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Abstract. We will show how padding techniques can be applied on one-
dimensional cellular automata by proving a transfer theorem on com-
plexity classes (how one inclusion of classes implies others). Then we
will discuss the consequences of this result, in particular when consid-
ering that all languages recognized in linear space can be recognized in
linear time (whether or not this is true is still an open question), and see
the implications on one-tape Turing machines.

1 Introduction

Cellular automata (CA) are a simple yet powerful and complex massively par-
allel computing model. It is known to be Turing-complete, but the parallelism
of the computation makes it quite different from usual sequential models (Tur-
ing machines, RAM machines, etc.) in terms of algorithmic complexity. Many
examples have shown how it can lead to very efficient computations [4,5].

For these reasons it is interesting to study cellular automata as language
recognizers. Because of the parallelism it is very hard to prove non-trivial time
lower bounds for the recognition of languages: there is currently no known lan-
guage that can be recognized in linear space that cannot be recognized in linear
time.

Also, some techniques that seem simple on sequential models such as Turing
machines can be more complicated on cellular automata. In this article we will
see how “padding techniques” can be used on cellular automata to transfer an
inclusion between two complexity classes to more general classes. This technique
has been widely known and used in the case of Turing machines, but it does not
work immediately on cellular automata (since all cells work at each step, the
cells in the “padded” region also work from the beginning).

The article is structured as follows: in section 2 we give the necessary defi-
nitions and recall some useful properties of cellular automata. Section 3 states
the transfer theorem and proves it by explaining how to make padding work on
one-dimensional cellular automata. Finally, in section 4 we study some conse-
quences of this result, mainly concerning the long time open question of deciding
whether or not there exist languages that can be recognized in linear space but
not in linear time, and how it is linked to a tight equivalence between one-tape
Turing machines and one-dimensional cellular automata.



2 Definitions and Useful Properties

2.1 Cellular Automata

In this article, we will only consider one-dimensional cellular automata working
on the classical neighborhood.

Definition 1. A cellular automaton (CA) is a pair A = (Q, δ) where Q is a
finite set called set of states containing a special state B, and δ : Q3 → Q is the
transition function such that δ(B,B,B) = B (B is a quiescent state).

For a given automaton A, we call configuration of A any function C : Z → Q.
From the local function δ we can define a global function

∆ :
{
QZ → QZ

C 7→ C′ | ∀x ∈ Z, C′(x) = δ(C(x− 1), C(x), C(x + 1))

Elements of Z are called cells. Given a configuration C, we will say that a cell
c is in state q if C(c) = q.

If at time t ∈ N the CA is in a configuration C, we will say that at time (t+1)
it is in the configuration ∆(C). This defines the evolution of a CA from a con-
figuration. This evolution is completely determined by the initial configuration
C and the automaton.

Definition 2 (Finite Configuration). A configuration C : Z → Q is said to
be finite if there exists x, y ∈ Z (x ≤ y) such that for all n /∈ Jx, yK, C(n) = B.

The size of the configuration is the minimal value of (y−x+1) for all (x, y)
statisfying the definition.

It is obvious (because the state B is quiescent) that for every finite config-
uration C, ∆(C) is also finite. In this article we will only consider finite initial
configurations so at all times the configuration of the automaton will be finite.

Definition 3 (Signals). A signal in a CA is a special set of states that “moves”
in a direction at a given speed. For example, a signal s moving at speed 1 to the
right is a pair of states {s, s} such that δ(s, s, s) = s and δ(s, s, s) = s (if a cell
sees that its left neighbor is in state s, it becomes of state s at the next time, so
in some sense the s state has moved right). In this example, s is a neutral state.

To have a signal move at speed 1/k (k ∈ Z+), we will use k + 1 states
{s1, . . . , sk, s}, and the rules

δ(s, si, s) = si+1 i ∈ J1, k − 1K
δ(s, sk, s) = s
δ(sk, s, s) = s1

so that the state si stays on a cell during k steps before moving to the right
(again, all cells that do not hold the signal are in state s).



Signals are a very useful tool for computations on cellular automata. Given
an automaton A = (Q, δ), adding a signal S = {s1, . . . , sk, s} corresponds to
making a new cellular automaton whose states are Q × S. Any finite number
of signals can be added to an automaton (while still having a finite number of
states). Signals can then evolve according to their move rule (as explained in the
definition) but can also interact the ones with the others when they meet on a
cell (disappear, generate new signals etc.), or even change the main evolution of
the automaton on a given cell when it receives a given signals (and that is what
they are useful for).

Definition 4 (Space-Time Diagram). Given a CA A = (Q, δ) and a config-
uration C, we can represent by a two-dimensional diagram the complete evolution
of the automaton from C. The initial configuration is drawn horizontally on the
bottom line and all the following configurations are drawn successively (time goes
from bottom to top). Such a diagram is called space-time diagram of A from con-
figuration C.

For obvious reasons, we only represent a finite part of a space-time diagram
(finite in both space and time) however since we will only consider finite config-
urations and computations over a finite time we will be able to represent all the
necessary information.

The space-time diagram of a CA is a discrete diagram. However, we will
sometimes represent it as a continuous figure. In this case the signals (some
specific states that move through the configuration) will be represented as line
segments, and they will partition the diagram in polygonal parts.

2.2 Language Recognition

Definition 5 (Word Recognition). We consider a CA A = (Q, δ) and an
accepting state qf ∈ Q such that for all q1, q2 ∈ Q we have δ(q1, qf , q2) = qf (if
a cell is in state qf at one point, it stays in this state forever, such a state is
called persistent). Let w = w0w1 . . . wl−1 be a word on a finite alphabet Σ ⊆ Q.
We define the configuration Cw as follows.

Cw : Z → Q{
x
x
7→
7→

wx

B
if 0 ≤ x < l
otherwise

We will say that the CA A recognizes the word w with accepting state qf in
time tw ∈ N and space sw ∈ N if, starting from the configuration Cw at time 0,
the cell 0 is in state qf at time tw and no cell other than the ones in J0, sw − 1K
was ever in a state other than B.

Definition 6 (Language Recognition). Let A = (Q, δ) be a CA, L ⊆ Σ∗

a language on the alphabet Σ ⊆ Q and qf ∈ Q a persistent state. Given two
functions T : N → N and S : N → N, we will say that the language L is
recognized by A in time T and space S with accepting state qf if for every word
w ∈ Σ∗ of length l, the CA A recognizes w with accepting state qf in time T (l)
and space S(l) if and only if w ∈ L.



We will denote as CATIME(T ) the class of languages recognizable in time T
and as CASPACE(S) the class of languages recognizable in space S.

2.3 Functions

Definition 7 (Time-Constructible Function). Given a function f : N → N,
we will say that f is time-constructible if there exists a CA A = (Q, δ) and two
states q1, qf ∈ Q such that for every n ∈ N, starting from the initial configuration
Cqn

1
(the unary encoding of n into a finite configuration of A) at time 0, the cell

0 is in state qf for the first time at time f(n).

The above definition simply means that, given an integer n in unary form,
the automaton can “count” f(n) steps and mark the origin when it is done.

Definition 8 (Space-Constructible Function). Given a function f : N →
N, we will say that f is space-constructible if there exists a CA A = (Q, δ)
and two states q1, qf ∈ Q such that for every n ∈ N, starting from the initial
configuration Cqn

1
, after some time all cells ranging from 0 to f(n)− 1 switch to

the state qf , no cell was in this state before and during the whole computation
none of the cells c such that c < 0 or c ≥ f(n) was ever in a state other than B.

This definition means that, on input n (encoded in unary), the automaton
will compute f(n) in unary without using more cells in the process than the
ones needed to write the output (the ones between 0 and f(n) − 1). The syn-
chronization is not a problem because we can apply the firing squad technique
at the end of the computation (see Proposition 1).

Remark. It is obvious, according to this definition, that any function f that
is space-constructible is such that f(x) ≥ x for all x.

Remark. Any time-constructible function f such that ∀x, f(x) ≥ x is space-
constructible : we can modify the automaton so that it first compresses its input
to a word of half its initial length, and then performs the computation of f using
half the space (all states correspond to two states of the initial automaton). While
this computation occurs, a signal moves at speed 1/2 from the origin to the right.
When the time f(n) is computed on the origin, a new signal appears that moves
to the right at speed 1. These two signals meet at the cell f(n), and no more
space has been used during the computation.

2.4 Basic Properties

Proposition 1 (Firing Squad). It is possible to synchronize a segment of k
adjacent cells (have them enter a specific state for the first time at the same
time). It can be done in time ak + b for any a ≥ 2 and b ≥ 0, starting from the
time when the leftmost cell emits the “synchronization” signal. The rightmost
cell need only be created at time (a− 1)k.

The firing squad problem has been well studied, and many ingenious solutions
have been found. In this article we will need a solution that can be delayed so



that the synchronization takes exactly ak steps for some integer a ≥ 2 and such
that the rightmost cell can be constructed as late as possible (at time (a− 1)k).
Such a solution is a particular case of the general “delayed” solutions explained
in [7].

Proposition 2. Let f : N → N be a time-constructible function. If for all x ∈ N,
we have f(x) ≥ 3x then the function x 7→ f(x)− x is also time-constructible.

Proof. The first step is to mark the cell n/3. This can be done at time 2n/3
by sending a signal at speed 1/2 to the right from the origin and a signal at
speed 1 to the left from the rightmost letter of the word. Then, with a firing
squad technique between the origin and the cell n/3 (see proposition 1) and a
compression of the information it is possible to start the computation of f(n)
at scale 1/3 from time n. This will mark the time n + f(n)/3 on the origin, and
from this time, a signal s1 appears and moves to the right at speed 1

Meanwhile, we mark the time 2n on the origin, and from there a signal s2

starts going right at speed 1/2. This signal meets the signal s1 at time 2f(n)/3
on cell f(n)/3 − n (the signals meet only if s2 was generated before s1, which
means that 2n ≤ n + f(n)/3, i.e. 3n ≤ f(n)), and from here a new signal starts
moving towards the origin at speed 1, this last signal will arrive at the origin at
time 2f(n)/3 + f(n)/3− n = f(n)− n.

Proposition 3. Let f : N → N be a time-constructible function and k ≥ 2 an
integer. If for all x ∈ N we have f(x) ≥ 2kx then the function x 7→ f(x)/k is
also time-constructible.

Proof. This construction is simpler than the previous one, all we have to do is
mark the cell f(n)/k at time (k − 1)f(n)/k with the use of a signal moving to
the right at speed 1/k and one going to the left at speed 1, and then with a
firing squad technique start the computation of f(n) at scale 1/k to mark the
origin at time f(n)/k + n. We then use Proposition 2 to construct x 7→ f(x)/k.

The combination of both constructions requires f(x) ≥ 2kx.

Proposition 4 (Turing-Cellular Comparison). Let L be a language in Σ∗.
If L is recognized in time T : N → N and space S : N → N by a Turing machine
using one tape and one head, then it is recognizable in time T and space S by a
cellular automaton.

Moreover, if L is recognized by a cellular automaton in time T and space S
then it is recognized by a one-tape Turing Machine in time T × S and space S.

Proof. This property follows from straightforward simulations of one-tape Turing
machines by cellular automata and vice versa. Details on these simulations can
be found in [9].

Proposition 5. For every language L and every integer k, if L can be recognized
in space x 7→ kx then it can be recognized in space x 7→ x. In other words⋃

k∈N CASPACE(k. Id) = CASPACE(Id).



The proof is identical to that of the same result in the Turing case.

Proposition 6. For every language L recognizable in time T and space S on a
cellular automaton, there is a CA that recognizes L in time T ′ ≤ T and space
S′ ≤ S and such that all cells c < 0 remain in the blank state B during all the
computation (for every word w).

The proof of this proposition is identical to the proof that semi-infinite tape
Turing machines are equivalent to bi-infinite tape Turing machines.

3 Transfer Theorem

In this section, we will state and prove the transfer theorem. Some consequences
of this theorem will be discussed in the next section.

Theorem 1. Given two space-constructible functions f, g : N → N if
CASPACE(f) ⊆ CATIME(g) then for any time-constructible function h : N →
N such that ∀x, h(x) ≥ 6x we have

CASPACE(f ◦ h) ⊆ CATIME(g ◦ h)

To prove this, we will consider three functions f , g and h that satisfy the
hypothesis of Theorem 1 and we will assume that

CASPACE(f) ⊆ CATIME(g)

Moreover we consider a language L over the alphabet Σ that can be recog-
nized in space f ◦ h. We will show that L can be recognized in time g ◦ h.

3.1 The Language L̃

Lemma 1. The language L̃ = {w#h(|w|)−|w| | w ∈ L}, where # is a new symbol
not in Σ, is recognizable in time g.

Proof. We first show that L̃ is in CASPACE(f). To do so we have to check that
w is in L and that there are exactly the right amount of # symbols. Because L is
in CASPACE(f ◦ h) and h is space-constructible both verifications can be done
(if more space is needed it means that there were not enough #). The conclusion
follows from the hypothesis that CASPACE(f) ⊆ CATIME(g).

From now on, we will assume that we have a CA A that recognizes L̃ in time
g. We will now construct a CA A′ that recognizes L in time g ◦ h.



3.2 Compression of the Space-Time Diagram

The aim of this section is to explain how it is possible to construct the cellu-
lar automaton A′ that will, on input w, simulate the behavior of A on input
w#h(|w|)−|w| without any loss of time. The initial configuration of A is very sim-
ple, and the only information that A′ is missing is the exact location of the cell
(h(|w|)− 1).

Let us have a look at a typical space-time diagram of A on input ω =
w#h(|w|)−|w| (see figure 1). According to proposition 6 we can consider that no
computation takes place on the negative cells. We will now consider separately
the area of the space-time diagram that is on top of the initial word w (the cells
on which the letters were initially written) and the rest of the diagram, starting
from the cell |w| (these two areas are separated by a dashed line on the figure).
If we assume that A′ is able to compute correctly all the states on the column
that is immediately to the right of this dashed line (all the states of the cell
|w|), it will mean that it is also capable of computing all the states in the area
corresponding to the cells from 0 to (|w|−1) because the initial states are known
(the letters of w) and that at each time the states of these cells only depend on
the previous states of these cells and the cell |w|.

w #h(|w|)−|w| BB . . .

Fig. 1. Space-time diagram of A.

−|w| 0 h(|w|)
3

h(|w|)
3 2h(|w|)

3

Fig. 2. Construction of the point
(h(|w|)/3, 2h(|w|)/3) at time 2h(|w|)/3
(with shifted coordinates).

To compute the states on the cell |w|, we will operate a geometric trans-
formation of the rightmost part of the space-time diagram (the part that is
represented on the right of the dashed line) that will preserve this column and
let the automaton A′ construct the missing portion of the initial configuration
of A: the segment of # symbols of length h(|w|)− |w|.

Definition of the compression Let us shift the system of coordinates on the
diagram so that the new origin is now the cell |w| (the cell that was previously



referred to as c is now the cell (c− |w|)). Let us consider the transformation

σ :

{ N2 → ( 1
3N)2

(x, y) 7→ (x
3 , y + 2x

3 )

The vertical axis is invariant by σ and the image of the horizontal axis (the
initial configuration) is now a line of slope 2. Figure 3 illustrates the effects
of σ on the right part of the space-time diagram of A. We see that each cell
receives, after compression, the states of 3 cells before compression (except for
the origin that keeps one single state). We have alse represented on the figure
the neighborhood of a cell and its successor, both before and after compression.

σ

Fig. 3. Effects of σ on the right part of
the space-time diagram.

Fig. 4. The 3 possible cases when trying
to apply the transition rule of A after
compression by σ.

All we have to do now is show that A′, on input w, can simulate the behavior
of A by constructing in real-time the image by σ of the right part of the space-
time diagram of A.

How the Simulation Works Since we have assumed that for all x ∈ N,
h(x) ≥ 6x, the function h/3 is time-constructible (proposition 3) which means
that the origin (still with shifted coordinates) can be marked at time h(|w|)/3
which means we can mark the cell h(|w|)/3 at time 2h(|w|)/3 by sending signals
as illustrated on figure 2 (the black dashed line is a signal that moves at speed
1 whereas the grey dashed line is a signal moving at speed 1/2). The space-time
point (h(|w|)/3, 2h(|w|)/3) is exactly the image by σ of the point (h(|w|), 0) that
happens to be the last cell in state # in the initial configuration of A.

Therefore, even if A′ does not have all the information held by ω in its
initial configuration, it can construct the image by σ of this initial configuration.



Indeed, by propagating a signal to the right at speed 1/2 from the shifted origin
(the right border of the input word) it can write # symbols on the segment that
is the image of the # segment in the initial configuration of A and we have just
seen that A′ is capable of deciding exactly where this segment must end.

We now have to check that A′ can apply the transition rule of A to the
information that is held by the cells after applying σ to the space-time diagram.

The states on the space-time diagram of A can be in one of 3 different
situations after compression by σ as shown by figure 3: upper-left, center or
lower-right. Figure 4 illustrates the situation for each of these cases.

In each part of the figure we have represented which states must be known in
order to compute the next state on a given position. We see that the information
needed to compute the “next state” on a lower-right position is located on the
current cell and its right neighbor. To compute the next state on a central
position, the cell must look at her right neighbor and also know the next state
on the lower-right position, which, as we have seen, can be computed with the
information that is accessible to the cell. Finally, computing a state in the upper-
left position requires to see a state held by the left neighbor of the cell, and also
computing the next state on the central position.

In all three cases, we have shown that if the space-time diagram ofA′ contains
the image by σ of the configuration of A at time t then A′ can compute the image
by σ of the configuration of A at time (t + 1). Since the image of the initial
configuration of A can be recreated by A′, it is possible to compute correctly
everything that happens on the right part of the space-time diagram of A (on
the right of the last letter of the input word).

3.3 End of the Computation

We have seen how A′ can simulate the computation of A on the area that is on
top of the input word without any distortion if it can compute correctly all the
states on the column |w| (back on the original coordinates system), and how this
column can be computed by compressing the space-time diagram of A (but the
compression does not affect the column |w|).

The automaton A on input w can therefore simulate completely the behavior
of A on input ω = w#h(|w|)−|w|, which means that at time g(|ω|) = g ◦ h(|w|) it
can decide whether or not ω is in L̃ and hence whether or not w is in L.

The language L is recognized in time g ◦ h, which concludes the proof of
theorem 1.

4 Linear Time, Linear Space

4.1 The Open Questions

As in the Turing case, it is very hard on cellular automata to prove lower bounds
of complexity. Moreover, very little is known about comparing space and time
complexities. If it is easy to show that for any function f , CATIME(f) ⊆



CASPACE(f), showing that the inclusion is strict (or that it is an equality)
is much harder.

In particular, extensive work has been made on the lower complexity classes:

– Real time: CATIME(Id);
– Linear time:

⋃
k∈N CATIME(k. Id);

– Linear space:
⋃

k∈N CASPACE(k. Id);

Space and time speed-up theorems show that the linear class time is equal to
the class CATIME(2 Id) and that the linear time class is equal to CASPACE(Id).
There is also an immediate sequence of inclusion between these three classes but
it is still unknown if any of these inclusions is strict.

The questions have been first stated by A. R. Smith III in 1972 [10] and have
remained open since. Some significant improvements have been made though,
for example relating the equality of complexity classes to their closure properties
[6] or working on weaker versions of cellular automata [1,2,3]. These questions
are in many ways similar to the well known open question “P = PSPACE ?”.

In this section we will use the theorem 1 to show some consequences of
the assumptions that CATIME(Id) = CASPACE(Id) or CATIME(2 Id) =
CASPACE(Id).

4.2 Stronger Version of the Main Theorem

We have the following results:

Lemma 2. Under the hypothesis that CATIME(Id) = CASPACE(Id), every
function f that is space-constructible is also time-constructible.

Proof. We show that the language Lf = {1x#f(x)−x | x ∈ N} is in
CASPACE(Id) and thus in CATIME(Id). Then we can make a cellular automa-
ton that, on input 1x will work as if all symbols on the right of the last ‘1′ were
# and continue until the first (and only) word of the form 1k#∗ is accepted (at
time t the automaton considers that it has received all the relevant information,
and therefore knows whether or not the word 1x#t−x is in Lf ). It will happen
at time f(x), so f is time-constructible.

Proposition 7. If CATIME(Id) = CASPACE(Id) then for any space-
constructible function h : N → N we have

CASPACE(h) ⊆ CATIME(h)

Proof. The proof of this proposition is very similar to that of theorem 1. The
only difference is that the hypothesis on h is now weaker because of lemma 2.



4.3 Equivalence of Cellular and Turing Models

For a given function f : N → N, we will denote as DTIME(f) the class of
languages recognizable on a deterministic one-tape Turing machine in time f ,
and DSPACE(f) the class of languages recognizable on a deterministic one-tape
Turing machine in space f . It is known that DSPACE(f) = CASPACE(f). Here
we will only consider deterministic one-tape Turing machines, that we will simply
call Turing machines.

If CASPACE(Id) ⊆ CATIME(2 Id) then, because of Theorem 1 and Proposi-
tion 4, for every time-constructible function f every language L that is recognized
in space f (in the usual Turing sense since space complexities are the same for
CA and Turing machines) can be recognized in time f2, in other words :

DTIME(f) ⊆ DSPACE(f) ⊆ CATIME(2f) ⊆ DTIME(f2)

Whether there exists or not a function f that contradicts these inclusions is
still an open question. An important consequence of this is that P = PSPACE.
Of course, the fact that CASPACE(Id) ⊆ CATIME(2 Id) implies P = PSPACE
is not new since it is an immediate consequence of the PSPACE-completeness of
TQBF, that is known to be in CASPACE(Id), but the proof we have here does
not require the existence of PSPACE-complete problems.

Remark. For any function f such that ∀x, f(x) ≥ 2x, we have
CATIME(f) = CATIME(2f) (because of a linear acceleration theorem on CA).

However, the most interesting consequence of the inclusion CASPACE(Id) ⊆
CATIME(2 Id) is a very strong equivalence between the cellular and the Turing
computing models obtained with the use of a theorem by M. Paterson:

Theorem 2 (Paterson [8]). For every function f : N → N such that
∀x, f(x) ≥ x, we have DTIME(f2) ⊆ DSPACE(f).

If CASPACE(Id) ⊆ CATIME(2 Id), then we already know that for every
time-constructible function f ,

DSPACE(f) = CASPACE(f) ⊆ CATIME(2f) ⊆ DTIME(f2)

and from the above theorem, we get

CATIME(2f) = DTIME(f2) = DSPACE(f) = CASPACE(f)

This would mean that any sequential algorithm (on a single-tape Turing
machine) can be speed-up by a quadratic factor when considering it on a parallel
model (cellular automaton). Since we know that this speed-up factor is optimal
(what can be done in time f on a CA can be done in time f2 on a TM), it would
mean that the two models are very tightly equivalent in terms of time complexity,
since knowing the exact complexity of a problem on one model would give the
exact complexity on the other model.

Conversely, to show that CASPACE(Id) 6⊂ CATIME(2 Id), it would be
enough to find a language that can be recognized in time f2 (for some time-
constructible function f such that ∀x, f(x) ≥ x) on a one-tape Turing machine
but not in time 2f on a cellular automaton. However, no such example is known
as of today.



5 Conclusion

We have shown in this paper how padding techniques that are broadly known
to work on Turing machines can also work on cellular automata, by transform-
ing the space-time diagram so that the automaton has enough time during the
computation to “recreate” the information that was held by the “padded” cells.
Using this technique we have shown the cellular equivalent to the transfer theo-
rem.

This theorem enabled us to establish an important link between problems of
separation of space and time complexity classes and problems of parallel compu-
tation (if CASPACE(Id) ⊆ CATIME(2 Id) then every sequential algorithm can
be parallelized with a quadratic speed-up).

Even though both questions remain open, the implications that we have seem
to indicate that the inclusions do not hold, and open new possibilities to prove
it.
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