Partiel (2 heures)

Documents et thèse de Church-Turing autorisés.

Cet énoncé est trop long.

Exercice 1. Récursivité

1. Les ensembles suivants sont-ils récursifs ? récursifs primitifs ? récursivement énumérables ? de complémentaire récursivement énumérable ? Justifier.

- 1. $\{i \mid \varphi_i(0) = 2\varphi_i(1)\}\$
- 2. $\{i \mid \varphi_i(i) = 2\varphi_i(i+1)\}$
- 3. $\{\langle i,j\rangle \mid \varphi_i \neq \varphi_j\}$
- 4. $\{x \in \mathbb{N}, \varphi_{1664}(51) = x\}$
- 5. $\{x \in \mathbb{N}, \varphi_{1664}(x) = 51\}$
- **2.** Existe-t-il un entier m tel que $dom(\varphi_m) = \{1337^m\}$?
- **3.** Un ensemble est dit *simple* s'il est récursivement énumérable, de complémentaire infini et qu'il rencontre tout ensemble récursivement énumérable infini. Construire un ensemble simple. [Bonus] En construire un autre de manière complètement différente.
- 4. Montrer que
 - a. si h est une fonction récursive totale, il existe une fonction récursive totale strictement croissante k telle que $\forall i, \ \varphi_{h(i)} = \varphi_{k(i)}$;
 - b. il existe une fonction récursive totale f telle que $\{i \mid \varphi_i = \varphi_{f(i)}\}$ n'est pas récursif;
 - c. tout ensemble récursivement énumérable infini contient un ensemble récursivement énumérable non récursif et un ensemble infini récursif.

Exercice 2.

Un autre problème de la raie (le poisson qui a des gros sushis)

Soit $\mathcal{F}=\{\psi_i\}_{i\in\mathbb{N}}$ un ensemble dénombrable de fonctions partielles de \mathbb{N} dans \mathbb{N} . On suppose que

- la fonction définie par $dom(f) = \{0\}$ et f(0) = 0 est dans \mathcal{F} ;
- pour tous entiers i et j, il existe un entier e tel que $\psi_e = \psi_i \circ \psi_j$.
 - **1.** Montrer que la fonction caractéristique de $\{x \mid \psi_x(x) \text{ est définie}\}$ n'est pas dans \mathcal{F} .

- **1.** Soit g une fonction récursive totale. Montrer que pour tout entier z il existe un entier n tel que $\varphi_{q\langle n,z\rangle}=\varphi_n$.
- **2.** Montrer qu'il existe une fonction récursive totale η telle que

$$\forall x, z \quad \varphi_{\varphi_x \langle \eta \langle x, z \rangle, z \rangle} = \varphi_{\eta \langle x, z \rangle}$$

3. En déduire que tout programme se comporte de façon universelle sur une infinité d'autres programmes... Plus formellement,

$$\forall a \in \mathbb{N}, \ \exists I_a \subseteq \mathbb{N} \ \text{infini}, \forall x \in I_a, \forall y \in \mathbb{N}, \varphi_a \langle x, y \rangle = \varphi_x(y)$$

Exercice 4.

Identification inductive

Si f est une fonction totale de $\mathbb N$ dans $\mathbb N$ on note $\alpha_f(n) = \langle f(0), f(1), \dots, f(n) \rangle$. On dit qu'une machine de Turing M identifie inductivement une fonction totale $f: \mathbb N \to \mathbb N$ si :

- $\forall n \in \mathbb{N} \ M(\alpha_f(n))$ est défini, et
- $\exists a (\varphi_a = f \land \exists p \in \mathbb{N} \ \forall n > p \ M(\alpha_f(n)) = a).$

On dit qu'une classe de fonctions \mathcal{F} est *inductivement identifiable* s'il existe une machine de Turing M identifiant inductivement toutes les fonctions de \mathcal{F} .

- **1.** Pourquoi parle-t-on d'identification inductive?
- **2.** L'ensemble des fonctions récursives primitives unaires est-il inductivement identifiable?
- 3. Et l'ensemble des fonction récursives unaires totales, hein?

Exercice 5.

Décidabilité à l'estonienne

On notera comme d'habitude $\langle .,. \rangle$ une bijection fixée de \mathbb{N}^2 dans \mathbb{N} , et par récurrence on définit également $\langle x_1, \ldots, x_{n+1} \rangle = \langle \langle x_1, \ldots, x_n \rangle, x_{n+1} \rangle$.

Soit \mathcal{F} une classe de fonctions de \mathbb{N} dans \mathbb{N} vérifiant les propriétés suivantes :

- \mathcal{F} contient les fonctions constantes et les projections π_1 et π_2 définies par $\pi_1(\langle x, y \rangle) = x$ et $\pi_2(\langle x, y \rangle) = y$,
- elle contient la fonction if définie par if $(\langle x, y, z, w \rangle) = \begin{cases} w & \text{si } x = y \\ z & \text{sinon} \end{cases}$ et
- elle est stable par composition et couplage $(\langle x, y \rangle \mapsto \langle f(x), g(y) \rangle)$.

Étant donné deux fonctions $f,g:\mathbb{N}\to\mathbb{N}$, on note $f\leq_m g$ s'il existe $h\in\mathcal{F}$ tel que $f=g\circ h$.

1. Montrer que si $g \in \mathcal{F}$ et $f \leq_m g$, alors $f \in \mathcal{F}$.

On suppose maintenant qu'il existe une fonction récursive U telle que $\mathcal{F} = \{U(x,.)/x \in \mathbb{N}\}$ et des fonctions const, comp et pair dans \mathcal{F} vérifiant :

- $-\psi_{\mathrm{const}(x)} = \tilde{x}$,
- $-\psi_{\operatorname{comp}(\langle x,y\rangle)}=\psi_x\circ\psi_y$ et
- $\psi_{\text{pair}(\langle x, y \rangle)} = \langle \psi_x, \psi_y \rangle.$
- où l'on note $\psi_x = U(x, .)$.
 - **2.** L'ensemble des fonctions récursives primitives unaires forme-t-il un \mathcal{F} convenable ? Et l'ensemble des fonctions récursives totales unaires ? Et l'ensemble des fonctions récursives unaires ?

$$\begin{array}{l} \text{On d\'efinit les fonctions:} \\ -\ \text{grU}\left(\langle x,y,z\rangle\right) = \left\{ \begin{array}{l} 1 & \text{si } U(x,y) = z \\ 0 & \text{sinon} \end{array} \right. \\ -\ \text{diag}(x) = \left\{ \begin{array}{l} 1 & \text{si } U(x,x) = 0 \\ 0 & \text{sinon} \end{array} \right. \\ -\ \text{member}_x(y) = \left\{ \begin{array}{l} 1 & \text{si } U(y,x) = 1 \\ 0 & \text{sinon} \end{array} \right. \end{array}$$

- **3.** Montrer que ces fonctions sont équivalentes pour \leq_m .
- **4.** En déduire qu'aucune n'appartient à \mathcal{F} .

Une propriété P sur $\mathcal F$ est une fonction à valeurs dans $\{0;1\}$ telle que $\psi_x=\psi_y\Rightarrow P(x)=0$ P(y).

- 5. Soit P une propriété non triviale 1 sur $\mathcal{F}.$ Montrer que gru $\leq_m P.$ En déduire que $P \notin \mathcal{F}$.
- **6.** Montrer que pour toute fonction f de \mathcal{F} , il existe une infinité de x tels que $f=\psi_x$.

 $^{{}^{1}}$ C'est-à-dire qu'il existe x et y tels que P(x)=0 et P(y)=1.