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Abstract algorithm, called GSP was proposed. In this paper, we pro-

pose a new efficient algorithm, called GTC (Graph for
In this paper we consider the problem of discovering se- Time Constraints) for mining generalized sequential pat-
guential patterns by handling time constraints. While se- terns in large databases. GTC minimizes computational
quential patterns could be seen as temporal relationshipscosts by using a data-sequence preprocessing operation
between facts embedded in the database, generalized sghat takes time constraints into account. The main new fea-
guential patterns aim at providing the end user with a ture of GTC is that time constraints are handled prior
more flexible handling of the transactions embedded in theto and separately from the counting step of a data se-
database. We propose a new efficient algorithm, called GTCquence.
(Graph for Time Constraints) for mining such patterns in
very large databases. It is based on the idea that handling  The rest of this paper is organized as follows. In Sec-
time constraints in the earlier stage of the algorithm can be tion 2, the problem of mining generalized sequential pat-
highly beneficial since it minimizes computational costs by terns is stated and illustrated. A review of related work is
preprocessing data sequences. Our test shows that the propresented in Section 3. The reasons for our choices are dis-
posed algorithm performs significantly faster than a state- cussed in Section 4. The GTC algorithm for efficiently dis-
of-the-art sequence mining algorithm. covering all generalized sequential patterns is given in Sec-
tion 5. Section 6 presents the detailed experiments using
both synthetic and real datasets, and performance results ob-
tained are interpreted. Section 7 concludes the paper.
1. Introduction

2. From Sequential Patterns to Generalized

Although sequential patterns are of great practi- Sequential Patterns

cal importance (e.g. alarms in telecommunications net-

works, identifying plan failures, analysis of Web access  FEjrst of all. we assume that we are given a datatiage

databases, etc.), in the literature, they have received relof cystomers’ transactions, each of which has the follow-
atively little attention [1, 6, 4, 5, 2]. They could be jng characteristics: sequence-id or customer-id, transaction-
seen as temporal relationships between facts embedyme and the items involved in the transaction. Such a

ded in the database. A sequential pattern could be “5% oOfyatapase is called a base of data sequences (Cf. Figure 4).
customers bought 'Foundation’, then 'Foundation and Em-

pire’, and then 'Second Foundation™. The problem of dis- Definiion 1 Let I = {i1, iz, ....in} be a set of literals
covering sequential patterns in databases, introduced irfalleditems. Anitemset is a non-empty set of items. A se-
[1], is to find all patterns verifying user-specified mini- 9Uences is aset of itemsets ordered accordmg to th§|rt|me-
mum support, where the support of a sequential patternStamp- Itis denoted by sys,...s, > wheres; is an item-

is the percentage of data-sequences that contain the pafS€l: Ak-sequence is a sequence df-items (or of lengtk).
tern. Such patterns are callééquent patternsin [6], the A SEqUeNce: 5,53...5n > 1S4 sub-sequence of another se-
definition of the problem is extended by handling time con- GUENCe< s1s5...s, > if there exist integers; < iy <
straints and taxonomiesis(a hierarchies) and a new - < inSuchthats; Csj .55 C sj,,.8n C 8 -



Example 1 Let us consider that a given customer pur- quences with time constraints allows a more flexible han-
chased itemg0, 20, 30, 40, 50, according to the following  dling of the transactions.

sequences =< (10) (20 30) (40) (503. This means that, We now define frequent sequences when handling time
apart from20 and 30 which were purchased together, i.e. constraints:

during a common transaction, the items in the sequenceD finition 2 Gi ified mini i
were bought separately. efinition iven a user-specified minimum time gap

The sequence = < (20) (50)> is a sub-sequence shbe- (minGap), maximum time gap (maxGap) and a time win-

cause (20)C (20 30) and (50% (50). However< (20) (30) dow size (windowSize), a data-sequetice< d;...d,, >

> is not a sub-sequence sfsince items were not bought IS s_a|d tosupport @ sequence =< s,...s, > if there ex-
during the same transaction istintegersly < uy < lp < ug < ... < I, < uy, Such

that: (i) s; is contained inUy’, di, 1 < i < n; (i)
transaction-time d,,,) - transaction-time ¢;,) < ws,
1 < i < n; (iii) transaction-time ¢;,) - transaction-time
(du,_,) > minGap, 2 < i < n; (iv) transaction-time {,,,)

In order to efficiently aid decision making, the aim is to
discard non-typical behaviors according to the user’s view-
point. Performing such a task requires providing any T :
data sub-sequence in the DB with a support value - ransaction-timedy, ,) < maxzGap, 2 < i < n. The

(supp(s)) giving its number of actual occurrences in the SuPport of s, supp(s), is the fraction of all sub-sequences
DBL. This means comparing any sub-sequence with the!n DB supportings. Whensupp(s) > minSupp holds, be-

whole DB. In order to decide whether a sequence is fre- N9 given aminimum support value minSupp, the
quent or not, a minimum support valuen{nSupp) is ~ Seauence is called frequent.

specified by the user, and the sequence said to be fre-  Example 2 As an illustration for the time constraints, let
quent if the conditionsupp(s) > minSupp holds. us consider the following data-sequence describing the pur-
chased items for a customer:
This definition of sequence is not appropriate for many

applications, since time constraints are not handled. In or- Daie ftems
der to improve the definitiongeneralized sequential pat- 01/01/2000| 10
ternsare introduced [6]. 02/02/2000| 20, 30

03/02/2000| 40
04/02/2000| 50, 60

When verifying whether a sequence is included in an- 05/02/2000| 70
other one, transaction cutting enforces a strong constraint
since only pairs of itemsets are compared. The notion of the
sized sliding window enables that constraint to be relaxed.
More precisely, the user can decide that it does not mat-
ter if items were purchased separately as long as their oc- d =< (10)* (20 30)% (40)3 (50 60)* (70)5 >
currences enfold within a given time window. Thus, when
browsing the DB in order to compare a sequen@ssumed
to be a pattern, with all data sequendéds D B, itemsets in
d could be grouped together with respect to the sliding win-
dow. Thus transaction cutting i could be resized when
verifying if d matche_s \.N.'thg' 30 40) (50 60 70)> and time constraints specified such as
Moreover when exhibiting from the data sequedesub- windowSize=3, minGap=0 and mazGap=5. The can-

sequences p(_)ssibly "?atcmng Wit.h the assumed _pattemdidate sequence is considered as included in the data-
non-adjacent itemsets ithcould be picked up successively. sequenc for the following two reasons:

Minimum and maximum time gaps are introduced to con-
strain such a construction. In fact, to be successively picked 1. the windowSize parameter makes it possible to gather
up, two itemsets must occur neither too close nor too far together on the one hand the itemsfs) (20 30) and

In other words, the data-sequenéeould be considered as
follows:

where each itemset is stamped by its access day. For in-
stance,(50 60)* means that the items 50 and 60 were pur-
chased together at time 4.

Let us now consider a candidate sequence:d20 20

apart in time. More precisely, the difference between their (40), and on the other hand the items¢i 60) and
time-stamps must fit in the rangenin-gap, maz-gap). (70) in order to obtain the itemse(d 0 20 30 40) and
Window size and time constraints as well as the minimum (50 60 70),

support condition are parameterized by the user. Mining se- 2. the minGap constraint between the itemgéfy and
(50 60) holds.

1 A sequence in a data-sequence is taken into account once and once Considering the integeris andw; in the Definition 2, we
only for computing the support of a frequent sequence even if sev- havel; = 1, uy = 3, I = 4, us = 5 and the data se-

eral occurrences are discovered. quenced is handled as illustrated in Figure 1.
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Figure 1. lllustration of the time constraints

Figure 2. lllustration of the time constraints

In a similar way, the candidate sequence<c£10 20 30)
(40) (50 60 70)> with windowSize=1, minGap=0 and
maxGap=2,i.e.ly =1, u1 =2, 15 =3, up =3, I3 =4
andug = 5 (C.f. Figure 2) is included in the data-sequence
d.

The two following sequences=< (10 20 30 40) (70>
andc; = < (10 20 30) (60 70>, with windowSize=1,
minGap=3 and maxGap=4 are not included in the data-
sequencel. Concerning the former, the windowSize is not
large enough to gather together the items@t8) (20 30)
and (40). For the latter, the only possibility for yielding
both (10 20 30) and (60 70) is to take into accountvs for
achieving the following grouped itemsét$0) (20 30)] and
[(50 60) (70)]. maxGap is respected sincg10) (20 30)]
and[(50 60) (70)] are spaced 4 days apattf = 5, l; =

1). Nevertheless, in such a casenGap constraint is no

longer respected between the two itemsets because they are

only 2 days apartlf = 4 andwu; = 2) whereas minGap
was set to 3 days

Given a database of data sequences, user-specified min-

The concept of sequential pattern is introduced to cap-
ture typical behaviors over time, i.e. behaviors repeated
sufficiently often by individuals to be relevant for the deci-
sion maker. The GSP algorithm, proposed in [6], is intended
for mining Generalized Sequential Patterns. It extends pre-
vious proposal by handling time constraints and tax-
onomies is-a hierarchies).

For building up candidate and frequent sequences, the
GSP algorithm performs several iterative steps such as the
k" step handles sets éfsequences which could be can-
didate (the set is noted}) or frequent (inLy). The latter
set, called the seed set, is used by the following step which,
in turn, results in a new seed set encompassing longer se-
guences, and so on. The first step aims at computing the
support of each item in the database. When completed, fre-
guent items (i.e. satisfying the minimum support) are dis-
covered. They are considered as frequent 1-sequences (se-
guences having a single itemset, itself being a singleton).
This initial seed set is the starting point of the second step.
The set of candidate 2-sequences is built according to the
following assumption: candidate 2-sequences could be any
pair of frequent items, embedded in the same transaction
or not. From this point, any step is given a seed set of
frequent g-1)-sequences and it operates by performing the
two following sub-steps:

e The first sub-step (join phase) addresses candidate
generation. The main idea is to retrieve, among se-
guences inL,_1, pairs of sequences,(s’) such that
discarding the first element of the former and the last
element of the latter results in two fully matching se-
guences. When such a condition holds for a pgis’),

a new candidate sequence is built by appending the last
item of s’ to s.

e The second sub-step is called the prune phase. Its ob-
jective is yielding the set of frequeitsequenced.y.

Ly is achieved by discarding fromfi;,, sequences not
satisfying the minimum support. To yield such a result,
it is necessary to count the number of actual occur-

Gap and maxGap constraints and a user-specified sliding
windowSize, the generalized sequential problem is to find
all the sequences whose support is greater than the user:
specifiedminSupp.

rences matching with any possible candidate sequence.

Candidate sequences are organized withirhash-tree
data-structure which can be accessed efficiently. These se-
guences are stored in the leaves of the tree while interme-
diary nodes contain hashtables. Each data-sequérise
hashed to find the candidates contained.iiVhen brows-

In the following section, we review the most impor- ing a data sequence, time constraints must be man-
tant work carried out within a sequential pattern frame- aged. This is performed by navigating downward or
work. Since they consider the generalized sequence probupward through the tree, resulting in a set of possible can-
lem and as they are the basic of our approach, particulardidates. For each candidate, GSP checks whether it is
emphasis is placed on the GSP [6] and PSP [3] algo-contained in the data-sequence. Because of the sliding win-
rithms. dow, and minimum and maximum time gaps, it is neces-
sary to switch during examination between forward and

3. Related Work



backward phases. Forward phases are performed for prothe base given in Figure 4.
gressively dealing with items.
Accordingly, in earlier work [3], we proposed a new

approach called PSP, Prefix-Tree for Sequential Patterns, [Client | Date [ ltem |
which fully resumes the fundamental principles of GSP. Its C1 | 01/04/2000] 1
originality is to use a different hierarchical structure than Cl | 03/04/2000] 2

in GSP for organizing candidate sequences, in order to im- gi 8#8353888 2

prove retrieval efficiency. In the hash-tree structure man- C1 | 17/04/2000] 5§

aged by GSP, the transaction cutting is not captured. The

main drawback of this approach is that when a leaf of the Figure 4. A database example

tree is obtained, an additional phase is necessary in order
to check time constraints for all sequences embedded in the
leaf.

The tree structure, managed by PSP, pgefix-tree At the

kth step, the tree has a depth /aflt captures all the can-
didatek-sequences in the following way. Any branch, from
the root to a leaf stands for a candidate sequence, and co
sidering a single branch, each node at dep(t > 1)
captures thé!” item of the sequence. Furthermore, along

Let us assume that windowSize = 1 and minGap=1.
Upon reading the customer transaction, PSP has to deter-
mine all combinations of the data sequence in accordance

nWith the time constraints in order to increment the support
of a candidate sequence. Then the set of sequences verify-
ing time constraints is the following:

with an item, a terminal node provides the support of the without time constraints with windowSize & minGap
sequence from the root to the considered leaf (included).  <(1)> <(2)(5)>e
Transaction cutting is captured by using labeled edges. <(5)> <(1)(3)(5)> e
Example 3 Let us assume that we are given the following <(1)(2)> <(1)(23)(5)> e
set of frequent 2-sequenceb; = {< (10) (30) >, <

’ <(3)(4)> <(1)(2)(4)(5)> e
(10) (40) >, < (30) (20) >, < (3040) >, < (4010) >}. <(1)(3)(4) (5> o
It is organized according to our tree structure as depicted in <(1)(2)(3)(4)(5)> <(1)(23)(4)(5p 0
Figure 3. Each terminal node contains an item and a count-  \ye notice that the sequences marked lsyage included
ing value. If we consider the node having the ité@ its in the sequence marked by-aThat is to say that if a can-
associated value 2 means that two occurrences of the seyjgate sequence is supportedoy( 1) (2) (4) (5)> or
quence{< (10) (40) >} have been detected so far <(1)(3)(4)(5)> then such a sequence is also sup-

ported by< (1) (23)(4) (5)>. The test of the two
first sequences is of course useless because they are in-

cluded in a larger sequence.
ﬂ\\
0 20 30 40
/ N [Client | Date | Item |

Cl 18/04/2000
Cl 24/04/2000

C1 | 01/04/2000] 1

301 402 202 402 103 CI | 07/04/2000] 2

C1 | 13/04/2000] 3

Figure 3. The PSP Tree data structure C1 | 17/04/2000]| 4
5

6

Figure 5. A database example

4. Motivations

The PSP approach outperforms GSP by using a more ef- Let us now have a closer look at the problem of the
ficient data structure. If such a structure seems appropriatavindowSize constraint. In fact, the number of included se-
to the problem of mining generalized sequential pat- quences is much greater when considering such a constraint.
terns, it seems, on the other hand, that the algorithm canFor instance, let us consider the database given in Figure 5.
be improved by paying particular attention to time con- When windowSize=5 and minGap=1, PSP has to test the
straint handling. To illustrate, let us consider the follow- following sequences into the candidate tree structure (we
ing customer data sequencg(1) (2)(3)(4)(5)> of only report sequences when windowSize is applied):



zgigg;ggggig E 0 g; . In the following sections, we decompose the problem of
<(1)(2)(3)(45)(6)> o discovering non-included sequences respecting time con-
<(1)(2)(34)(6)>- straints into the following subproblems. First we consider
<(1)(2)(345)(6)>0© the problem of the minGap constraint without taking into

account maxGap or windowSize and we propose an algo-

included in the sequence marked by &resp.c). Thatis  Mthm called GTG,incaqp for handling efficiently such a

to say that we have only to consider the two following se- constraint. Second,' we extend the previous algorlthm in or-

quences< (1) (2)(3)(45)(6)>and<(1)(2)(3 dertq handle the minGap an_d windowSize constraints. This
algorithm is called GTG;. Finally, we propose an exten-

sion of GTC,s, called GTC, for discovering the set of all

non included sequences when all the time constraints are

applied.

We notice that the sequences marked y(eesp.-) are

4 5) ( 6 )> when verifying a data sequence in the candi-
date tree structure.

In fact, we need to solve the following problem: how to
reduce the time required for comparing a data sequence with
the candidate sequences. Our proposition, described in th®.1. GTC,,;nqqp Algorithm: solution for minGap
following section, is to precalculate, by means of the GTC
(Graph for Time Constraints) algorithm, a relevant set of  In this section, we explain how the GT.G,cq, algo-
sequences to be tested for a data sequence. By precalcuithm provides an optimal solution to the problem of han-
lating this set, we can reduce the time spent analysizing adling the minGap constraint.
data sequence when verifying candidate sequences stored
in the tree, in the following two ways: (i) The navigation
through the candidate sequence tree does not depend on the

time constraints defined by the user. This implies navigation | _—" 5, 3 4 5

without backtracking and better analysis of possible combi- ¢ ————— e/ 111111110 - >
nations of windowSize which are for PSP, as well as for T~

GSP, computed on the fly.(ii) This navigation is only per-

formed on the longest sequences, that is to say on sequences Figure 6. A data sequence representation
not included in other sequences.

5. GTC: Graph for Time Constraints To illustrate, let us consider Figure 6, which repre-
' ' sents the data sequence of the base given in Figure 4. We
note,///11/11, the minGap constraint between two item-

Our approach takes up all the fundamental principles of setsa andb. Let us consider that minGap is set to 1. As

GSP. It contains a number of iterations. The iterations Startitems 2 and 3 are too closed according to minGap, they can-

at the size-one sequences and, at each iteration, all the fre- . )
not occur together in a candidate sequence. So, from

quent sequences of the same size are found. Moreover, af .
each iteration, the candidate sets are generated from the fr:tﬁqls graph, only two sequences: ( (1) (2) (4) (5) >

9 . and< (1) (3) (4) (5) >) are useful in order to ver-
quent sequences found at the previous iteration. . .
) i . ify candidate sequences. We can observe that these two se-
The main new feature of our approach which dis-

inquish it f i< that handl £ i guences match the two paths of the graph beginning from
tinguis , it from GSP'and PSP is that handling of time vertex 1 (standing for source vertex) and ending in ver-
constraint is done prior to and separate from the count-;., ¢ (standing for sink vertex).

ing step of a data sequence.

i o From each sequenek asequence grapban be built. A
. Upon reading a customer transac'gdnn the cour]t— sequence grapfor d is a directed acyclic grapts(V, E)
ing phase of pask, GTC has to determine all the maximal \yhere a vertew, v € V, is an itemset embedded ihand
combinations ofd respecting time constraints. For in- 5 edge:, e € E, from two vertices: andv, denotes that
stance, in the previous example, orty(1) (2) (3) ( gccurred before with at least a gap greater than the min-
45)(6)>and<(1)(2)(345)(6)> areexhib- o, constraint. Sequence patis a path from two vertices
ited by GTC. Then the Main algorithm has to determine all u andv such as: is a source and is a sink. Let us not§ P,
the k-candidates supported by the maximal sequences iSihe set of all sequence paths. In additi6h, has to satisfy
sued from GTC iterations od and increment the support 1o following two conditions:
counters associated with these candidates without consid-
ering time constraints any more. 1. No sequence path frofd; is included in any other se-

guence path frond ;.



2. If a candidate sequence is supportedipthen such a
candidate is included in a sequence path fiém

Given a data sequenckand a minGap constraint, the
sequential path problem is to find all the longest paths, i.e.
those not included in other ones, by verifying the follow-
ing conditions:

1. Vsl,s2 € SPy/sl ¢ s2.
2. Ve € Ag/d supports ¢, Ip € SP;/p supports c

where A, stands for the set of candidate sequences.
3. Vp € SP;, Ve € As/p supports ¢, then d supports c.

The set of all sequenceSP; is thus used to ver-
ify the actual support of candidate sequences.

Example 4 To illustrate, let us consider the graph in Fig-
ure 8 representing the application of GJG,cqp t0 the

an itemset occurring before The algorithm operates by
performing, for each itemset, the following two sub-steps:

1. Propagation phase the main idea is to retrieve the
first itemsetu by verifying (u.date() — v.date() >
minGap)?, i.e. the first itemset for which the min-
Gap constraint holds, in order to build the edgev).
Then for each itemsetsuch agz.date() —y.date() >
minGap), the algorithm updates.isPrec[z] indicat-
ing thatv will reach z traversing the itemset.

2. “gap-jumping” phase: its objective is to yield
the set of edges not provided by the previ-
ous phase. Such edgd®,t) are defined as fol-
lows (t.date() — z.date() > minGap) and
t.isPrec[z] # 1.

Once the GTG,ncqp has been applied to a data se-
guenced, the set of all sequenceS,P,, for counting the

database depicted in Figure 7._Let us assume that the min'support for candidate sequences is provided by navigat-
Gap value was set to 2. According to the time constraint, the g through the graph of all sequence paths.

set of all sequence pathS§,P;, is the following:SP;={<
(1) (2) (6) >, < (1) (34) (6) >, < (1) (5) >}.

The following theorem guarantees that, when applying

From this set, the next step of the Main algorithm is to ver- GTChincap, We are provided with a set of data sequences
ify these sequences into the candidate tree structure withoutyhere the minGap constraint holds and where each yielded

handling time constraints anymore

[ Client| Date | Item |
C1 01/04/2000| 1
C1l 05/04/2000| 2
C1 06/04/2000| 34
C1l 07/04/2000, 5
C1 09/04/2000| 6

Figure 7. An example database

L 2 34 w5
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Figure 8. The example sequence graph with minGap
=2

We now describe how the sequence graph is built by the

GTC,.incap algorithm. Auxiliary data structure can be used
to accomplish this task. With each itemsetthe itemsets
occurring beforey are stored in a sorted array;sPrec of
size|E|. The array is a vector of boolean where 1 stands for

data sequence cannot be a sub-sequence of another one.

Theorem 1 The GTG,incqp algorithm provides all the
longest-paths verifying minGap.

First, we prove that for each p’ € SP;, p ¢ p’. Next
we show that for each candidate sequansepported by,
a sequence path i@ supportinge is found.
Let us assume two sequence patfis,s2 € SP; such as
sl C s2. That is to say that the subgraph depicted in Figure
9isincluded inG. In other words, there is a path, .. ., ¢)
of length> 2 and an edgéq, ¢). If such a path(a, c) ex-
ists, we have:.isPrec[a] = 1. Indeed we can have a path
of length> 1 from « to b either by an edgéa, b) or by
a path(a,...,b). In the former caseg.isPrecla] IS up-
dated by the statementisPrec[a] < 1, otherwise there
is a vertexa’ in (a,...,b) such as(a,a’) is included in
the path. In such a caseisPrec[a] — 1 has already oc-
curred when building the edde, o). Then, after building
the path(a,...,b,...,c) we havec.isPrec[a] = 1 and the
edge(a, ¢) is not built. Clearly the sub-graph depicted in
Figure 9 cannot be obtained after Gl G cap-
Finally we demonstrate that if a candidate sequerissup-
ported byd, there is a sequence pathSt¥; supportinge. In
other words, we want to demonstrate that GJf«., pro-
vides all the longest paths satisfying the minGap constraint.
The data sequencekis progressively browsed starting with
its first item. Then if an itemset is embedded in a path
satisfying the minGap constraint it is includedsSw#;. We

2 wherez.date() stands for the transaction time of the itemset



have previously noticed that all vertices are included into athen = and y can be “merged” into the same transac-
path and for each,p’ € SP;, p ¢ p’. Furthermore if two  tion.

paths(z,...,y)(v/,..., z) can be merged, the edde, ') The structure described above is thus extended to han-
is built when browsing the itemset dle such an operation. Each itemset, in the new struc-
ture, is provided by both the begin transaction date and
the end transaction date. These dates are obtained by us-
ing thewv.begin() andv.end() functions.

o . .o Definition 3 An itemset is included in another itemsgtif
and only if the following two conditions are satisfied:

Figure 9. Minimal inclusion schema

e i.begin() > j.begin(),
o i.end() < j.end().

Once the graph satisfying minGap is obtained, the al-
gorithm detects inclusions in the following way: for each
nodez, the set of all its successarsnext must be exhib-
ited. For each nodg in z.next, if y C 2,2z € z.next and
y.next C z.next then the node can be pruned out from
the graph.

5.2. GTC,s Algorithm: solution for minGap and
windowSize

In this section, we explain how the algorithm GJC
provides an optimal solution to the problem of han-

‘!””9 'minGap and windowSize. As We'have' already N0~ The following theorem guarantees that, when applying
ticed in Section 4, _the problem of ha_ndllng_ WlndowS|ze is GTC,., we are provided with a set of data sequences where
much more complicated than handling minGap since the y,o minGap and windowSize constraints hold and that each

number of included sequences is much greater when CoNnyje|qed data sequence cannot be a sub-sequence of another
sidering such a constraint. one

Theorem 2 The GTG,, algorithm provides all the longest
paths verifying minGap and windowsSize.

M ) @ 45  ©

N J

(345)

Figure 10. A sequence graph obtained when consid-
ering windowSize

Figure 11. An included path example

To take into account the windowSize constraint we ex-
tend the GTG,incqp algorithm by generating coherent Theorem 1 shows that we do not have included data se-
combinations of windowSize at the beginning of algo- quences when considering minGap. Let us now examine
rithm and, once the graph respecting minGap is obtained,the windowSize constraint in detail. Let us consider two
inclusions are detected. The result of this handling is il- sequence paths, andss in Gy such thats; C s». Fig-
lustrated by Figure 10, which represents the sequenceyre 11 illustrates such an inclusion. In the last phase of
graph of the database given in Figure 5 when window- the GTG,, algorithm, we examine for each vertexf the
Size=5 and minGap=1. graph, the set of its successors by using theczt func-

tion. So, for each vertey in z.next, if y C z, z € z.next

Due to lack of space, we no not provide the algorithm andy.next C z.next, the vertexy is pruned out from the
but we give an overview of the method. graph. So, by construction; cannot be in the graph.

To yield the set of all windowSize combinations, each
vertexx of the graph is progressively browsed and the algo- 5.3. Solution for all time constraints
rithm determines which vertex can possibly be merged with
x. In other words, when navigating through the graph, ifa  In order to handle the maxGap constraint in the GTC al-
vertexy is such thay.date() — z.date() < windowSize, gorithm, we have to consider the itemset time-stamps into



the graph previously obtained by GT,C Let us remem-  Example 5 Let us consider the sequence graph depicted in
ber that, according to maxGap, a candidate sequense  Figure 13. Let us assume that we are provided with infor-
not included in a data sequened there exist two consec-  mation about reachable vertices into the graph according to
utive itemsets inc such that the gap between the transac- maxGap and that maxGap is set to 4 days. Let us now con-
tion time of the first itemset (calleg_; in Definition 2) and sider how the detection of the inclusion of a candidate se-
the transaction time of the second itemset (calleih Def- guence within the sequence graph is processed. Candidate
inition 2) in s is greater than maxGap. According to this itemset (2) and sequence graph itemset (2) are first com-
definition, when comparing candidates with a data se- pared by the algorithm. As the maxGap constraint holds and
guence, we must find in a graph itemset, the time-stamp(2) C (2), the first itemset of the candidate sequence is in-
for each item since, due to windowSize, items can be gath-cluded in the sequence graph and the process continues. In
ered together. In order to verify maxGap, the transaction order to verify the other components of the candidate se-
time of the sub-itemset corresponding to the included item- quence, we must know what is the next itemset ended by 5
set into the graph, must verify the maxGap delay from in the sequence graph and verifying the maxGap delay. In
the preceding itemset as well as for the following item- fact, when considering the last item of the following item-
set. set, if we want to know if the maxGap constraint holds be-
tween the current itemset (2) and the following itemset in
To illustrate, let us consider the database depicted in Fig-the candidate sequence, we have to consider the delay be-
ure 12. Let us now consider, in Figure 13, the sequencetween the current itemset in the graph and the next item-
graph obtained from the GTG algorithm when window-  set ended by 5 in this graph. We considered that we are
Size was set to 1 and minGap was set to 0. In order to de-provided with such an information in the graph. This in-
termine if the candidate data sequercé2) (45)(6)> formation can thus be taken into account by the algorithm
is included into the graph, we have to examine the gap be-in order to directly reach the following itemset in the se-
tween item 2 and item 5 as well as between item 4 andquence graph(3 4 5) and compare it with the next item-
item 6. Nevertheless, the main problem is that, accord-set in the candidate sequen¢e5). Until now, the candi-
ing to windowsSize, itemsdB) and itemset4 5) were gath- date sequence is included into the sequence graph. Nev-
ered together intd3 4 5).We are led to determine the ertheless, for completeness, we have to find in the graph
transaction time of each component in the resulting item- the next itemset ended by 6 and verifying that the delay be-
set. tween the transaction times of items 4 and 6 is lower than 4
days. This condition occurs with the last itemset in the se-
guence graph. At the end of the process, we can conclude
[ Customer] Date | Iltems| thatc is incl_ud_ed in the_ sequence graphdbr more pre-
C, 01,/01,/2000 cisely thatc is mc!uded ind. .
Cy 03,/01/2000 Let us now consider the same example but with a maxGap
o 04/01/2000 5 pons‘gramt set to 2. Lgt us have a closer Ioo_k at thg s_econd
C 06,/01/2000 |tera_\t|on. As we con5|de_red that we are provided with infor-
1
mation about maxGap into the graph, we know that there
is no itemset such that it ends in 5 and it satisfies the max-
Gap constraint with item 2. The process ends by concluding
that the candidate sequence is not included into the data se-
guence and without navigating further through the candi-
date structured

O WN

Figure 12. A database example

() (345 (6) _ Letus now describe how information about itemsets ver-
. o . e ifying maxGap is taken into account in GTC. Each item
in the graph is provided with an array indicating reachable
vertices, according to maxGap. Each array value is associ-
ated with a list of pointed nodes, which guarantees that the
pointed node corresponds to an itemset ending by this value

Before presenting how maxGap is taken into account in and that the delay between these two items is lower or equal
GTC, let us assume that we are provided with a sequenceo maxGap. Candidate verification algorithms can thus find
graph containing information about itemsets satisfying the candidates included in the graph by using such information
maxGap constraint. By using such an information the can-embedded in the array. By means of pointed nodes, the max-
didate verification can thus be improved as illustrated in the Gap constraint is considered during evaluation of candidate
following example. itemset.

Figure 13. Sequence graph obtained by GTC




6. Experiments were performed in order to study performance in scale-up

databases. they showed that GTC scaled up linearly as the
In this section, we present the performance results of ournumber of transactions is increased.

GTC algorithm. The structure used for organizing candidate

sequences is a prefix tree structure as in PSP. All experi-7. Conclusion

ments were performed on a PC Station with a CPU clock

rate at 1.8 GHz, 512M Bytes of main memory, Linux Sys-  We considered the problem of discovering sequen-

tem and a 60G Bytes disk drive. tial patterns by handling time constraints. We proposed a
In order to assess the relative performance of the GTCnew algorithm called GTC based on the fundamental prin-

algorithm and study its scale-up properties, we used differ- ciples of PSP and GSP but in which time constraints are

ent kinds of datasets. Due to lack of space we only reporthandled in the earlier stage of the algorithm in order to pro-

some results obtained with one access log file. It containsvide significant benefits. Using synthetic datasets as well

about 800K entries corresponding to the requests made duras real life databases, the performance of GTC was com-

ing March of 2002 and its size is about 600 M Bytes. There pared against that of PSP. Our experiments showed that

were 1500 distinct URLSs referenced in the transactions andGTC performs significantly better than the state-of-

15000 clients. the-art approaches since the improvements achieved by

GTC over the counting strategy employed by other ap-

proaches are two-fold: first, only maximal sequences are

Recumive: calls

Time (se)  AcossLog mpport 0% e Lng support 0.9% generated, and there is no need of an additional phase in or-
50 R 0 f Gre o der to count candidates included in a data sequence.
0 ] 6 | ] In order to take advantage of the behavior of the algo-
0 rithm in the first scans on the database, we are designing
S o a new algorithm called PGfybrid using the PSP ap-
5l ] proach for the two first passes on the database and GTC
for the following scans. First experiments are encourag-
. 1 z % 4 = ing, even for short frequent sequences.
wind o Size: windowSize
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