
Pre-Processing Time Constraints for Efficiently Mining Generalized Sequential
Patterns

Florent Masseglia
INRIA Sophia Antipolis

AxIS Research Team
2004 rte des lucioles

06902 Sophia Antipolis, France
Florent.Masseglia@inria.fr

Pascal Poncelet
Laboratoire LGI2P

École des Mines d’Alès
Parc Sc. Georges Besse
30035 Nîmes, France

Pascal.Poncelet@ema.fr

Maguelonne Teisseire
LIRMM UMR CNRS 5506

161 Rue Ada
34392 Montpellier, France

Teisseire@lirmm.fr

Abstract

In this paper we consider the problem of discovering se-
quential patterns by handling time constraints. While se-
quential patterns could be seen as temporal relationships
between facts embedded in the database, generalized se-
quential patterns aim at providing the end user with a
more flexible handling of the transactions embedded in the
database. We propose a new efficient algorithm, called GTC
(Graph for Time Constraints) for mining such patterns in
very large databases. It is based on the idea that handling
time constraints in the earlier stage of the algorithm can be
highly beneficial since it minimizes computational costs by
preprocessing data sequences. Our test shows that the pro-
posed algorithm performs significantly faster than a state-
of-the-art sequence mining algorithm.

1. Introduction

Although sequential patterns are of great practi-
cal importance (e.g. alarms in telecommunications net-
works, identifying plan failures, analysis of Web access
databases, etc.), in the literature, they have received rel-
atively little attention [1, 6, 4, 5, 2]. They could be
seen as temporal relationships between facts embed-
ded in the database. A sequential pattern could be “5% of
customers bought ’Foundation’, then ’Foundation and Em-
pire’, and then ’Second Foundation”’. The problem of dis-
covering sequential patterns in databases, introduced in
[1], is to find all patterns verifying user-specified mini-
mum support, where the support of a sequential pattern
is the percentage of data-sequences that contain the pat-
tern. Such patterns are calledfrequent patterns. In [6], the
definition of the problem is extended by handling time con-
straints and taxonomies (is-a hierarchies) and a new

algorithm, called GSP was proposed. In this paper, we pro-
pose a new efficient algorithm, called GTC (Graph for
Time Constraints) for mining generalized sequential pat-
terns in large databases. GTC minimizes computational
costs by using a data-sequence preprocessing operation
that takes time constraints into account. The main new fea-
ture of GTC is that time constraints are handled prior
to and separately from the counting step of a data se-
quence.

The rest of this paper is organized as follows. In Sec-
tion 2, the problem of mining generalized sequential pat-
terns is stated and illustrated. A review of related work is
presented in Section 3. The reasons for our choices are dis-
cussed in Section 4. The GTC algorithm for efficiently dis-
covering all generalized sequential patterns is given in Sec-
tion 5. Section 6 presents the detailed experiments using
both synthetic and real datasets, and performance results ob-
tained are interpreted. Section 7 concludes the paper.

2. From Sequential Patterns to Generalized
Sequential Patterns

First of all, we assume that we are given a databaseDB
of customers’ transactions, each of which has the follow-
ing characteristics: sequence-id or customer-id, transaction-
time and the items involved in the transaction. Such a
database is called a base of data sequences (Cf. Figure 4).

Definition 1 Let I = {i1, i2, ..., im} be a set of literals
calleditems. Anitemset is a non-empty set of items. A se-
quences is a set of itemsets ordered according to their time-
stamp. It is denoted by< s1s2...sn > wheresj is an item-
set. Ak-sequence is a sequence ofk-items (or of lengthk).
A sequence< s1s2...sn > is a sub-sequence of another se-
quence< s′1s

′
2...s

′
m > if there exist integersi1 < i2 <

... < in such thats1 ⊆ s′i1 , s2 ⊆ s′i2 , ...sn ⊆ s′in
.

Example 1 Let us consider that a given customer pur-
chased items10, 20, 30, 40, 50, according to the following
sequence:s =< (10) (20 30) (40) (50)>. This means that,
apart from20 and 30 which were purchased together, i.e.
during a common transaction, the items in the sequence
were bought separately.
The sequences′ = < (20) (50)> is a sub-sequence ofs be-
cause (20)⊆ (20 30) and (50)⊆ (50). However< (20) (30)
> is not a sub-sequence ofs since items were not bought
during the same transaction2

In order to efficiently aid decision making, the aim is to
discard non-typical behaviors according to the user’s view-
point. Performing such a task requires providing any
data sub-sequences in the DB with a support value
(supp(s)) giving its number of actual occurrences in the
DB1. This means comparing any sub-sequence with the
whole DB. In order to decide whether a sequence is fre-
quent or not, a minimum support value (minSupp) is
specified by the user, and the sequences is said to be fre-
quent if the conditionsupp(s) ≥ minSupp holds.

This definition of sequence is not appropriate for many
applications, since time constraints are not handled. In or-
der to improve the definition,generalized sequential pat-
ternsare introduced [6].

When verifying whether a sequence is included in an-
other one, transaction cutting enforces a strong constraint
since only pairs of itemsets are compared. The notion of the
sized sliding window enables that constraint to be relaxed.
More precisely, the user can decide that it does not mat-
ter if items were purchased separately as long as their oc-
currences enfold within a given time window. Thus, when
browsing the DB in order to compare a sequences, assumed
to be a pattern, with all data sequencesd in DB, itemsets in
d could be grouped together with respect to the sliding win-
dow. Thus transaction cutting ind could be resized when
verifying if d matches withs.
Moreover when exhibiting from the data sequenced, sub-
sequences possibly matching with the assumed pattern,
non-adjacent itemsets ind could be picked up successively.
Minimum and maximum time gaps are introduced to con-
strain such a construction. In fact, to be successively picked
up, two itemsets must occur neither too close nor too far
apart in time. More precisely, the difference between their
time-stamps must fit in the range[min-gap,max-gap].
Window size and time constraints as well as the minimum
support condition are parameterized by the user. Mining se-

1 A sequence in a data-sequence is taken into account once and once
only for computing the support of a frequent sequence even if sev-
eral occurrences are discovered.

quences with time constraints allows a more flexible han-
dling of the transactions.

We now define frequent sequences when handling time
constraints:

Definition 2 Given a user-specified minimum time gap
(minGap), maximum time gap (maxGap) and a time win-
dow size (windowSize), a data-sequenced =< d1...dm >
is said tosupport a sequences =< s1...sn > if there ex-
ist integersl1 ≤ u1 < l2 ≤ u2 < ... < ln ≤ un such
that: (i) si is contained in∪ui

k=li
dk, 1 ≤ i ≤ n; (ii)

transaction-time (dui
) - transaction-time (dli) ≤ ws,

1 ≤ i ≤ n; (iii) transaction-time (dli) - transaction-time
(dui−1) > minGap, 2 ≤ i ≤ n; (iv) transaction-time (dui)
- transaction-time (dli−1) ≤ maxGap, 2 ≤ i ≤ n. The
support of s, supp(s), is the fraction of all sub-sequences
in DB supportings. Whensupp(s) ≥ minSupp holds, be-
ing given a minimum support value minSupp, the
sequences is called frequent.

Example 2 As an illustration for the time constraints, let
us consider the following data-sequence describing the pur-
chased items for a customer:

Date Items
01/01/2000 10
02/02/2000 20, 30
03/02/2000 40
04/02/2000 50, 60
05/02/2000 70

In other words, the data-sequenced could be considered as
follows:

d =< (10)1 (20 30)2 (40)3 (50 60)4 (70)5 >

where each itemset is stamped by its access day. For in-
stance,(50 60)4 means that the items 50 and 60 were pur-
chased together at time 4.

Let us now consider a candidate sequence c=< (10 20
30 40) (50 60 70)> and time constraints specified such as
windowSize=3, minGap=0 and maxGap=5. The can-
didate sequencec is considered as included in the data-
sequenced for the following two reasons:

1. the windowSize parameter makes it possible to gather
together on the one hand the itemsets(10) (20 30) and
(40), and on the other hand the itemsets(50 60) and
(70) in order to obtain the itemsets(10 20 30 40) and
(50 60 70),

2. the minGap constraint between the itemsets(40) and
(50 60) holds.

Considering the integersli andui in the Definition 2, we
havel1 = 1, u1 = 3, l2 = 4, u2 = 5 and the data se-
quenced is handled as illustrated in Figure 1.

< l1 [1(10) 2(20 30) 3(40) u1] l2 [4(50 60) 5(70) u2] >

maxGap

minGap

Figure 1. Illustration of the time constraints

windowSize windowSize
< (10)1 (20 30)2 (40)3 (50 60)4 (70)5 >

maxGap maxGap

minGap minGap

Figure 2. Illustration of the time constraints

In a similar way, the candidate sequence c=< (10 20 30)
(40) (50 60 70)> with windowSize=1, minGap=0 and
maxGap=2, i.e. l1 = 1, u1 = 2, l2 = 3, u2 = 3, l3 = 4
andu3 = 5 (C.f. Figure 2) is included in the data-sequence
d.
The two following sequencesc1=< (10 20 30 40) (70)>
and c2 = < (10 20 30) (60 70)>, with windowSize=1,
minGap=3 and maxGap=4 are not included in the data-
sequenced. Concerning the former, the windowSize is not
large enough to gather together the itemsets(10) (20 30)
and (40). For the latter, the only possibility for yielding
both(10 20 30) and(60 70) is to take into accountws for
achieving the following grouped itemsets[(10) (20 30)] and
[(50 60) (70)]. maxGap is respected since[(10) (20 30)]
and [(50 60) (70)] are spaced 4 days apart(u2 = 5, l1 =
1). Nevertheless, in such a caseminGap constraint is no
longer respected between the two itemsets because they are
only 2 days apart (l2 = 4 and u1 = 2) whereas minGap
was set to 3 days2

Given a database of data sequences, user-specified min-
Gap and maxGap constraints and a user-specified sliding
windowSize, the generalized sequential problem is to find
all the sequences whose support is greater than the user-
specifiedminSupp.

3. Related Work

In the following section, we review the most impor-
tant work carried out within a sequential pattern frame-
work. Since they consider the generalized sequence prob-
lem and as they are the basic of our approach, particular
emphasis is placed on the GSP [6] and PSP [3] algo-
rithms.

The concept of sequential pattern is introduced to cap-
ture typical behaviors over time, i.e. behaviors repeated
sufficiently often by individuals to be relevant for the deci-
sion maker. The GSP algorithm, proposed in [6], is intended
for mining Generalized Sequential Patterns. It extends pre-
vious proposal by handling time constraints and tax-
onomies (is-ahierarchies).

For building up candidate and frequent sequences, the
GSP algorithm performs several iterative steps such as the
kth step handles sets ofk-sequences which could be can-
didate (the set is notedCk) or frequent (inLk). The latter
set, called the seed set, is used by the following step which,
in turn, results in a new seed set encompassing longer se-
quences, and so on. The first step aims at computing the
support of each item in the database. When completed, fre-
quent items (i.e. satisfying the minimum support) are dis-
covered. They are considered as frequent 1-sequences (se-
quences having a single itemset, itself being a singleton).
This initial seed set is the starting point of the second step.
The set of candidate 2-sequences is built according to the
following assumption: candidate 2-sequences could be any
pair of frequent items, embedded in the same transaction
or not. From this point, any stepk is given a seed set of
frequent (k-1)-sequences and it operates by performing the
two following sub-steps:

• The first sub-step (join phase) addresses candidate
generation. The main idea is to retrieve, among se-
quences inLk−1, pairs of sequences (s, s′) such that
discarding the first element of the former and the last
element of the latter results in two fully matching se-
quences. When such a condition holds for a pair (s, s′),
a new candidate sequence is built by appending the last
item ofs′ to s.
• The second sub-step is called the prune phase. Its ob-

jective is yielding the set of frequentk-sequencesLk.
Lk is achieved by discarding fromCk, sequences not
satisfying the minimum support. To yield such a result,
it is necessary to count the number of actual occur-
rences matching with any possible candidate sequence.

Candidate sequences are organized within ahash-tree
data-structure which can be accessed efficiently. These se-
quences are stored in the leaves of the tree while interme-
diary nodes contain hashtables. Each data-sequenced is
hashed to find the candidates contained ind. When brows-
ing a data sequence, time constraints must be man-
aged. This is performed by navigating downward or
upward through the tree, resulting in a set of possible can-
didates. For each candidate, GSP checks whether it is
contained in the data-sequence. Because of the sliding win-
dow, and minimum and maximum time gaps, it is neces-
sary to switch during examination between forward and

backward phases. Forward phases are performed for pro-
gressively dealing with items.

Accordingly, in earlier work [3], we proposed a new
approach called PSP, Prefix-Tree for Sequential Patterns,
which fully resumes the fundamental principles of GSP. Its
originality is to use a different hierarchical structure than
in GSP for organizing candidate sequences, in order to im-
prove retrieval efficiency. In the hash-tree structure man-
aged by GSP, the transaction cutting is not captured. The
main drawback of this approach is that when a leaf of the
tree is obtained, an additional phase is necessary in order
to check time constraints for all sequences embedded in the
leaf.
The tree structure, managed by PSP, is aprefix-tree. At the
kth step, the tree has a depth ofk. It captures all the can-
didatek-sequences in the following way. Any branch, from
the root to a leaf stands for a candidate sequence, and con-
sidering a single branch, each node at depthl (k ≥ l)
captures thelth item of the sequence. Furthermore, along
with an item, a terminal node provides the support of the
sequence from the root to the considered leaf (included).
Transaction cutting is captured by using labeled edges.

Example 3 Let us assume that we are given the following
set of frequent 2-sequences:L2 = {< (10) (30) >, <
(10) (40) >, < (30) (20) >, < (30 40) >, < (40 10) >}.
It is organized according to our tree structure as depicted in
Figure 3. Each terminal node contains an item and a count-
ing value. If we consider the node having the item40, its
associated value 2 means that two occurrences of the se-
quence{< (10) (40) >} have been detected so far2

301 402

�
�

A
A

10 20

202 402

�
�

30

103

40

����
�

�
@

@

aaaaa

root

Figure 3. The PSP Tree data structure

4. Motivations

The PSP approach outperforms GSP by using a more ef-
ficient data structure. If such a structure seems appropriate
to the problem of mining generalized sequential pat-
terns, it seems, on the other hand, that the algorithm can
be improved by paying particular attention to time con-
straint handling. To illustrate, let us consider the follow-
ing customer data sequence< (1) (2) (3) (4) (5)> of

the base given in Figure 4.

Client Date Item

C1 01/04/2000 1
C1 03/04/2000 2
C1 04/04/2000 3
C1 07/04/2000 4
C1 17/04/2000 5

Figure 4. A database example

Let us assume that windowSize = 1 and minGap=1.
Upon reading the customer transaction, PSP has to deter-
mine all combinations of the data sequence in accordance
with the time constraints in order to increment the support
of a candidate sequence. Then the set of sequences verify-
ing time constraints is the following:

without time constraints with windowSize & minGap
< (1) > < (2) (5)> •
.
< (5) > < (1) (3) (5)> •
.
< (1) (2)> < (1) (2 3) (5)> •
.
< (3) (4)> < (1) (2) (4) (5)> •
. . . < (1) (3) (4) (5)> •
< (1) (2) (3) (4) (5)> < (1) (2 3) (4) (5)> ◦

We notice that the sequences marked by a• are included
in the sequence marked by a◦. That is to say that if a can-
didate sequence is supported by< (1) (2) (4) (5)> or
< (1) (3) (4) (5)> then such a sequence is also sup-
ported by< (1) (2 3) (4) (5)>. The test of the two
first sequences is of course useless because they are in-
cluded in a larger sequence.

Client Date Item

C1 01/04/2000 1
C1 07/04/2000 2
C1 13/04/2000 3
C1 17/04/2000 4
C1 18/04/2000 5
C1 24/04/2000 6

Figure 5. A database example

Let us now have a closer look at the problem of the
windowSize constraint. In fact, the number of included se-
quences is much greater when considering such a constraint.
For instance, let us consider the database given in Figure 5.
When windowSize=5 and minGap=1, PSP has to test the
following sequences into the candidate tree structure (we
only report sequences when windowSize is applied):

< (1) (2) (3) (5) (6)> •
< (1) (2) (3) (4) (6)> •
< (1) (2) (3) (4 5) (6)> ◦
< (1) (2) (3 4) (6)> ·
< (1) (2) (3 4 5) (6)> �

We notice that the sequences marked by a• (resp.·) are
included in the sequence marked by a◦ (resp.�). That is
to say that we have only to consider the two following se-
quences< (1) (2) (3) (4 5) (6)> and< (1) (2) (3
4 5) (6)> when verifying a data sequence in the candi-
date tree structure.

In fact, we need to solve the following problem: how to
reduce the time required for comparing a data sequence with
the candidate sequences. Our proposition, described in the
following section, is to precalculate, by means of the GTC
(Graph for Time Constraints) algorithm, a relevant set of
sequences to be tested for a data sequence. By precalcu-
lating this set, we can reduce the time spent analysizing a
data sequence when verifying candidate sequences stored
in the tree, in the following two ways: (i) The navigation
through the candidate sequence tree does not depend on the
time constraints defined by the user. This implies navigation
without backtracking and better analysis of possible combi-
nations of windowSize which are for PSP, as well as for
GSP, computed on the fly.(ii) This navigation is only per-
formed on the longest sequences, that is to say on sequences
not included in other sequences.

5. GTC: Graph for Time Constraints

Our approach takes up all the fundamental principles of
GSP. It contains a number of iterations. The iterations start
at the size-one sequences and, at each iteration, all the fre-
quent sequences of the same size are found. Moreover, at
each iteration, the candidate sets are generated from the fre-
quent sequences found at the previous iteration.

The main new feature of our approach which dis-
tinguish it from GSP and PSP is that handling of time
constraint is done prior to and separate from the count-
ing step of a data sequence.

Upon reading a customer transactiond in the count-
ing phase of passk, GTC has to determine all the maximal
combinations ofd respecting time constraints. For in-
stance, in the previous example, only< (1) (2) (3) (
4 5) (6)> and< (1) (2) (3 4 5) (6)> are exhib-
ited by GTC. Then the Main algorithm has to determine all
the k-candidates supported by the maximal sequences is-
sued from GTC iterations ond and increment the support
counters associated with these candidates without consid-
ering time constraints any more.

In the following sections, we decompose the problem of
discovering non-included sequences respecting time con-
straints into the following subproblems. First we consider
the problem of the minGap constraint without taking into
account maxGap or windowSize and we propose an algo-
rithm called GTCminGap for handling efficiently such a
constraint. Second, we extend the previous algorithm in or-
der to handle the minGap and windowSize constraints. This
algorithm is called GTCws. Finally, we propose an exten-
sion of GTCws, called GTC, for discovering the set of all
non included sequences when all the time constraints are
applied.

5.1. GTCminGap Algorithm: solution for minGap

In this section, we explain how the GTCminGap algo-
rithm provides an optimal solution to the problem of han-
dling the minGap constraint.

1 2 3 4 5r r r r r/ / / / / / / / /-
R

�

- -

Figure 6. A data sequence representation

To illustrate, let us consider Figure 6, which repre-
sents the data sequence of the base given in Figure 4. We
note, //////// , the minGap constraint between two item-
setsa and b. Let us consider that minGap is set to 1. As
items 2 and 3 are too closed according to minGap, they can-
not occur together in a candidate sequence. So, from
this graph, only two sequences (< (1) (2) (4) (5) >
and < (1) (3) (4) (5) >) are useful in order to ver-
ify candidate sequences. We can observe that these two se-
quences match the two paths of the graph beginning from
vertex 1 (standing for source vertex) and ending in ver-
tex 5 (standing for sink vertex).

From each sequenced, asequence graphcan be built. A
sequence graphfor d is a directed acyclic graphGd(V,E)
where a vertexv, v ∈ V , is an itemset embedded ind and
an edgee, e ∈ E, from two verticesu andv, denotes thatu
occurred beforev with at least a gap greater than the min-
Gap constraint. Asequence pathis a path from two vertices
u andv such asu is a source andv is a sink. Let us noteSPd

the set of all sequence paths. In addition,Gd has to satisfy
the following two conditions:

1. No sequence path fromGd is included in any other se-
quence path fromGd.

2. If a candidate sequence is supported byd, then such a
candidate is included in a sequence path fromGd.

Given a data sequenced and a minGap constraint, the
sequential path problem is to find all the longest paths, i.e.
those not included in other ones, by verifying the follow-
ing conditions:

1. ∀s1, s2 ∈ SPd/s1 6⊂ s2.
2. ∀c ∈ As/d supports c, ∃p ∈ SPd/p supports c

whereAs stands for the set of candidate sequences.
3. ∀p ∈ SPd,∀c ∈ As/p supports c, then d supports c.

The set of all sequencesSPd is thus used to ver-
ify the actual support of candidate sequences.

Example 4 To illustrate, let us consider the graph in Fig-
ure 8 representing the application of GTCminGap to the
database depicted in Figure 7. Let us assume that the min-
Gap value was set to 2. According to the time constraint, the
set of all sequence paths,SPd, is the following:SPd={<
(1) (2) (6) >, < (1) (3 4) (6) >, < (1) (5) >}.
From this set, the next step of the Main algorithm is to ver-
ify these sequences into the candidate tree structure without
handling time constraints anymore2

Client Date Item

C1 01/04/2000 1
C1 05/04/2000 2
C1 06/04/2000 3 4
C1 07/04/2000 5
C1 09/04/2000 6

Figure 7. An example database

1 2 3 4 5 6r r r r r/ /

/ /

-
R R

�

R

Figure 8. The example sequence graph with minGap
= 2

We now describe how the sequence graph is built by the
GTCminGap algorithm. Auxiliary data structure can be used
to accomplish this task. With each itemsetv, the itemsets
occurring beforev are stored in a sorted array,v.isPrec of
size|E|. The array is a vector of boolean where 1 stands for

an itemset occurring beforev. The algorithm operates by
performing, for each itemset, the following two sub-steps:

1. Propagation phase: the main idea is to retrieve the
first itemsetu by verifying (u.date() − v.date() >
minGap)2, i.e. the first itemset for which the min-
Gap constraint holds, in order to build the edge(u, v).
Then for each itemsetz such as(z.date()−y.date() >
minGap), the algorithm updatesz.isPrec[x] indicat-
ing thatv will reachz traversing the itemsetu.

2. “gap-jumping” phase: its objective is to yield
the set of edges not provided by the previ-
ous phase. Such edges(v, t) are defined as fol-
lows (t.date() − x.date() > minGap) and
t.isPrec[x] 6= 1.

Once the GTCminGap has been applied to a data se-
quenced, the set of all sequences,SPd, for counting the
support for candidate sequences is provided by navigat-
ing through the graph of all sequence paths.

The following theorem guarantees that, when applying
GTCminGap, we are provided with a set of data sequences
where the minGap constraint holds and where each yielded
data sequence cannot be a sub-sequence of another one.

Theorem 1 The GTCminGap algorithm provides all the
longest-paths verifying minGap.

First, we prove that for eachp, p′ ∈ SPd, p 6⊂ p′. Next
we show that for each candidate sequencec supported byd,
a sequence path inG supportingc is found.
Let us assume two sequence paths,s1, s2 ∈ SPd such as
s1 ⊂ s2. That is to say that the subgraph depicted in Figure
9 is included inG. In other words, there is a path(a, . . . , c)
of length≥ 2 and an edge(a, c). If such a path(a, c) ex-
ists, we havec.isPrec[a] = 1. Indeed we can have a path
of length≥ 1 from a to b either by an edge(a, b) or by
a path(a, . . . , b). In the former case,c.isPrec[a] is up-
dated by the statementc.isPrec[a] ← 1, otherwise there
is a vertexa′ in (a, . . . , b) such as(a, a′) is included in
the path. In such a casec.isPrec[a] ← 1 has already oc-
curred when building the edge(a, a′). Then, after building
the path(a, . . . , b, . . . , c) we havec.isPrec[a] = 1 and the
edge(a, c) is not built. Clearly the sub-graph depicted in
Figure 9 cannot be obtained after GTCminGap.
Finally we demonstrate that if a candidate sequencec is sup-
ported byd, there is a sequence path inSPd supportingc. In
other words, we want to demonstrate that GTCminGap pro-
vides all the longest paths satisfying the minGap constraint.
The data sequenced is progressively browsed starting with
its first item. Then if an itemsetx is embedded in a path
satisfying the minGap constraint it is included inSPd. We

2 wherex.date() stands for the transaction time of the itemsetx.

have previously noticed that all vertices are included into a
path and for eachp, p′ ∈ SPd, p 6⊂ p′. Furthermore if two
paths(x, . . . , y)(y′, . . . , z) can be merged, the edge(y, y′)
is built when browsing the itemsety.

a b cr r r-
R
-

Figure 9. Minimal inclusion schema

5.2. GTCws Algorithm: solution for minGap and
windowSize

In this section, we explain how the algorithm GTCws

provides an optimal solution to the problem of han-
dling minGap and windowSize. As we have already no-
ticed in Section 4, the problem of handling windowSize is
much more complicated than handling minGap since the
number of included sequences is much greater when con-
sidering such a constraint.

(1) (2) (3) (4 5) (6)

(3 4 5)

r r r r rr- - - -� -
6
Figure 10. A sequence graph obtained when consid-
ering windowSize

To take into account the windowSize constraint we ex-
tend the GTCminGap algorithm by generating coherent
combinations of windowSize at the beginning of algo-
rithm and, once the graph respecting minGap is obtained,
inclusions are detected. The result of this handling is il-
lustrated by Figure 10, which represents the sequence
graph of the database given in Figure 5 when window-
Size=5 and minGap=1.

Due to lack of space, we no not provide the algorithm
but we give an overview of the method.

To yield the set of all windowSize combinations, each
vertexx of the graph is progressively browsed and the algo-
rithm determines which vertex can possibly be merged with
x. In other words, when navigating through the graph, if a
vertexy is such thaty.date() − x.date() < windowSize,

then x and y can be “merged” into the same transac-
tion.
The structure described above is thus extended to han-
dle such an operation. Each itemset, in the new struc-
ture, is provided by both the begin transaction date and
the end transaction date. These dates are obtained by us-
ing thev.begin() andv.end() functions.

Definition 3 An itemseti is included in another itemsetj if
and only if the following two conditions are satisfied:

• i.begin() ≥ j.begin(),
• i.end() ≤ j.end().

Once the graph satisfying minGap is obtained, the al-
gorithm detects inclusions in the following way: for each
nodex, the set of all its successorsx.next must be exhib-
ited. For each nodey in x.next, if y ⊂ z, z ∈ x.next and
y.next ⊆ z.next then the nodey can be pruned out from
the graph.

The following theorem guarantees that, when applying
GTCws, we are provided with a set of data sequences where
the minGap and windowSize constraints hold and that each
yielded data sequence cannot be a sub-sequence of another
one.

Theorem 2 The GTCws algorithm provides all the longest
paths verifying minGap and windowSize.

�

�

�

�a b b’

b

cr r r
r-

R- -

Figure 11. An included path example

Theorem 1 shows that we do not have included data se-
quences when considering minGap. Let us now examine
the windowSize constraint in detail. Let us consider two
sequence pathss1 and s2 in Gd such thats1 ⊂ s2. Fig-
ure 11 illustrates such an inclusion. In the last phase of
the GTCws algorithm, we examine for each vertexx of the
graph, the set of its successors by using thex.next func-
tion. So, for each vertexy in x.next, if y ⊂ z, z ∈ x.next
andy.next ⊆ z.next, the vertexy is pruned out from the
graph. So, by construction,s1 cannot be in the graph.

5.3. Solution for all time constraints

In order to handle the maxGap constraint in the GTC al-
gorithm, we have to consider the itemset time-stamps into

the graph previously obtained by GTCws. Let us remem-
ber that, according to maxGap, a candidate sequencec is
not included in a data sequences if there exist two consec-
utive itemsets inc such that the gap between the transac-
tion time of the first itemset (calledli−1 in Definition 2) and
the transaction time of the second itemset (calledui in Def-
inition 2) in s is greater than maxGap. According to this
definition, when comparing candidates with a data se-
quence, we must find in a graph itemset, the time-stamp
for each item since, due to windowSize, items can be gath-
ered together. In order to verify maxGap, the transaction
time of the sub-itemset corresponding to the included item-
set into the graph, must verify the maxGap delay from
the preceding itemset as well as for the following item-
set.

To illustrate, let us consider the database depicted in Fig-
ure 12. Let us now consider, in Figure 13, the sequence
graph obtained from the GTCws algorithm when window-
Size was set to 1 and minGap was set to 0. In order to de-
termine if the candidate data sequence< (2) (4 5) (6)>
is included into the graph, we have to examine the gap be-
tween item 2 and item 5 as well as between item 4 and
item 6. Nevertheless, the main problem is that, accord-
ing to windowSize, itemset(3) and itemset(4 5) were gath-
ered together into(3 4 5).We are led to determine the
transaction time of each component in the resulting item-
set.

Customer Date Items

C1 01/01/2000 2
C1 03/01/2000 3
C1 04/01/2000 4 5
C1 06/01/2000 6

Figure 12. A database example

()2 (3)4 5 ()6r r r- -

Figure 13. Sequence graph obtained by GTCws

Before presenting how maxGap is taken into account in
GTC, let us assume that we are provided with a sequence
graph containing information about itemsets satisfying the
maxGap constraint. By using such an information the can-
didate verification can thus be improved as illustrated in the
following example.

Example 5 Let us consider the sequence graph depicted in
Figure 13. Let us assume that we are provided with infor-
mation about reachable vertices into the graph according to
maxGap and that maxGap is set to 4 days. Let us now con-
sider how the detection of the inclusion of a candidate se-
quence within the sequence graph is processed. Candidate
itemset (2) and sequence graph itemset (2) are first com-
pared by the algorithm. As the maxGap constraint holds and
(2) ⊆ (2), the first itemset of the candidate sequence is in-
cluded in the sequence graph and the process continues. In
order to verify the other components of the candidate se-
quence, we must know what is the next itemset ended by 5
in the sequence graph and verifying the maxGap delay. In
fact, when considering the last item of the following item-
set, if we want to know if the maxGap constraint holds be-
tween the current itemset (2) and the following itemset in
the candidate sequence, we have to consider the delay be-
tween the current itemset in the graph and the next item-
set ended by 5 in this graph. We considered that we are
provided with such an information in the graph. This in-
formation can thus be taken into account by the algorithm
in order to directly reach the following itemset in the se-
quence graph(3 4 5) and compare it with the next item-
set in the candidate sequence(4 5). Until now, the candi-
date sequence is included into the sequence graph. Nev-
ertheless, for completeness, we have to find in the graph
the next itemset ended by 6 and verifying that the delay be-
tween the transaction times of items 4 and 6 is lower than 4
days. This condition occurs with the last itemset in the se-
quence graph. At the end of the process, we can conclude
that c is included in the sequence graph ofd or more pre-
cisely thatc is included ind.
Let us now consider the same example but with a maxGap
constraint set to 2. Let us have a closer look at the second
iteration. As we considered that we are provided with infor-
mation about maxGap into the graph, we know that there
is no itemset such that it ends in 5 and it satisfies the max-
Gap constraint with item 2. The process ends by concluding
that the candidate sequence is not included into the data se-
quence and without navigating further through the candi-
date structure2

Let us now describe how information about itemsets ver-
ifying maxGap is taken into account in GTC. Each item
in the graph is provided with an array indicating reachable
vertices, according to maxGap. Each array value is associ-
ated with a list of pointed nodes, which guarantees that the
pointed node corresponds to an itemset ending by this value
and that the delay between these two items is lower or equal
to maxGap. Candidate verification algorithms can thus find
candidates included in the graph by using such information
embedded in the array. By means of pointed nodes, the max-
Gap constraint is considered during evaluation of candidate
itemset.

6. Experiments

In this section, we present the performance results of our
GTC algorithm. The structure used for organizing candidate
sequences is a prefix tree structure as in PSP. All experi-
ments were performed on a PC Station with a CPU clock
rate at 1.8 GHz, 512M Bytes of main memory, Linux Sys-
tem and a 60G Bytes disk drive.

In order to assess the relative performance of the GTC
algorithm and study its scale-up properties, we used differ-
ent kinds of datasets. Due to lack of space we only report
some results obtained with one access log file. It contains
about 800K entries corresponding to the requests made dur-
ing March of 2002 and its size is about 600 M Bytes. There
were 1500 distinct URLs referenced in the transactions and
15000 clients.

Figure 14. Execution times and recursive calls (min-
Gap=1)

Figure 14 shows experiments conducted on the differ-
ent datasets using different windowSize ranges to get mean-
ingful response times. minGap was set to 1 and maxGap
was set to∞. Note the minimum support thresholds are ad-
justed to be as low as possible while retaining reasonable
execution times. Figure 14 clearly indicates that the perfor-
mance gap between the two algorithms increases with in-
creasing windowSize value.The reason is that during the
candidate verification, PSP has to determine all combina-
tion of the data sequence according to minGap and window-
Size constraints. In fact, the more the value of windowSize
increases, the more PSP carries out recursive calls in or-
der to apply time constraints to the candidate structure. Ac-
cording to these calls, the PSP algorithm operates a costly
backtracking for examining the prefix tree structure.In or-
der to illustrate correlation between the number of recur-
sive calls and the execution times we compared the number
of recursive calls needed by PSP and our algorithm and as
expected, the number of recursive calls increases with the
size of the windowSize parameter.Additional experiments

were performed in order to study performance in scale-up
databases. they showed that GTC scaled up linearly as the
number of transactions is increased.

7. Conclusion

We considered the problem of discovering sequen-
tial patterns by handling time constraints. We proposed a
new algorithm called GTC based on the fundamental prin-
ciples of PSP and GSP but in which time constraints are
handled in the earlier stage of the algorithm in order to pro-
vide significant benefits. Using synthetic datasets as well
as real life databases, the performance of GTC was com-
pared against that of PSP. Our experiments showed that
GTC performs significantly better than the state-of-
the-art approaches since the improvements achieved by
GTC over the counting strategy employed by other ap-
proaches are two-fold: first, only maximal sequences are
generated, and there is no need of an additional phase in or-
der to count candidates included in a data sequence.
In order to take advantage of the behavior of the algo-
rithm in the first scans on the database, we are designing
a new algorithm called PG-Hybrid using the PSP ap-
proach for the two first passes on the database and GTC
for the following scans. First experiments are encourag-
ing, even for short frequent sequences.

References

[1] R. Agrawal and R. Srikant. Mining Sequential Patterns. In
Proceedings of the 11th International Conference on Data En-
gineering (ICDE’95), Tapei, Taiwan (1995).

[2] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential Pat-
tern Mining Using Bitmap Representation. InProocedings
of the 8th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Edmonton, Alberta, Canada
(2002).

[3] F. Masseglia, F. Cathala, and P. Poncelet. The PSP Approach
for Mining Sequential Patterns. InProceedings of the 2nd Eu-
ropean Symposium on Principles of Data Mining and Knowl-
edge Discovery (PKDD’98), LNAI, Vol. 1510, pp. 176–184,
Nantes, France (1998).

[4] F. Masseglia, P. Poncelet, and M. Teisseire. Incremental Min-
ing of Sequential Patterns in Large Databases.Data and
Knowledge Engineering, 46(1):97–121 (2003).

[5] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and MC. Hsu. PrefixSpan: Mining Sequential Patterns Ef-
ficiently by Prefix-Projected Pattern Growth. InProceed-
ings of 17th International Conference on Data Engineering
(ICDE’01) (2001).

[6] R. Srikant and R. Agrawal. Mining Sequential Patterns: Gen-
eralizations and Performance Improvements. InProceedings
of the 5th International Conference on Extending Database
Technology (EDBT’96), pp. 3–17, Avignon, France (1996).

