

2. If ~=’<’ then ~=’>’, ~=’>’ then ~=’<’.

7.5. MULTI-RELATIONAL GRADUAL PATTERN MINING ALGORITHMS 133

Figure 7.6: Graph of the Financial MRD in Figure 7.1.

p and p 0 complement each other, denoted p=p 0, if:

|p|= |p 0| and 8qi 2p,9qi 2p 0 (7.21)

Property 25. (Complementary Pruning Rule). Given two complement patterns p and p,
for supp any of the measures supp⌧ and suppg, we have supp(p)= supp(p).

Proof. After construction, we have 8(tx,ty) 2 occ(p) then (ty,tx) 2 occ(p) and 8Le 2 Gp

thenLe 2Gp whereLe is the reverse ofLe. Thus, |occ(p)|= |occ(p)| andmaxL
e

2G
p

(|Le|)=
maxL

e

2G
p

(|Le|). Additionally, DomOcc(p)=DomOcc(p) and therefore the support for-
mulas of p and p are the same. Consequently, supp⌧(p) = supp⌧(p) and suppg(p) =
suppg(p).

By applying Complementary Pruning, we can avoid computing the supports of com-
plement patterns. Even though Complementary Pruning rule can eliminate the computa-
tion of a large number of candidates, there are many other candidates need to be pruned
to shrink the search space. Essentially, if a mrGp p is not interesting then for any patterns
p •p 0 is not interesting as well. Therefore, the extension process of p will be terminated.
Consequently, we can eliminate a large number of pattern candidates. Apriori Pruning
rule can be defined as follows:

Property 26. (Apriori Pruning Rule). Given two mrGps p and p 0, the following holds: If p
is not interesting then p•p 0 is not interesting as well.

Proof. After construction we have if p is not interesting then 9i 2 {1,. . . , |p|} s.t.
supp(q1 .. .qi) < �min. Additionally, p µ p • p 0 and therefore q1 .. .qi µ p • p 0. Thus,
9i 2 {1,. . . , |p•p 0|} s.t. supp(q1 .. .qi)<�min. So, p•p 0 is uninteresting.

Now, let us define Backward Pruning rule which checks whether there are any previ-
ous routes that share the same destination with the current route, route(r). If so, there
are redundant patterns which can be ignored. For instance, at node labeled (10) we have

134 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

the current node r= {District,Account, Client,Disposition}. Essentially, all patterns
generated from QDistrict ./ QAccount ./ QDisposition have been evaluated before at the
node labeled (7). Thus they are redundant and need to be pruned. The pruning rule can
be defined as follows:

Property 27. (Backward Pruning Rule) Given a current node r = {v1, . . . ,vn}, f = r\ {vn}
is called father node of r, an already traversed node r 0 in the search tree so that dest(r 0) =
dest(r)= vn and comm(f,r 0) 6=;. Qr can be computed as follows:

Qr=(Qcomm(f,r 0) ./ (Qdiff(f,r 0) \⌦)) ./Qv
n (7.22)

Proof. After construction, we have Qr = Qf ./ Qv
n = Qf\r 0 ./ Qf\r 0 ./ Qv

n = Qf\r 0 ./
Qv

n ./ ((Qf\r 0 \⌦)[⌦) = (Qf\r 0 ./ ⌦ ./ Qv
n)[(Qf\r 0 ./ (Qf\r 0 \⌦) ./ Qv

n). Essen-
tially, the patterns belong to Qf\r 0 ./⌦ ./Qv

n have been traversed since r 0 has been tra-
versed. Thus they can be discarded. Consequently, Qr=(Qcomm(f,r 0) ./ (Qdiff(f,r 0)\⌦)) ./
Qv

n .

By applying Backward Pruning, we can discard numerous redundant patterns when
there is another route passing the same destination with the current route. Furthermore,
we can consider that Qcomm(f,r 0) ./ (Qdiff(f,r 0) \⌦) is a set of patterns p 2Qf so that there
exists a mono-rGp q µ p,q 2Qdiff(f,r 0) and q 6=⌦. To select such patterns, we only need
to scan all the patterns p 2Qf so that p must contain at least one gradual attribute in the
tables v 2diff(f,r 0). Note that we already have Qf and therefore this pattern filtering step
can be done efficiently.

For instance, see Figure 7.7, at node labeled 10, we have Qr = (Q{District,Account} ./
(QClient \⌦)) ./QDisposition. Moreover, if we have a set of routes R= {r 01, . . . ,r

0
k} so that

8r 0i 2 R : dest(r 0i) = dest(r)^comm(f,r 0i) 6= ; we only need to apply Backward Pruning
rule for each pair of routes r and ri sequentially.

Backward Pruning is efficient in the sense that we only need to do filtering step once for
r and not for its subtrees. This is because all the redundant patterns have been discarded
from Qf and thus Qr-based Cartesian product can be applied for all the subtrees of r. To
obtain the patterns, at each node r= {v1,v2, . . . ,vn}, the set of interesting patterns Qr

v
n

µ
Qr will be reported whenever all the edges from vn to other vertices have been traversed.

For instance, see Figure 7.7, the patterns in Q
{District,Account}
Account at node labeled (3) will be

reported after step labeled (11).

Theorem 4. (Identification of Relational Gradual Pattern in RGp). For a pattern p, p is an
interesting relational gradual pattern if p passes Complementary Pruning, Apriori Pruning
and Backward Pruning.

7.6. EXPERIMENTAL RESULTS 135

Figure 7.7: mrGp search space of the graph in Figure 7.6.

Proof. Clearly, every relational gradual pattern is derived by Complementary Pruning,
Apriori Pruning, Backward Pruning. Now suppose that a pattern p passes all the condi-
tions. First, Complementary Pruning ensures that p has not been evaluated yet. Also, we
explicitly requirephas not been traversed before by passing the Backward Pruning. Finally,
p is an interesting pattern since it satisfies the Definition 37. Therefore p is an interesting
relational gradual pattern.

Theorem 4 makes the discovery of relational gradual patterns well embedded in
the search process so that patterns can be reported on-the-fly without an extra post-
processing step.

The RGp algorithm have two instances, i.e. ⌧RGp and gRGp. The pseudo code of ⌧RGp
algorithm is presented in Algorithm 11. The main difference in gRGp algorithm is that we
need to navigate a binary matrix of orders for each pattern to obtain the longest route. In
the matrix navigation step, we also apply the navigation function presented in GRITE. The
Grad_combining function of gRGp is described in Algorithm 12.

7.6 Experimental Results

A comprehensive experiment study has been conducted on real datasets which are the
Financial data 3 (PKDD Cup 99) and the Thrombosis data6 (PKDD Cup 2001). The Finan-
cial database scheme corresponds to the one given in Figure 7.1. There are 4,500 accounts,
5,369 clients, 5,369 objects in disposition, 6,471 objects in order, 2,500 objects in transac-
tion, 682 objects in loan, 892 cards and 77 districts. The algorithms are implemented in
Java, and the experiments are carried out on a 2.8GHz Intel Core i7 cpu, 4GB memory.

3. http://lisp.vse.cz/challenge/.

136 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

7.6.1 Multi-Relational Gradual Patterns

Several interesting patterns were discovered in the Financial database and Table 7.2
illustrates top strongest and longest patterns. We discuss some of them in the following.

Bases on supp⌧: the ⌧RGp algorithm returns the patternp= {District.unemploy96<,
Order.Amount>} with supp⌧(p)= 58.32% and the meaning is "the less unemployed ratio
districts are, the more expensive orders the habitants, who live in the districts, do". This pat-
tern is quite interesting since it is useful to recommend for business men that the bigger
deals are from the less unemployed ratio districts. Furthermore, by applying the Theorem
2, the esupp⌧(p)= 14.3%. Thus, the pattern has an attractive support value.

The other pattern related to the average salary is p = {District.avg-salary<,
Orders.amount<} with supp⌧(p) = 52.98% and the meaning is "the lower average
salary the districts are, the less expensive orders the habitants, who live in the districts, do".

Bases on suppg: the gRGp also returns many interesting mrGps. Furthermore, many
of them are not in the top strongest patterns in terms of supp⌧. For instance, the pattern
p = {District.#It-500>,Loan.payment<} with suppg(p) = 44.444% and the meaning
is "the more number of municipalities with inhabitants < 499 the districts have, the less
the monthly payment is per inhabitant". This pattern is very interesting since it reveals
unknown/unpublished loan policies.

The other interesting pattern is p = {District.#It-500>, Loan.duration>} with
suppg(p) = 60% and the meaning is "the more number of municipalities with inhabitants
< 499 the districts have, the longer debts the habitants have". This pattern shows that the
habitants who are from the districts which have more number of municipalities with in-
habitants < 499 are interested in borrowing money in longer time. Therefore, it could be
useful to manage business strategies such as marketing, longterm investments, etc.

7.6.2 Efficiency and Pattern Distribution

To the best of our knowledge, there is no previous work which addresses mrGp. There-
fore, in the efficiency experiments, we examine the proposed algorithms by varying the
support threshold.

For Financial database, Figure 7.8a shows that ⌧RGp algorithm is linear in terms of exe-
cuting time. Furthermore, with the same support value, gRGp is more efficient than ⌧RGp.
The reason is that, by applying suppg, there are less number of extracted patterns than
supp⌧, i.e. see Figure 7.8b. This is because suppg is tighter than supp⌧ since the grad-
ual tuple pairs are required to satisfy the consecutiveness constraint. However, there are
differences in Thrombosis database. In most of cases, gRGp is slower than ⌧RGp, i.e. see
Figure 7.8c. Since the matrix size, i.e. 32,935£32,935, is significantly larger compare to
the ones in Financial database, i.e. maximal matrix size is 6,471£6,471, the matrix navi-
gation for computing the longest route is expensive. However, with low support values, i.e.

7.6. EXPERIMENTAL RESULTS 137

(a) (b)

(c) (d)

Figure 7.8: (a)(b)-Running time and #patterns on the Financial database. (c)(d)-Running
time and #patterns on the Thrombosis database.

supp= 0.1, gRGp is faster than ⌧RGp since there are many patterns extracted by applying
supp⌧, i.e. see Figure 7.8d.

Let us consider the effectiveness of Backward Pruning rule that is illustrated in Figure
7.9. We can consider that by proposing Backward Pruning rule, the large number of redun-
dant patterns can be detected in Financial database, i.e. the number of redundant patterns
is always larger than the number of extracted ones. One of the reasons is that we can avoid
all the subtrees of {District,Client}, i.e. see Figure 7.7. Consequently, the process speeds
up.

The distribution of mrGps extracted in Financial database is illustrated in Figure
7.10. We can consider that supp⌧ and suppg are converged at low value area, i.e.
supp⌧,suppg ∑ 0.3. Furthermore, the higher suppg, the higher the supp⌧ is. In contrast,
the higher value supp⌧ does not mean that the pattern will obtain the higher suppg. Con-
sequently, if we only consider either supp⌧ or suppg then we can lose many interesting
patterns. Furthermore, both suppg and supp⌧ are effective in mining useful mrGps.

138 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

Figure 7.9: Number of redundant patterns in Financial database.

7.7 Related Work

Most previous work on relational pattern mining can be categorized into methods that
generalize ideas from frequent itemset mining to the relational setting and methods that
are based on Inductive Logic Programming (ILP). In this section we discuss the differences
between these approaches and our approach as well as other works that do not fall into
these two categories.

Well known ideas and algorithms from frequent itemset mining can be used for multi-
relational data if applied on the join of all tables. This kind of patterns essentially is item-
sets such that items are attribute values and transactions are the tuples of the join table
[52] [48] [51]. A different approach is taken by Smurfig [54] where the support is measured
with respect to every table, as the relative number of keys that the items correspond to.

Warmr [43] and Farmer [53] are ILP-based methods. The patterns are logic rules which
can be regarded as local models of the database. The support is defined as the relative
number of key values of one target table that satisfy the rule. The purpose of these methods
is to extract the most frequent rules. This type of pattern is interesting and can illustrate
well the relational structure.

R-KRIMP [51] patterns are similar to the work of [41], who define these patterns as sim-
ple conjunctive queries of the form: [p0, . . . ,pn]. RDB-Krimp [50] is an improvement of R-
KRIMP. RDB-Krimp and RMiner [55] are methods for mining relational databases by using
information theoretic ideas for the assessment of patterns. RDB-Krimp focus on the total
description length of the database joint with the patterns, and patterns are deemed more
interesting if they are better at compressing this description length. RMiner insteads deem
patterns more interesting if they describe surprising aspects of the database in a concise
way, which RMiner makes the results more relevant to an end-user.

Compare to the previous work, instead of working at attribute value level, we are inter-

7.8. DISCUSSION 139

Figure 7.10: Multi-relational gradual pattern distribution with �min ∏ 0.15.

ested in mining patterns at higher level. This kind of patterns is the correlation between
attributes from a graduality point of view.

7.8 Discussion

In this chapter, we propose the relational gradual pattern concept which enable us to
examine the correlations between attributes from a graduality point of view in MRDs. To
efficiently mine interesting patterns, we also define its associated support measures based
on Kendall 0s ⌧ and gradual supports in MRD context. Then, ⌧RGp and gRGp algorithms
are proposed to completely cover and extract all the patterns. One of the future direc-
tions is to investigate top-k representative mrGp mining approach to avoid extracting huge
amount of patterns. Another promising work is to define relational gradual pattern at tuple
level or define contextual relational gradual pattern. That could help us better understand
the structure of MRDs from a gradual point of view.

140 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

Algorithm 11: ⌧RGp algorithm
Input : database db, source nodes S, G= {V,E}, �

min

Output : all mrGps
1 begin
2 R :=;;
3 foreach v 2 S do
4 r := {v};
5 RGpattern(db,r,v,G,�

min

);
6 RGpattern(db,r,v,G,�

min

)
7 begin
8 foreach node l 2 v.edges do
9 combining(r,v,l);

10 output Qv; delete Qv; R :=R[r;
11 combining(route r, node v, node l)
12 begin
13 if type(v,l)= 1 :N then

14 denom := (
|Join(PKv

,l)|
2

);
15 else

16 denom := (
|distinct(PKv

,k)|
2

)£ (
|distinct(PKl

,k)|
2

);
17 temp=;;

18 foreach pattern qi 2Qv do
19 if Backward(qi, l,r,R)= true then
20 if exist(db,qi)= false then
21 create(db,qi);

22 foreach pattern qj 2Ql do
23 if complement(qiqj,temp)= false then
24 create(db,qj);

25 occ := |qi ./qj|;

26 supp
⌧

(qiqj) := occ

denom

;

27 if supp
⌧

(qiqj)∏�
min

then
28 temp := temp[qiqj;

29 delete qj;
30 else
31 temp := temp[qiqj;

32 delete qi;

33 Ql :=Ql[temp;
34 RGpattern(db,r[l,l,G,�

min

);

35 boolean Backward(qi, l,r,R)
36 begin
37 foreach r 0 2R do
38 if dest(r 0)= l then
39 flag := false;

40 foreach A§ 2qi do
41 foreach p 2Qr\r 0

do
42 if A§ 2p then
43 flag := true; break;
44 if flag= true then
45 break;
46 if flag= false then
47 return false;
48 return true;

49 type(v,l) is the connection type from v to l, exist(db,qi) returns true if qi exists in database db, return false

otherwise, complement(qiqj,temp) returns false if there is no complement of qiqj in temp.

7.8. DISCUSSION 141

Algorithm 12: Grad_combining
Input: route r, node v, node l

1 begin
2 temp=;;
3 foreach pattern qi 2Qv do
4 if qi.denom=null then
5 if type(v,l)= 1 :N then
6 qi.denom := |distinct(PKv,PKl)|;
7 else
8 qi.denom :=min(|distinct(PKv,Tk)|, |distinct(PKl,Tk)|);
9 if exist(db,qi)= false then

10 create(db,qi);
11 foreach pattern qj 2Ql do
12 if Backward(qi,l,r,R)= true then
13 if complement(qiqj,temp)= false then
14 create(db,qj);
15 update(qi.matrix,qi ./qj);
16 occ := longest(qi.matrix);
17 suppgrad(qiqj) := occ

qi.denom
;

18 if suppgrad(qiqj)∏�min then
19 qiqj.denom :=qi.denom;qiqj.matrix :=qi.matrix;

20 temp := temp[qiqj;
21 delete qj;
22 else
23 temp := temp[qiqj;
24 delete qi;
25 Ql :=Ql[temp;
26 RGpattern(db,r[l,l,G,�min);

142 CHAPTER 7. MINING MULTI-RELATIONAL GRADUAL PATTERNS

Table 7.2: Interesting Patterns.

Kendall 0s ⌧ : supp⌧ (%)
Account.date<,Loan.date< 63.97

District.unemploy96<,Orders.amount> 58.32
District.avg-salary<,Loan.amount> 55.76
District.#crime95<,Loan.amount> 54.42
District.#people>,Loan.payment< 54.23
Account.date<,Loan.payment< 54.21

District.#crime96<,Loan.amount> 53.97
District.unemploy95<,Loan.payment< 53.42
District.avg-salary<,Orders.amount< 52.98

District.#entrepreneur<,Loan.payment> 52.31
Gradual : suppg (%)

District.#It-500>,Loan.duration> 60
District.#It-500>,Loan.date< 55.556

District.#people<,Loan.duration> 50
District.unemploy95>,Loan.payment> 50
District.#crime95<,Loan.duration> 50
District.#crime96<,Loan.duration> 50
District.unemploy96<,Loan.date> 45.455
District.#It-500>,Loan.payment< 44.444

District.ratio-urban<,Loan.payment> 44.444
Some of long patterns supp⌧(%)

District.{#It-2000<,#crime95<},Account.date>,Loan.date< 36.91
District.{#It-2000<,#crime95<,#crime96<},Account.date>,Loan.date< 36.53

CHAPTER

8
Applications

Preamble

Recent improvements in positioning technology has led to a much wider availability
of massive moving object data. A crucial task is to find the moving objects that travel
together. Usually, these object sets are called spatio-temporal patterns. Analyzing such
data has been applied in many real world applications, e.g., in ecological study, vehi-
cle control, mobile communication management, etc. However, few tools are available
for flexible and scalable analysis of massive scale moving objects. Additionally, there
is no framework devoted to efficiently manage multiple kinds of patterns at the same
time. Motivated by this issue, we propose a framework, named MULTI_MOVE, which
is designed to extract and manage different kinds of spatio-temporal patterns concur-
rently. A user-friendly interface is provided to facilitate interactive exploration of min-
ing results. Since MULTI_MOVE is tested on many kinds of real data sets, it will benefit
users to carry out versatile analysis on these kinds of data by exhibiting different kinds
of patterns efficiently.

Moreover, we also demonstrate that our proposed approaches and systems can be ef-
ficiently applied to many other domains such as gene expression analysis, and tweet
user behavior analyzing. The GET_MOVE approach was applied on 3 HIV time-series
gene expression dataset to outline relationships between genes based on their expres-
sions at different timestamps following infection. We have found that clustering gene
expression data groups together efficiently genes of similar function based on their FC
value and coherent results with our knowledge on HIV-1 versus HIV-2 infection were
obtained. In additional, trajectories expressing the evolution of French political com-
munities can be extracted from the political tweets which have been gathered during
the French Election Campaign 2012.

143

144 CHAPTER 8. APPLICATIONS

8.1 Introduction

Nowadays, many electronic devices are used for real world applications. Telemetry at-
tached on wildlife, GPS installed in cars, sensor networks, and mobile phones have enabled
the tracking of almost any kind of moving object data and has led to an increasingly large
amount of data. Therefore, analysis on such data to find interesting patterns, called spatio-
temporal patterns, is attracting increasing attention for applications such as movement
pattern analysis, animal behavior study, route planning and vehicle control.

Despite the growing demands for diverse applications, there have been few scalable
tools for mining massive and sophisticated moving object data. Even if some tools are
available for extracting patterns (e.g. [33]), they mainly focus on specific kinds of patterns
at a time. Obviously, when considering a dataset, it is quite difficult, for the decision maker,
to know in advance which kinds of patterns are embedded in the data. To cope with this
issue, we propose the MULTI_MOVE system to reveal, automatically and in a very efficient
way, collective movement patterns like convoys, group patterns, closed swarms, moving
clusters and also periodic patterns. Starting from the results of MULTI_MOVE, the user can
then visualize, browse and compare the different extracted patterns through a user friendly
interface.

8.2 The MULTI_MOVE System Architecture

The MULTI_MOVE general architecture, described in Figure 8.1, has three main layers:
(i) collection and cleaning, (ii) mining, and (iii) visualization. The bottom layer is respon-
sible for collecting and preprocessing moving objects. During this step, some cleaning and
interpolations techniques are used to integrate and clean the raw data as well as to inter-
polate missing points. The interpolation techniques used are similar to the ones provided
by most of spatio-temporal pattern mining algorithms.

MULTI_MOVE uses a new mining algorithm able to exploit the similar characteristics
among different kinds of patterns. This new mining method combines both clustering
and pattern mining to extract the final results. So, by applying it to the preprocessed data,
MULTI_MOVE can automatically extract different kinds of patterns such as convoys, closed
swarms, group patterns, moving clusters and periodic patterns.

The top layer is devoted to the visualization. MULTI_MOVE provides a platform for
users to flexibly tune parameters and supports visualization of the results in different for-
mats. The output can be written in Google Map 1 and Google Earth 2 formats to help users
better explore the results. Furthermore, the system enables users to explore, plot and nav-
igate over the different patterns in order to compare the differences among the various
moving objects behaviors.

1. http://code.google.com/apis/maps/
2. http://earth.google.com/

8.2. THE MULTI_MOVE SYSTEM ARCHITECTURE 145

Figure 8.1: The MULTI_MOVE System Architecture.

Figure 8.2: The Graphical Visualization Interface.

146 CHAPTER 8. APPLICATIONS

Figure 8.2 shows a screenshot of MULTI_MOVE 3. It allows to choose a dataset and set
the values of the parameter mino and mint. In this example we have chosen the Buffalo
dataset from the Movebank 4 project with mino = 10 and mint = 10 (combo box in the
top of the figure). This dataset concerns the raw trajectories of 165 Buffaloes gathered
from year 2000 to year 2006. In the second combox box in the figure, we can observe that,
with these parameters, there are 908 closed swarms, 10 convoys and 10 group patterns. In
this example, we observe that the execution time for extracting all these patterns is 0.52
seconds. From the combo box on right, the user can thus select a specific pattern and
plot it on the main window. For instance, in our example, the user has decided to plot the
811th Closed Swarm. Finally the user can have more information such as pattern identifier,
animal name and timespan when clicking on plotted trajectories as illustrated in the main
window.

8.3 Other Applications

8.3.1 Mining Trajectories on Genes

Detecting links between genes and diseases is a key challenge in human health in order
to decipher disease process and identifying clinically pertinent biomarkers for its applica-
tion in therapeutic purposes. The genome controls cellular processes such as genetic reg-
ulation, metabolic pathways, and signal transduction. Biological processes are very com-
plicated involving numerous interaction between genes. Identifying those interactions in
complex gene regulatory pathway is a challenging task. Thanks to DNA microarray tech-
nology, the study of gene expression has become considerably easier (Schena et al., 1995)
enabling the simultaneous measure of the expression of thousands of genes through one
experimentation. It offers an efficient tool to address complex disease since it provides an
absolute overview of various cellular pathways activity simultaneously. Since its discovery,
successful studies were carried out to identify genetic regulation and the different roles of
particular genes (Chee et al. 1996, Chen et al. 1998, Duggan et al. 1999). Studying the
unprecedented quantities of biological information produced by micro-array technology
have contributed in elucidating and progressing complex biological research issues and
providing new prospects for disease such as Cancer (Hoopes, 2008) or Alzheimer (Guttula
et al., 2012). Most of studies focuses on identifying genes that showed a tendency to inter-
act together and be functionally related (Barrenäs et al., 2012; Chen et al., 2008). Despite
the efficiency of these methods, the most recurrent and challenging problems in mining
the massive gene expression data are as follows:

1. Determining how the expression of any particular gene affects negatively or posi-
tively the expression of an other gene.

3. http://www.lirmm.fr/~phan/multimove.jsp
4. http://www.movebank.org/

8.3. OTHER APPLICATIONS 147

2. Discovering novel genes implied in diseases.
3. Identifying changes in expression between different biological conditions. These

challenges are even more important when analyzing time series (resp. temporal) experi-
ments. Expressions are measured in a single sample at various points in time (Dequeant
et al., 2008; Cooke et al., 2011). Temporal micro-arrays are particularly employed for an-
alyzing time series data during a particular biological process, e.g. disease progression,
for a better understanding of the impact of the genes on this process (Wang et al., 2008)
and on the genetic alterations underpinning visual symptoms.

The AIDS (Acquired Immune Deficiency Syndrome) is caused by the human immun-
odeficiency virus, or HIV. Deaths from this disease increased throughout the years without
any end in sight. Two majors type of HIV viruses exist: type-1 (HIV-1) and type-2 (HIV-
2). HIV-2 is a close relative of the prototype AIDS virus HIV-1. HIV-2 is biologically simi-
lar to HIV-1, but precision concerning clinical outcomes of HIV-2 infected individuals are
lacking. A prospective research, carried by Marlink et al. 1994, was conducted in women
infected with HIV-2 and HIV-1 infection to determine and compare rates of disease devel-
opment. Results showed that HIV-1-infected women had a 67% probability of AIDS-free
survival in contrast with 100% for HIV-2-infected women 5 years after seroconversion. In
addition, the rate of developing abnormal CD4+ lymphocyte with HIV-2 infection was also
significantly reduced demonstrating that HIV-2 has a reduced virulence compared to HIV-
1 (Marlink et al. 1994). HIV-1 cells invasion is enabled by the binding of envelope glycopro-
teins to the receptor CD4 and a co-receptor, principally CXCR4 or CCR5, according to the
viral strain (X4 or R5, respectively). Invariably, differences are observed between HIV-1 and
HIV-2 but their molecular bases are still largely unknown. However, the characterization of
these differences and involved cellular regulation could lead not only to better understand
the pathophysiology of the virus but also to develop new anti-HIV strategies. It’s possible
that mRNA modulations induced by X4, R5 and HIV-2 may be different and participate in
replication differences between theme. In this context, it’s crucial to develop methods to
asses the understanding of the modulation of the transcription following infection with the
three strains of HIV virus.

Despite the availability of hundreds of algorithms for analyzing such data, it still re-
mains a challenging task notably because of the lack of a consensus about the most suitable
strategy for clustering temporal micro-array. The objective of this section is to develop an
original process to extract, annotate and visualize relevant molecular bio-markers to dis-
tinguish both HIV types. Molecular bio-markers are generated from a time series micro-
arrays and are based on our trajectory pattern mining approaches.

Indeed, the INCREMENTAL GET_MOVE is adopted to identify genes with "similar" ex-
pression level at different time points. In essential, we detect moving clusters of genes.
Considering that co-expressed genes are very frequently co-regulated as well, and the iden-
tification of co-expressed genes leads to discover and understand the regulatory mecha-
nisms of the studied disease.

148 CHAPTER 8. APPLICATIONS

Table 8.1: Example of matrix query to compare extracted trajectories for HIV-2, R5, and X4.

Dataset
HIV-2 ;

R5 X
X4 X

Table 8.2: Cluster matrix corresponding to gene dataset.

Tdb 04h 08h 24h 48h 72h
Clusters Cdb c1 c2 c3 c4 c5 c6

Genes

gene1 1 1 1
gene2 1 1 1 1
gene3 1 1 1 1 1
gene4 1 1 1 1

To investigate the suitability of theses approaches in the analysis temporal micro-array
data, we utilized the expression profile of about 19.000 human genes at 5 points times-
tamps after infection by one of 3 strains of HIV (HIV-2, X4, R5). To study the general and
specific transcriptomic modulation between all the strains of HIV virus, we enable the biol-
ogist to query the closed swarms. Table 8.1 illustrates the example of such query where the
"X" denotes the query will retrieve the patterns in the train, while ";" and "-" respectively
denote "non inclusion" and "non interest".

In order to extract closed swarms, genes will be presented in a cluster matrix illustrated
in Table 8.2; then GET_MOVE can be applied directly. Although the semantic of extracted
patterns is relevant for the biologist, the huge amounts of extracted patterns are not easy
to process and to interpret. Therefore, we propose new visualization tools 5(Figure 8.3)
to facilitate the analysis of extracted patterns by the biologist. For that, we annotated the
different type of patterns following their biological process that we displayed graphically
allowing their visualization in an intuitive form for the biologist. Also, this visualization
allowed the visualization of both common and specific trajectories between HIV strains
(HIV-2, HIV-1, X4 and R5).

Figure 8.3 shows the screenshot of the tool. It allows to choose patterns to visualize and
also enable us to select the patterns correlated to specific genes in which we are interested.
Also, user can upload and visualize their own data and many other functions.

8.3.2 Mining Trajectories on Tweets

Usually pattern mining approaches focus on extracting different kinds of patterns, i.e.
itemsets, sequences, trees, graphs, etc., hidden in the database. Using these patterns for

5. http://www.lirmm.fr/˜phan/interface/interface/interface.html

http://www.lirmm.fr/~phan/interface/interface/interface.html

8.3. OTHER APPLICATIONS 149

Figure 8.3: The graphical visualization interface of gene expression tool.

analyzing tweets is one of the topic addressed by some research work. In this study, our
main objective is to highlight that spatio-temporal patterns extracted from tweets can be
very useful for the decision maker.

Recently, we defined a new project called PoloP 6 (Political Opinion Mining) which aims
to cope with the analysis of the evolution of French political communities over Twitter dur-
ing 2012 both in terms of relevant terms, opinions, behaviors. 2012 is particularly impor-
tant for French political communities dues the two main elections: Presidential and Leg-
islative. From the 12th December 2011 to the 19th June 2012, we thus obtained 2,122,012
tweets from 213,005 users. For 130,618 tweets, 232 users can unambiguously be assigned
to a political party (i.e. user is a politician or an official political community account). By
using our defined measures [66], we can select for different political parties the set of rel-
evant words at different periods (see Figure 6). In order to extract interesting trajectories
for different parties we applied a clustering technique, for each party, on the top-k set of
relevant terms over time. Thus, we group together users from the same party sharing the
same words.

Figure 7 illustrates a kind of trajectory that might be extracted from the political tweets.
In February 2012, in one of the first debate, the focus of the French election campaign
suddenly shifts from the economy to racism and national identity. For the right party, as
we can notice, during the debate, most of used words are such that lots of party members
shared the same words. Just after the debate, some right party users move to another clus-
ter where words such as "national identity", "France" while other ones shift to other topic

6. http://www.lirmm.fr/˜bouillot/polop/polop.html

http://www.lirmm.fr/~bouillot/polop/polop.html

150 CHAPTER 8. APPLICATIONS

Figure 8.4: Another graphical visualization interface of gene expression tool.

Figure 8.5: An example of a trajectory that can be extracted from tweets.

8.4. DISCUSSION 151

like "elections". Actually, during the debate the main trend was to motivate some electors
from the extreme right. During this time, as we can notice, in the left party, as it is illus-
trated through the gradual pattern, the left party uses completely different kinds of words
but just when right users behavior split.

8.4 Discussion

In this chapter, we propose a system, MULTI_MOVE, which is designed to automatically
and efficiently extract different kinds of spatio-temporal patterns at the same time. Start-
ing from these results, the user can browse, navigate and compare different patterns in an
easy way. The comparative analysis allows the user to understand and discover which re-
sults can fit better her researches. All this part has been defined in order to highlight the
results of the previous chapter. Interestingly, we also show that our proposed systems and
approaches can be applied on diverse applications such as bioinfomatics and online social
network analysis. For instance in biology we show that thank to trajectories new unknown
knowledge can be extracted. Even if in this work the idea was to first apply our approach
in a very different context, the most interesting part is that biologist have found that very
interesting new correlations have been extracted. Some of them were already known by
biologist. This is typically a first way to validate the results we obtain. Some others are
news. Biologists were very interested by these new correlations. Now they are investigating
through biological experiments the relationships with genes that we have highlighted.

Experiments that have been conducted on tweets has been defined to evaluate if tra-
jectories can be useful for the decision maker. Even if all the experiments are not reported
on this report, it is obvious that trajectories are able to extract real behaviors over time.
Recently new approaches have been defined for analyzing the behavior of user or com-
munities over time. Here also with trajectories we shown that we are able to extract well-
known behaviors. The most interesting thing is that automatically we are able to extract
unexpected or surprising patterns. In this part our goal was not to fully investigate the
analyzing of tweets over time but rather to illustrate and show that trajectories are a new
way to better understand the behaviors. In the conclusion of this report we propose other
applications that can take advantage of trajectories.

CHAPTER

9
Conclusion & Perspectives

Preamble

Until now, I have addressed several key research questions however there are many
challenging issues I need to deal with in my long term research career. In this chapter,
I will summary our work and clearly present my future perspectives.

9.1 Conclusion

In this work, we focus on mining and managing movement patterns from moving ob-
ject data. The three steps framework has been proposed, i.e. see Figure 1.2. In the first
step, we aim to mine and manage different traditional movement patterns such as convoys,
closed swarms, group patterns, moving clusters, and periodic patterns. A unifying incre-
mental algorithm, named GeT_Move, is presented that enable us to extract these patterns
concurrently. To improve the efficiency, we also proposed Parameter Free GeT_Move and
Object Movement Pattern Mining Algorithm Based on Explicit Combination of FCI Pairs.

In the second step, we aim to access the relevant of movement patterns. Since the ex-
isting pattern models either require consecutive time constraint or completely relax this
constrain that results in loosing meaningful patterns or extract many extraneous ones. To
cope this issue, we propose the notion of fuzzy moving object clusters in order to deal with
time gaps. The obtained patterns are in the form of "The group of objects are moving to-
gether from A to B with 60% weak, 30% medium and 10%strong time gaps". Then an novel
property which can be integrated intoGeT_Move to extract the complete set of fuzzy mov-
ing object clusters.

Another meaningful work in this step is that we present the novel movement pattern
concept, named gradual trajectory pattern, to capture the object moving trends. The dis-

153

154 CHAPTER 9. CONCLUSION & PERSPECTIVES

covery of all the maximal gradual trajectory patterns is a non-trivial task due to very huge
search space, i.e. 2|Cdb

|. To cope this issue, we propose ClusterGrowth algorithm with
three efficient pruning rules, i.e. Apriori Pruning, Backward Pruning and Actual Maxi-
mal Checking, to optimize the search space. In order to enrich the utility the gradual tra-
jectory pattern concept, we further propose an MDL principal-based algorithm, named
DiCompoGp, to directly extract top-K informative gradual trajectory patterns. An novel
encoding scheme which allows overlapping between rGpatterns has been proposed and
that improved the compression quality of the proposed approaches.

After managing all the traditional movement patterns, fuzzy moving object clusters and
gradual trajectory patterns, there are still a huge amount of patterns that poses limit in
there usefulness. To address this issue, in the third step of our framework, we propose
an novel approach, named SmartCompo, to mining compressing movement patterns.
By considering different kinds of overlapping patterns at the same time, we have more
insightful structure of the moving behavior of objects.

The potential utility of the developed spatio-temporal mining tools must be justified
in their applicable field. Therefore, we develop the MULTI_MOVE system to reveal, au-
tomatically and in a very efficient way, collective movement patterns like convoys, group
patterns, closed swarms, moving clusters and also periodic patterns. Starting from the
results of MULTI_MOVE, the user can then visualize, browse and compare the different ex-
tracted patterns through a user friendly interface in Google Maps and Google Earth. The
MULTI_MOVE system has gained a lot of publicity, since it is the first system that enable
users to obtain the comparative results.

As an extra work, we further propose the relational gradual pattern concept which en-
able us to examine the correlations between attributes from a graduality point of view in
MRDs. To efficiently mine interesting patterns, we also define its associated support mea-
sures based on Kendall 0s ⌧ and gradual supports in MRD context. Then, ⌧RGp and gRGp
algorithms are proposed to completely cover and extract all the patterns.

9.2 Streaming GeT_Move: Mining Representative
Movement Patterns from Streaming Trajectory Data

In GeT_Move, we assume that the object set Odb is remained the same during the
time. However, in real world context such as cars in highway, some cars could be leave
while the other cars joint the highway. Thus, the set of objects Odb is flexible by the time.
Another case study is that new object data can be available after the generating of closed
itemsets and patterns and therefore Odb and the cluster matrix will be changed. The chal-
lenging issue here is that the support value of the pattern could be changed and even more
serious if the the set of clusters Cdb is also changeable. What we can show here is that if
Odb is flexible then Cdb and of course the final results will be changed by the time. Thus,

9.3. CORGPATTERN: COMBINED TIME RELAXED GPATTERN 155

Figure 9.1: An example of Streaming GeT_Move.

we need to re-execute all the system whenever there are any differences in Odb that is cost
prohibitive and time consuming.

To tackle the problem, we can apply data stream technique such that we summarize the
existing data, which is considered as a block, with representative movement patterns, de-
noted P. If there are new data block available, it will be represented by a set of compressing
movement patterns P 0 which is used to combine with existing movement patterns P to be
a global data. From the global data, we can directly extract representative patterns. Our ex-
ample is illustrated in Figure 9.1. Refer to Section 9.4 for the directly mining representative
movement patterns algorithm.

By doing so, we can keep the representative movement patterns for different historical
data in terms of time. For instance, Tdb = {T1,T2, . . . ,T3}, we are able to retrieve the in-
formative behavior of moving objects in [T1,T2], [T1,T2,T3], etc. That information will be
very meaningful for analytics. Furthermore, to improve the efficient of the approach, ob-
jects Odb can be indexed by using kd-tree and when new objects are available, they will be
added into the kd-tree as new nodes.

For instance, see Figure 9.1, there are two representative patterns from the existing data
and the other two patterns from new data block. All of them together will be the general
data from which the final compressing movement patterns can be extracted. This future
work is a result from a brainstorming meeting between our team and Dr. Albert Bifet, Ya-
hoo! Research Lab-Barcelona, Spain.

9.3 CorGpattern: Combined Time Relaxed Gpattern

Naturally, an rGpattern can follow by the other rGpatterns and combining them might
propose interesting insight. For instance, with reference to Figure 9.2, there are two po-

156 CHAPTER 9. CONCLUSION & PERSPECTIVES

Figure 9.2: An example of CorGpattern extracted from our running example, i.e. Figure 1.1.

tential rGpatterns which are C1 = {c1,c3,c4,c5} and C2 = {c5,c6}. We can consider that C1

is followed by C2 and if we combine the two patterns we can obtain a new pattern such
as: "from t1 to t5, as time passes, the more objects are following the trajectory {AiCiDiE}
then the less objects are following the trajectory {EiF}". In this pattern, the location E is the
most important place for all the objects since they get together there as a meeting point
and leave the group after a while. To figure out such patterns and meaningful locations, we
further propose the notion of CorGpattern, i.e. combined time relaxed gradual moving
object clusters, which essentially is a list of rGpatterns correlating each other in terms of
time periods and objects.

Until now, we have defined two kinds of rGpatterns, i.e. rGpattern∏ and rGpattern∑,
which can capture the object moving trends. Moreover, combining rGpatterns might re-
veal unknown object movement behavior as well as interesting locations. Indeed, in differ-
ent applications CorGpatterns and these locations have different meaning. For instance, in
animal migration these locations could be water sources or nests for birds, in indoor move-
ment analysis they could be meeting room or personal office, in traffic data they could be
events, car parking or customer home for taxis, etc.

Similar to rGpattern, we only focus on extracting the complete set of maximal CorG-
patterns to avoid redundancy. To extract all the maximal CorGpatterns, we propose an
algorithm, named CoClusterGrowth, which is an modification of ClusterGrowth. In Co-
ClusterGrowth, Graduality Pruning and Backward Pruning are modified to be suitable to
the characteristics of CorGpattern.

9.3.1 CorGpattern Definition

Essentially, a CorGpattern is a list of alternating maximal rGpattern∏s and rGpattern∑s
which are coherent together in terms of time and objects. Formally, the CorGpattern can
be defined as follows:

9.4. DIRECTLY MINING REPRESENTATIVE MOVEMENT PATTERNS THROUGH
COMPRESSION 157

Definition 40. (CorGpattern). Given a list of rGpatterns G= {C§
1

1 , . . . ,C§
n

n }, a sliding win-
dow w. G is called a CorGpattern if:

8
>>>><

>>>>:

8i 2 {1,. . . ,n-1},
(1) :§i= §̄i+1.

(2) :

�
if §i=∏: o(tail(C§

i

i))∂ o(head(C
§
i+1

i+1)).
if §i=∑: o(tail(C§

i

i))µ o(head(C
§
i+1

i+1)).
(3) : t(head(C

§
i+1

i+1))-t(tail(C§
i

i))∑w.

(9.1)

where tail and head functions respectively return the last and the first cluster in a rGpat-
tern.

For instance, in Figure 9.2, we have several potential CorGpatterns as G1 =
�
C∑
1 =

{c1,c3,c4},C
∏
2 = {c5,c6}

, G2 =

�
C 0
1
∑ = {c1,c3,c5},C

∏
2 = {c5,c6}

, etc. Moreover, G1 can

also be presented as a list of clusters, denoted cG1 = {c1,c3,c4,c5,c6}. cG essentially is a
distinct list of clusters belonging to all C§ in G.

In this section, we concern about mining the maximal CorGpatterns in terms of distinct
list of clusters. The basic idea is that if G is a CorGpattern, it is unnecessary to output any
subset G 0 of G even if G 0 may also satisfy CorGpattern requirements.

Definition 41. (Maximal CorGpattern). Given a CorGpatterns G with cG= {c1, . . . ,cn}. G
is maximal if ÿG 0 : cGΩ cG 0 and G 0 is a CorGpattern.

9.3.2 CoClusterGrowth: Discovering Maximal CorGpatterns

Basic idea of CoClusterGrowth. Continue with the valid leaf node by changing the
variation §, report if the node cannot be enlarged, i.e. Apriori Pruning. If exists a cluster c
so that t(c)< t(cn) and exists cG 0 = cG[c andG 0 is a CorGpattern, then any subtrees of the
current node are pruned, i.e. Backward Pruning. If exist c 0 so that 0< t(c 0)-t(cn)∑w and
cG 0 = cG[c and G 0 is a CorGpattern then G is not maximal, i.e. Actual Maximum Checking.
If all the rules are passed then it is a maximal CorGpattern, i.e. Theorem.

9.4 Directly Mining Representative Movement Patterns
through Compression

Even if SmartCompo is an effective algorithm, it is a straightforward approach and we
need to handle the efficiency issue. Indeed, with dense and large datasets, the number of
generated patterns is exponential and thus efficiency issue will be a key challenge.

To address the issue, we can adapt DICOMPOGP with multi-pattern structure encod-
ing scheme. In DICOMPOGP, a list of cluster C = {c1, . . . ,cn} which can be a rGpattern∑,
rGpattern∏ or a closed swarm which have the same encoding scheme presented in

158 CHAPTER 9. CONCLUSION & PERSPECTIVES

Figure 9.3: DiCompo algorithm in action.

SmartCompo, i.e. Property 21, however for overlapping allowing encoding scheme is a
little bit different. See Figure 9.3, we can consider that after selecting the best candidate C
by employing DICOMPOGP, C will be compressed given the dictionary D= {p1,p2, . . . ,pn}
from the bottom p1 to the end pn consequently. By doing this, even C overlaps with the
other patterns in D, it can be used to compress the data actually. If the encoded C improve
the data compression then it will be added into the dictionary D, and rejected otherwise.

Even the idea has been figured out, we need to finalize all the definitions, properties
and theorems. Also, the algorithm must be implemented and tested on real world datasets
to access the effectiveness and efficiency.

9.5 Completed Mining Multi-Relational Gradual Patterns

Until now, we have presented an novel concept of multi-relational gradual patten and
an effective algorithm RGp to extract the pattern directly from database db. However,
meaningful patterns are still loosing. Indeed, recently we only can extract the patterns
following the existing relation scheme in relational database theory, i.e. 1:N and M:N which
essentially is 1:M & N:1. However, in real context there is another M:N relation which is
composed by M:1 & 1:N.

For instance, see Financial database in Figure 7.1, we can consider that the relation-
ship between Loan and Order essentially is M:N and they share the same accountid
field. They essentially are characters of Account table. One of the potential pattern is
{Loan.payment>,Order.amount>} and the meaning is "the more loan payment the ac-
counts have, the more expensive orders the account owners do". Such kinds of patterns are
very meaningful.

The discovery of these patterns is not an trivial task since it demands an novel support
definition and propagation approach. Furthermore, the search space will be very large as
well. For instance, see Figure 7.6, we can have some pattern from Loan and Card rela-
tions. Thus, what we can show here is that the search space will exactly be 2|db| and the

9.6. TRAJECTORY MINING ON DIVERSE APPLICATIONS 159

number of pattern candidates is 22
P

n

i=1

|Ai| without running rules since the existing ones
are ineffective in this case.

To address these challenges, we need an innovative way to estimate the support of the
patterns to prevent unnecessary computation, an novel propagation approach with effi-
cient pruning rules.

9.6 Trajectory Mining on Diverse Applications

9.6.1 Social Networks and Social Media

Social networks and social media are prevalent on the Internet and have become an
active research topic attracting many professionals and researchers from a variety of fields.
By adding trajectory information, we can bring online social networks and media back to
the physical world and share our real-life experiences in the virtual world conveniently.
By mining trajectory patterns or predicting locations from social networks, people can
not only track and share location-related information with each other via mobile devices
or desktop computers, but can also leverage collaborative social knowledge learned from
user-generated and location-related content. As trajectory is one of the most important
properties in people’s everyday lives, the research on trajectory mining in social networks
bridges the gap between online societies and the physical world, and enable novel appli-
cations that have the potential to change the way we live, e.g., path planning/prediction,
friend suggestion, location/friend recommendations, community discovery, human mo-
bility modeling, and user activity analysis. In the chapter 8.3.2, we investigated that trajec-
tories can be applied on tweets to better evaluate the behavior of communities. Conducted
experiments were mainly defined to highlight that trajectories can be useful. It is clear that,
according to the obtained results, trajectories are a new approach for better evaluating how
behaviors from social networks can be analyzed. This point could be much more investi-
gated.

9.6.2 Remote Sensing, Spatial Information on Satellite Image
Processing

The GEOSUD (GEOInformation for SUstainable Development) inter-institutional pole
of competence in remote sensing and spatial information has been created and the GEO-
SUD project has been launched in 2011, as the result of a close collaboration between four-
teen institutional partners. Coordinated by Irstea, the project offers online free access to
homogeneous and up-to-date spatial information on French ecosystems and territories.
It aims at promoting networking between the scientific community and both public and
private actors in land management, addressing to researchers and decision makers 1

1. http://www.peer.eu/news-events/detail/?tx list pi1%5Buid%5D=153

160 CHAPTER 9. CONCLUSION & PERSPECTIVES

Figure 9.4: Left: Subset of a Quickbird satellite image of Rostock (© DigitalGlobe, Inc.,
2011), right: derived land cover classes.

Indeed, satellite images provide useful data to understand and manage territories by
developing geo-information methods to be applied to the management of forests, water,
cultivated lands, biodiversity, and natural hazards. Today with the rapid development of
new satellite sensors we are provided with satellites providing high-resolution images. For
instance, Quickbird, SPOT-5, OrbView, GeoEye, Pléiades, etc. These sensors typically have
a panchromatic band of finer spatial resolution (⇠ 0.5 to 2 m) and 3 or 4 less accurate multi-
spectral bands (⇠ 1.6 to 5 m). Using these provided images over time can be very useful to
detect the evolution of objects. For instance in the timelapse project, Google and the Nasa
have recently reported evolution of some places in the world by three decades of satellite
images 2.

Let’s consider the Figure 9.4, we have the satellite image on the left hand side and the
right hand side image presents the land cover objects which are a result of an object-based
image segmentation and classification 3. In order to learn the evolution of objects by the
time, we slit the image into pixel grid such that each pixel will be labeled as a part of a

2. http://world.time.com/timelapse/
3. Image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels,

also known as super-pixels). The goal of segmentation is to simplify and/or change the representation of an

9.6. TRAJECTORY MINING ON DIVERSE APPLICATIONS 161

Figure 9.5: An example of trajectory pattern mining on satellite images.

specific object. Let us consider the Figure 9.5, we have 49 pixels and there are three mean-
ingful objects presented in different colors varying in two timestamps t1 and t2. Then,
if each pixel plays role as a transaction and each object could be considered as a cluster,
our proposed approaches, e.g. Incremental GeT_Move, ClusterGrowth, CoClusterGrowth,
etc., can be directly applied to extract trajectory patterns such as convoys, closed swarms,
moving clusters, gradual trajectories which are very useful for Geography scientist to un-
derstand and manage territories.

image into something that is more meaningful and easier to analyze. Image segmentation is typically used
to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the
process of assigning a label to every pixel in an image such that pixels with the same label share certain visual
characteristics. The result of image segmentation is a set of segments that collectively cover the entire image,
or a set of contours extracted from the image.

CHAPTER

10
Publications

10.1 International Conferences and Journals

1. Nhat Hai Phan, Dino Ienco, Pascal Poncelet, Maguelonne Teisseire. "Mining Rep-
resentative Movement Patterns through Compression". The 17th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2013), Goal Coast, Australia, April
2013.

2. Nhat Hai Phan, Dino Ienco, Pascal Poncelet, Maguelonne Teisseire. "Mining Fuzzy
Moving Object Clusters". In Proceedings of the 8th International Conference on Ad-
vanced Data Mining and Applications (ADMA), Nanjing China, December 2012.

3. Nhat Hai Phan, Dino Ienco, Pascal Poncelet, Maguelonne Teisseire. "Mining Time
Relaxed Gradual Moving Object Clusters". In Proceedings of the 20th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (ACM GIS
2012), Redondo Beach, California, November 2012.

4. F. Bouillot, Nhat Hai Phan, N. Béchet, S. Bringay, D. Ienco, S. Matwin, P. Poncelet,
M. Roche, and M. Teisseire. "How to Extract Relevant Knowledge from Tweets?". The
7th International Workshop on Information Search, Integration and Personalization
(ISIP’2012), Sapporo, Japan, October 2012.

5. Nhat Hai Phan, Pascal Poncelet, Maguelonne Teisseire. "GET_MOVE: An Efficient
and Unifying Spatio-Temporal Pattern Mining Algorithm for Moving Objects". In Pro-
ceedings of the 11th International Symposium on Intelligent Data Analysis (IDA 2012),
Helsinki, Finland, October 2012.

6. Nhat Hai Phan, Pascal Poncelet, Maguelonne Teisseire. "An Efficient Spatio-
Temporal Mining Approach to Really Know Who Travels with Whom!". In 28th Advance
in Data Mining (BDA 2012), Clermont Ferrand, France, October 2012. (selected as Best
papers)

163

164 CHAPTER 10. PUBLICATIONS

7. Nhat Hai Phan, Dino Ienco, Pascal Poncelet, Maguelonne Teisseire. "Extracting Tra-
jectories through an Efficient and Unifying Spatio-Temporal Patten Mining System". In
Proceedings of the European Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases (ECML-PKDD 2012), Demo Paper, Bristol, UK,
September 2012.

8. Nhat Hai Phan, Pascal Poncelet, Maguelonne Teisseire. "Moving Objects: Combining
Gradual Rules and Spatio-Temporal Patterns". 2011 International Conference on Spatial
Data Mining and Geographical Knowledge Services (ICSDM 2011), Fuzhou, China, June
2011.

9. Nhat Hai Phan, Pascal Poncelet, Maguelonne Teisseire. "An Efficient Spatio-
Temporal Mining Approach to Really Know Who Travels with Whom!". Ingénierie des
Systèmes d’Information (ISI special issue, selected papers from BDA’12), 2013, to ap-
pear.

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB ’94, pages 487–499, 1994. Cited pages 11, 20, and 71.

[2] H. H. Aung and K. L. Tan. Discovery of evolving convoys. In SSDBM, pages 196–213,
2010. Cited pages 7, 17, 19, and 21.

[3] R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. IEEE Transactions on
Information Theory, 51(4):1523–1545, 2005. Cited page 86.

[4] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, pages 226–231, 1996. Cited
pages 16, 17, 19, 34, 63, 80, and 111.

[5] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining results
via swap randomization. TKDD, 1(3), 2007. Cited page 86.

[6] P. Grunwald. The minimum description length principle. The MIT Press, 2007. Cited
pages 72 and 100.

[7] J. Gudmundsson and M. V. Kreveld. Computing longest duration flocks in trajectory
data. In ACM GIS, pages 35–42, 2006. Cited pages 7, 11, 19, and 62.

[8] P. N. Hai, D. Ienco, P. Poncelet, and M. Teisseire. Extracting trajectories through an
efficient and unifying spatio-temporal pattern mining system. In ECML/PKDD (2),
pages 820–823, 2012. Cited pages 34, 63, 80, 81, and 96.

[9] P. N. Hai, D. Ienco, P. Poncelet, and M. Teisseire. Mining fuzzy moving object clusters.
In ADMA, pages 100–114, 2012. Cited pages 7 and 21.

165

166 BIBLIOGRAPHY

[10] P. N. Hai, D. Ienco, P. Poncelet, and M. Teisseire. Mining time relaxed gradual moving
object clusters. In ACM SIGSPATIAL GIS, pages 478–481, 2012. Cited pages 21, 67, 96,
98, 110, and 111.

[11] P. N. Hai, D. Ienco, P. Poncelet, and M. Teisseire. Mining representative movement
patterns through compression. In PAKDD, 2013, to appear. Cited pages 21, 86,
and 87.

[12] P. N. Hai, P. Poncelet, and M. Teisseire. Get_move: An efficient and unifying spatio-
temporal pattern mining algorithm for moving objects. In IDA, pages 276–288, 2012.
Cited pages 10, 21, 56, 60, 62, 80, and 96.

[13] P. N. Hai, P. Poncelet, and M. Teisseire. An efficient spatio-temporal mining approach
to really know who travels with whom! In BDA 2012, Clermont-Ferrand, France,
2012. Cited pages 56 and 60.

[14] J. Han, Z. Li, and L. A. Tang. Mining moving object, trajectory and traffic data. In
Database Systems for Advanced Applications, volume 5982 of Lecture Notes in Com-
puter Science, pages 485–486. 2010. Cited pages 8, 17, and 19.

[15] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
SIGMOD Rec., 29(2):1–12, May 2000. Cited pages 11, 20, and 71.

[16] Y. Huang, S. Shekhar, H. Xiong. Discovering collocation patterns from spatial data
sets: a general approach. IEEE Transactions on Knowledge and Data Engineering
16(12), pages 1472–1485, 2004. Cited page 57.

[17] C.S. Jensen, L. Dan, and B. C. Ooi. Continuous clustering of moving objects. TKDE,
19(9):1161 –1174, sept. 2007. Cited pages 7, 11, and 71.

[18] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in
trajectory databases. Proc. VLDB Endow., 1(1):1068–1080, August 2008. Cited pages
7, 11, 17, 19, 21, 34, 63, 71, 80, 96, and 111.

[19] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-
temporal data. In SSTD ’05, pages 364–381, 2005. Cited pages 7, 17, 19, 21, 63, and 71.

[20] E. J. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S. H. Lee, and J. Hand-
ley. Compression-based data mining of sequential data. Data Min. Knowl. Discov.,
14(1):99–129, 2007. Cited page 86.

[21] H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders. Mining compressing sequential
patterns. In SDM, pages 319–330, 2012. Cited pages 86, 87, 88, and 103.

BIBLIOGRAPHY 167

[22] J. G. Lee, J. Han, and K. Y. Whang. Trajectory clustering: a partition-and-group frame-
work. In ACM SIGMOD ’07, pages 593–604, 2007. Cited page 21.

[23] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: mining relaxed temporal moving object
clusters. Proc. VLDB Endow., 3(1-2):723–734, September 2010. Cited pages 7, 11, 16,
17, 20, 21, 34, 37, 55, 59, 62, 63, 64, 71, 80, 96, 110, and 111.

[24] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and Da. W. Cheung.
Mining, indexing, and querying historical spatio-temporal data. In KDD ’04, pages
236–245, 2004. Cited pages 7 and 18.

[25] R. Milo, S. Shen-Orr, S. Itzkovits, N. Kashtan, D. Chklovskii, and U. Alon. Network
motifs: Simple building blocks of complex networks. Science, 298(5594), 2002. Cited
page 86.

[26] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press,
New York, NY, USA, 1995. Cited page 90.

[27] K. Smets and J. Vreeken. Slim: Directly mining descriptive patterns. In SDM, 2012.
Cited pages 87 and 88.

[28] L. A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C.-C. Hung, and W.-C. Peng. On dis-
covery of traveling companions from streaming trajectories. In ICDE, pages 186–197,
2012. Cited pages 7, 20, and 21.

[29] F. Verhein. Mining complex spatio-temporal sequence patterns. In SDM ’09, pages
605–616, 2009. Cited page 7.

[30] M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line discovery of flock patterns in spatio-
temporal data. In ACM SIGSPATIAL GIS, pages 286–295, 2009. Cited pages 7, 19,
and 21.

[31] J. Vreeken, M. Leeuwen, and A. Siebes. Krimp: Mining itemsets that compress. Data
Min. Knowl. Discov., 23(1):169–214, 2011. Cited pages 72, 86, 88, 100, and 104.

[32] Y. Wang, E. P. Lim, and S. Y. Hwang. Efficient mining of group patterns from user
movement data. Data Knowl. Eng., 57(3):240–282, June 2006. Cited pages 7, 18, 20,
37, 63, 71, and 80.

[33] Z. Li, M. Ji, J.-G. Lee, L.-A. Tang, Y. Yu, J. Han, and R. Kays. MoveMine: mining moving
object databases. In ACM SIGMOD ’10, pages 1203–1206, 2010. Cited pages 12, 34,
and 144.

[34] A. Knobbe, and E. Ho. Pattern teams. In PKDD ’06, pages 577–584, 2006. Cited page
87.

168 BIBLIOGRAPHY

[35] B. Bringmann, and A. Zimmermann. The chosen few: On identifying valuable pat-
terns. In ICDM ’07, pages 63–72, 2007. Cited page 87.

[36] A. Siebes and R. Kersten. A structure function for transaction data. In SDM ’11, pages
558–569, 2011. Cited page 87.

[37] H. Mannila, E. Terzi. Nestedness and Segmented Nestedness. In KDD’07, San Jose,
California, USA, pages 480–489, 2007. Cited pages 2, 42, and 45.

[38] T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient mining algorithms for fre-
quent/closed/maximal itemsets. Proceedings of the IEEE ICDM Workshop on Fre-
quent Itemset Mining Implementations (FIMI 2004), volume 126 of CEUR Workshop
Proceedings, Brighton, UK, 1 November 2004. Cited page 29.

[39] A. O. C. Romero. Mining moving flock patterns in large spatio-temporal datasets us-
ing a frequent pattern mining approach. Master Thesis, University of Twente, faculty
ITC, March 2011. Cited page 7.

[40] A. Appice, M. Ceci, and D. Malerba. Mining model trees: A multi-relational ap-
proach. In Proc. of the 13th International Conference on Inductive Logic Program-
ming, ILP 2003, volume 2835 of LNAI, pages 4–21. Springer-Verlag, 2003. Cited page
116.

[41] H. Mannila B. Goethals, and W. L. Page. Mining association rules of simple conjunc-
tive queries. In SDM 2008, pages 96–107, 2008. Cited page 138.

[42] T. Calders, B. Goethals, and S. Jaroszewicz. Mining rank-correlated sets of numerical
attributes. In KDD 2006, pages 96–105. Cited pages 116, 117, 118, 121, and 123.

[43] L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Min.
Knowl. Discov., 3(1):7–36, March 1999. Cited pages 116 and 138.

[44] L. Di-Jorio, A. Laurent, and M. Teisseire. Mining frequent gradual itemsets from large
databases. In IDA 2009, pages 297–308. Cited pages 116, 117, 118, 121, 123, 127, 128,
130, and 131.

[45] L. Džeroski and N. Lavrač. Relational data mining. Springer-Verlag, Berlin, 2001.
Cited page 116.

[46] P.A. Flach and N. Lachiche. Naive bayesian classification of structured data. Machine
Learning, 57(3):233–269, 2004. Cited page 116.

[47] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational
models. In Thomas Dean, editor, IJCAI, pages 1300–1309. Morgan Kaufmann, 1999.
Cited page 116.

BIBLIOGRAPHY 169

[48] B. Goethals, W. L. Page, and M. Mampaey. Mining interesting sets and rules in rela-
tional databases. In SAC 2010, pages 997–1001, 2010. Cited page 138.

[49] E. Hullermeier. Association rules for expressing gradual dependencies. In Tapio Elo-
maa, Heikki Mannila, and Hannu Toivonen, editors, Principles of Data Mining and
Knowledge Discovery, volume 2431 of Lecture Notes in Computer Science, pages 200–
211. Springer Berlin Heidelberg, 2002. Cited page 116.

[50] A. Koopman and A. Siebes. Characteristic relational patterns. In KDD 2009, pages
437–446. Cited pages 119, 120, and 138.

[51] A. Koopman and A. Siebes. Discovering relational item sets efficiently. In SDM 2008,
pages 108–119, 2008. Cited page 138.

[52] E. K. K. Ng, A. W.-C. Fu, and K. Wang. Mining association rules from stars. In ICDM
2002, pages 322 – 329, 2002. Cited page 138.

[53] S. Nijssen and J. Kok. Efficient frequent query discovery in farmer. In PKDD 2003,
pages 350–362, 2003. Cited page 138.

[54] W.L. Page. Mining patterns in relational databases. In PhD Thesis, Universiteit
Antwerpen, 2009. Cited pages 119, 120, and 138.

[55] E. Spyropoulou and T. D. Bie. Interesting multi-relational patterns. In ICDM 2011,
pages 675–684, 2011. Cited pages 119 and 138.

[56] F. Zelezný and N. Lavrac. Propositionalization-based relational subgroup discovery
with rsd. Machine Learning, 62(1-2):33–63, 2006. Cited page 116.

[57] S. Ayouni, A. Laurent, S. B. Yahia, and P. Poncelet. Mining Closed Gradual Patterns.
In ICAISC (1), pages 267-274, 2010. Cited pages 117 and 118.

[58] M. J. Zaki. Mining Non-Redundant Association Rules. Data Min. Knowl. Discov.,
9(3):223–248, 2004. Cited page 29.

[59] S. Rinzivillo, D. Pedreschi, M. Nanni, F. Giannotti, N. Andrienko, and G. Andrienko.
Visually driven analysis of movement data by progressive clustering. Information
Visualization, 7(3):225–239, 2008. Cited page 21.

[60] G. L. Andrienko and N. V. Andrienko. Spatio-temporal aggregation for visual analysis
of movements. In IEEE VAST, pages 51–58, 2008. Cited page 21.

[61] G. L. Andrienko and N. V. Andrienko. Interactive cluster analysis of diverse types of
spatiotemporal data. SIGKDD Explorations, 11(2):19–28, 2009. Cited page 21.

170 BIBLIOGRAPHY

[62] G.L. Andrienko, N.V. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi, and F. Gian-
notti. Interactive visual clustering of large collections of trajectories. In IEEE VAST,
pages 3–10, 2009. Cited page 21.

[63] A.T. Palma, V. Bogorny, B. Kuijpers and L.O. Alvares. A clustering-based approach for
discovering interesting places in trajectories. In ACM SAC ’08, pages 863–868, 2008.
Cited page 21.

[64] J. H. Kang, W. Welbourne, B. Stewart and G. Borriello. Extracting places from traces
of locations. In Proceedings of the 2nd ACM international workshop on Wireless mo-
bile applications and services on WLAN hotspots (WMASH ’04), pages 110–118, 2004.
Cited page 21.

[65] F. Giannotti, M. Nanni, F. Pinelli and D. Pedreschi. Trajectory pattern mining. In ACM
SIGKDD, pages 330–339, 2007. Cited pages 20 and 21.

[66] F. Bouillot, P. Poncelet, M. Roche, D. Ienco, E. Bigdeli and S. Matwin. French Presi-
dential Elections: What are the Most Efficient Measures for Tweets?. In Proceedings
of the Workshop Politics, Elections and Data (PLEAD 2012) in conjunction with the
21st ACM International Conference on Information and Knowledge Management
(CIKM 2012), Maui, USA, November 2012. Cited page 149.

Abstract

Mining object movement patterns to understand the behavior of moving objects has
many high impact applications. However even if existing pattern models are meaningful,
there are still challenging issues such as: 1) there are many kinds of patterns and algorithms
without an efficient management scheme, 2) lacking of relevant approaches in dealing with
time gaps, 3) they usually focus on an unchanged group of objects and thus do not capture
the behavior of the whole object class, 4) Naturally, there are huge amount of very redun-
dant movement patterns extracted while only a few of them are meaningful. However, few
researchers address this issue. 5) Despite the growing demands for diverse applications,
there have been few scalable tools for mining massive and sophisticated moving object
data.

In my thesis, I will mainly focus on addressing these issues. We propose the three step
framework: 1) the first step aims to present and framework to mine and manage different
existing movement patterns in an efficient way, 2) in the second step, we propose novel
movement pattern concepts to access the relevance of movement patterns by dealing with
time gaps. We also further present the gradual trajectory pattern notion to analysis the
behavior of moving objects in a graduality point of view. 3) In the last step, we propose
an novel MDL principal-based approach, named SmartCompo to extract representative
movement patterns from moving object data. 4) Our three step framework is illustrated in
a demonstration system, named Multi_Move, which is designed to extract and manage dif-
ferent kinds of spatio-temporal patterns concurrently. A user-friendly interface is provided
to facilitate interactive exploration of mining results.

As an extra work, I further present the concept of multi-relational gradual pattern
which generalizes the gradual pattern notion in single relation data to multi-relation
database.

Keywords: Moving Object, Object Movement Pattern, Compressing Movement Patterns,
Multi-Relational Gradual Patterns, Gradual Trajectory

LIRMM — 161, rue Ada — 34095 Montpellier cedex 5 — France

	Contents
	List of Figures
	List of Tables
	Introduction
	Illustrative Example and Motivations
	Contributions

	Related Work
	Preliminary Definitions
	Object Movement Pattern Mining

	All in One: Mining Multiple Movement Patterns
	Object Movement Patterns in Itemset Context
	Frequent Closed Itemset-based Object Movement Pattern Mining Algorithm
	GeT_Move
	Incremental GeT_Move

	Preliminarily Experimental Results
	Effectiveness
	Efficiency
	Toward A Parameter Free Incremental GeT_Move Algorithm
	Object Movement Pattern Mining Algorithm Based on Explicit Combination of FCI Pairs

	Experimental Results
	Parameter Free Incremental GeT_Move Efficiency
	Movement Pattern Mining Algorithm Based on Explicit Combination of FCI Pairs

	Discussion

	Mining Fuzzy Moving Object Clusters
	Introduction
	Fuzzy Closed Swarms
	Discovering of Fuzzy Closed Swarms
	Experimental Results
	Effectiveness
	Parameter Sensitiveness

	Discussion

	Mining Time Relaxed Gradual Moving Object Clusters
	Introduction
	Problem Statement
	Discovering Maximal Time Relaxed Gradual Trajectory Patterns
	ClusterGrowth Approach
	The ClusterGrowth Implementation

	Preliminarily Experimental Results
	Effectiveness and Pattern Meaning
	Parameter Sensitiveness

	Mining Representative Gradual Trajectory Patterns
	Problem Statement
	Encoding Scheme
	Complexity Analysis
	Mining top-K Representative rGpatterns

	Experimental Results on Mining Representative rGpatterns
	Discussion

	Mining Representative Movement Patterns through Compression
	Introduction
	Problem Statement
	Encoding Scheme
	Movement Pattern Dictionary-based Encoding
	Overlapping Movement Pattern Encoding

	Mining Compression Object Movement Patterns
	Naive Greedy Approach
	Smart Greedy Approach

	Experimental Results
	Discussion

	Mining Multi-Relational Gradual Patterns
	Introduction
	Preliminarily Definitions
	Multi-Relational Data
	Gradual Pattern: Single Relation vs Multi-Relations
	Multi-Relational Gradual Pattern

	Pattern Occurrences
	Pattern Support
	Kendall's -based Multi-Relational Gradual Pattern Support
	Gradual Support

	Multi-Relational Gradual Pattern Mining Algorithms
	Mining Mono-Relational Gradual Patterns
	Discovering Multi-Relational Gradual Patterns

	Experimental Results
	Multi-Relational Gradual Patterns
	Efficiency and Pattern Distribution

	Related Work
	Discussion

	Applications
	Introduction
	The Multi_Move System Architecture
	Other Applications
	Mining Trajectories on Genes
	Mining Trajectories on Tweets

	Discussion

	Conclusion & Perspectives
	Conclusion
	Streaming GeT_Move: Mining Representative Movement Patterns from Streaming Trajectory Data
	CorGpattern: Combined Time Relaxed Gpattern
	CorGpattern Definition
	CoClusterGrowth: Discovering Maximal CorGpatterns

	Directly Mining Representative Movement Patterns through Compression
	Completed Mining Multi-Relational Gradual Patterns
	Trajectory Mining on Diverse Applications
	Social Networks and Social Media
	Remote Sensing, Spatial Information on Satellite Image Processing

	Publications
	International Conferences and Journals

	Bibliography

