
TRANSLATING PARTITIONED CELLULAR AUTOMATA INTO
CLASSICAL TYPE CELLULAR AUTOMATA

VICTOR POUPET

Laboratoire d’Informatique Fondamentale (LIF), UMR 6166 CNRS, Université de Provence
CMI, 39 rue Joliot-Curie, 13453 Marseille Cedex 13
E-mail address: victor.poupet@lif.univ-mrs.fr

URL: http://www.lif.univ-mrs.fr/ vpoupet/

Abstract. Partitioned cellular automata are a variant of cellular automata that was defined
in order to make it very simple to create complex automata having strong properties such as
number conservation and reversibility (which are often difficult to obtain on cellular automata).
In this article we show how a partitioned cellular automaton can be translated into a regular
cellular automaton in such a way that these properties are conserved.

1. Introduction

A number-conserving cellular automaton is a cellular automaton such that all states of
cells are represented by integers and that the sum of all states in any finite configuration (the
quiescent state corresponds to the value 0) is unchanged after one transition of the automaton.
Number-conservation can be seen as a modelization of the physical law of conservation of mass
and energy. Thus number conserving cellular automata can be used to model complex physical
phenomena, like fluid dynamics [1] or highway traffic flow [6].

However, it appears that designing number-conserving cellular automata with complex
transition rules is very difficult. To solve this problem a new kind of cellular automata has
been studied by Morita et al. [3] that use a partitioned space. It is then possible to construct
complex two-dimensional number-conserving (and reversible) PCA, like for example some that
simulate any reversible two-counter machine [4].

Although in a number-conserving partitioned cellular automaton the total weight of a con-
figuration is conserved after each transition, each cell has multiple parts and cannot therefore
be regarded as a usual type of CA. In this paper we will show how it is possible to translate
any number-conserving partitioned cellular automaton into a classical type number-conserving
cellular automaton and thus prove the equivalence of the two models.

1.1. Definitions

Definition 1.1 (Cellular Automaton). A cellular automaton (CA) is a quadrupleA = (d,Q, V, f)
where

• d ∈ N is the dimension of the automaton;
• Q is a finite set called set of states;
• V = {v1, . . . , V|V |} ⊆ Zd is a finite set called neighborhood ;
• f : Q|V | → Q is the local transition function.

Key words and phrases: Partitioned cellular automata, number-conservation, reversibility.

Submitted to JAC (Symposium on Cellular Automata Journées Automates Cellulaires)

1

For a given automaton A, we call configuration of A any function C from Zd into Q. The set
of all configurations is therefore QZ2

. From the local function f we can define a global function
F

F : QZd → QZd

C 7→ C′ | ∀x ∈ Zd,C′(x) = f(C(x + v1), . . . ,C(x + v|V |))

Elements of Zd are called cells. Given a configuration C, we will say that a cell c is in state q
if C(c) = q. If we distinguish a quiescent state q0 such that f(q0, . . . , q0) = q0, we will call finite
configuration any configuration for which only a finite number of cells is not in the quiescent
state. If C is a finite configuration, so is F (C).

Cellular automata will be seen as dynamical systems. If the CA is in the configuration C at
some time, we will say that it is in the configuration F (C) at the next time. We can therefore
define the evolution of a CA from a configuration. This evolution is completely determined by
C.

Remark: In the following, we will only consider two-dimensional CA (d = 2).

Definition 1.2 (Number-Conservation). A CA will be said to be number-conserving if its states
are distinct natural numbers (Q ⊆ N), the state 0 is quiescent, and for every finite configuration
C the total weight of C (sum of all states) is equal to that of F (C).

Definition 1.3 (Partitioned Cellular Automaton). A two-dimensional partitioned cellular au-
tomaton (PCA) is a four-neighbor two-dimensional CA whose cells are divided into four parts :
upper, left, lower and right. The next state of each cell is only determined by the current states
of the upper partition of the lower cell, the right partition of the left cell, the lower partition of
the upper cell and the left partition of the right cell.

Let us denote by Qp the set of all states that a partition of a cell can be into. Then there
are Qt = |Qp|4 different states for each cell. However, the local rules of the automaton can
be seen as a function of Q4

p → Q4
p. As illustrated by Figure 1. Qp will be called the set of

partitioned states of the PCA.

d

lr

u
d′

l′ r′
u′

Figure 1: Illustration of the rule [d, l, u, r]→ [u′, r′, d′, l′].

It is very easy to see that for PCA global reversibility is equivalent to local reversibility. It
is therefore very easy to design reversible automata using this notion.

Note. There are other kinds of PCA. We could for example divide each cell into 5 parts
by adding a central partition. It is also possible to consider PCA in other dimensions. However
in this paper we will only work with two-dimensional 4-partitioned PCA.

If we want to consider number-conservation for PCA we have to redefine it. In this case,
only the partitioned states will be integers. The total weight of a cell is the sum of the four
states in its partitions.

The weight of a finite configuration is the sum of all weights of its cells (only a finite number
of cells are in a positive state). The automaton is said to be globally number-conservative if
for all finite configuration its total weight is conserved after one transition and locally number-
conservative if for each rule (d, l, u, r)→ (u′, r′, d′, l′) we have d + l + u + r = u′ + r′ + d′ + l′.

2

It is very easy to see that both local and global number-conservation are equivalent for a
PCA and hence it is very easy to design a number conservative PCA even when we want to
have it perform a complex task.

1.2. Why Translating into Classical Type CA?

We have seen that the notion of PCA is very useful when working with number-conserving or
reversible automata as they are very easy to design and that checking both number-conservation
and reversibility can be done by a local study of each rule (therefore very simply and quickly).

However the definition of PCA slightly differs from classical CA. Of course it is possible to
consider that a PCA is a classical CA and that it has Q4

p different states. However, by doing so
we see that what we called a number-conserving PCA is not necessarily a number conserving
CA because we gave the same weight to different states (for example the states (1, 0, 0, 0) and
(0, 0, 0, 1) have the same weight). In other words, even if the PCA are a subclass of CA, the
definition we gave of number-conservation in this specific class (which is the definition that makes
it easy to design number conserving PCA) is not the same as the usual number-conservation.

Here we will show how a NCPCA can be translated into a classical NCCA without increasing
the number of states.

2. Main Theorem

The rest of the article will be devoted to proving the following theorem:

Theorem 2.1. Given a PCA Ap of partitioned states Q, there exists a CA Ar of states Q
working on the neighborhood V 10

m such that Ar mimics the behavior of Ap (in a very natural
sense that we will explain later). Moreover, if ACAp is number conserving or reversible (or
both) then so is Ar.

In the following, we will consider a PCA of partitioned states Q and describe how the
regular CA described in the theorem works.

3. Preliminaries

3.1. Main Idea

First, we will explain how to convert configurations of Ap into configurations of Ar in such
a way that no information is lost so that from such an image configuration the CA Ar can
easily mimic the behavior of Ap. Then we will show how we can ensure that Ar has the same
properties (number-conservation and reversibility) than Ap. These properties will be trivially
conserved on valid configurations (configurations that are images of configurations of Ap by
the transformation mentioned above) but not necessarily on invalid ones. In this case we will
show that the CA Ar can detect the irregularities and “freeze” its behavior so that nothing
happens that can break number-conservation or reversibility: after all, the identity CA is both
conservative and reversible.

3

3.2. Vocabulary

To avoid confusions between the original PCA and the new CA we will clearly distinguish
the vocabulary between the two.

From now on we will call square cell a cell of the original PCA. A partition will be one
portion of a square cell (a square cell has 4 partitions which are naturally the upper, right,
lower and left partitions).

Most of the time, the word cell will refer to a cell of the new CA. This automaton works
as classical CA do, but on a Moore neighborhood of radius 10 (we will see later why such a
neighborhood is needed).

We will call states the elements of Q (the partitioned states of Ap and the states of the
cells in Ar).

The state 0 will be called blank state. All other states will be colored states. The blank
state is assumed to be quiescent. A blank cell is a cell whose state is 0, and a colored cell is a
cell whose state is not 0.

If we consider a given partition p in the PCA, there are some partitions that play a particular
role from its point of view. The first of these particular partitions is the one that is in front of
it (the lower partition of the upper square cell in the case of an upper partition for example).
This partition will be called p’s facing partition. The three other partitions in the same square
cell as p will be called p’s brother partitions.

Later on, we will establish a parallelism between certain patterns of the new CA (called
blocks) and the partitions of the original one, which will lead to the use of the terms facing
blocks and brother blocks whose meaning will be straightforward.

3.3. Switch and Mix: the Key to Understanding PCA

There is an important property in the way PCA local rules are defined. As shown by Figure
1, the transition is such that four partitions (the outter ones shown on the left part of the figure)
entirely define the next states in four other partitions (the inner ones). But there is more than
meets the eye...

Indeed, transitions of a PCA can be split in two virtual steps that are purely local trans-
formations: the switch and the mix. During the switch, all partitions exchange their state with
their facing partition. Once this is done, all brother partitions in a square cell “mix” their states
to produce the result of the local transition rule.

These two steps are virtual because they happen both in one single step of the automaton.
It might seem useless to consider an intermediate step, but it gives the automaton an important
property: pure locality. Both steps can now be expressed as local transformations of some
parts of the configuration: the switch transforms the pairs of facing partitions whereas the mix
transforms the four brother cells inside of a square cell, and for both of these transformations
the affecting area is the same as the affected area1.

This property is reminiscent of the kind of cellular automata considered by N. Margolus to
build small Turing-universal machines [2].

3.4. From the Configurations of Ap to Those of Ar

Starting from a configuration C of Ap, we obtain the configuration τ(C) of Ar by trans-
forming each square-cell into a 4 × 4 pattern of cells of Ar as illustrated by Figures 2 and
3.

We will call valid a configuration of Ar that is the image by τ of some configuration of Ap

and invalid a configuration that is not.

1This property is reminiscent of the kind of cellular automata considered by N. Margolus to build small
Turing-universal machines [2]. In fact PCA are highly related to the Margolus model as one kind can easily be
translated into the other by simple geometric operations on the configurations and local transition rules.

4

u u r r

u r

l d

l l d d

d
l r

u

Figure 2: How to translate a square cell into a portion of configuration of Ar.

Figure 3: Example of conversion of a configuration of a PCA into a configuration of our new
automaton. The original PCA has 3 different states : white, black and blank.

4. Evolution of Ar

The evolution of a cell in Ar will happen in 3 steps. The cell will always start assuming
that it is in a valid configuration and try to apply the rule of Ap on this valid configuration.
However, if it finds that it is not in a valid configuration it will stop its behavior to make sure
that no irreversible or non-conserving action is made (the behavior of Ap needs not be mimicked
if the configuration is invalid).

During the first step the cell will try to find the block in which it lies and check that this
block is correctly formed. Then, as it will know the orientation of its block, the second step is
to look at its facing block and check that it is also well formed. If it is then it will apply the
switch step with its facing block. The third and last step is then to look at its brother blocks
and check that they are well formed and that they have made the switch step. If everything is
correct, the blocks will apply the mix step, which completes the transition.

All of these 3 steps will in fact take place in one single transition of the CA.

4.1. Finding the Block

A valid configuration of Ar looks like what is shown in Figure 4.
In such a configuration, a colored cell can easily determine its block by looking at its

immediate neighborhood: if for each of the four quadrants (up-right, up-left, down-left and
down-right) it looks at its 3 corresponding neighbors (up, up-right and right for the up-right
quadrant for example), there should be exactly one quadrant in which it has exactly one blank
neighbor and two colored neighbors in the same state as itself (the correct quadrant is shown
for some cells in the figure). When the block is found, the orientation of the block gives the
position of the partition that it corresponds to in the pre-image of the configuration (upper,
left, lower or right). From there the cell knows where its facing block and its brother blocks
should be.

5

Figure 4: A valid configuration.

By looking one step farther (radius 2), the cell can determine if the other cells on its block
can determine correctly the block they are in (and come to the same conclusion as itself). The
block is considered well formed if there was exactly one possible block, that the cells in this
block all have the same state and that all cells in the block consider themselves as part of this
block.

If the considered cell is blank, the situation is slightly more complex. A blank cell can be
either a cell of a blank block or a marking blank cell (one of the blank cells between the blocks).
To find its situation, the cell will look at a Moore neighborhood of radius 5 around itself. In
this neighborhood, it will try to identify the well formed colored blocks (as defined previously).
According to what it finds, it will either conclude that it is in an invalid configuration (if the
blocks are not well formed or do not match the ones with the others) or in a valid one and
therefore know its own situation.

The only things that the cell needs to identify are its facing and brother blocks. These are
all located in a neighborhood of radius 3. Since a neighborhood of radius 2 is necessary for a
colored cell to know if its block is well formed, the blank cell needs a radius 5 neighborhood to
determine a possible match for its facing and brother blocks.

Only if the blank cell has managed to find its block (and therefore the location of its facing
and brother blocks) does it proceed to the next step (otherwise it remains blank).

Note that it is possible that the blank cell sees only blank cells on its radius 3 neighborhood
and therefore cannot find any well formed block by looking at its radius 5 neighborhood. In
this case it will not know its position but this is not a problem since, if it is in a well formed
configuration, all its facing and brother blocks are blank. Since the blank state is quiescent, the
cell should stay blank anyway.

All in all, any cell can find its block and make sure that the other cells in its block consider
themselves as being part of the same well formed block by looking at a radius 5 neighborhood
around itself.

4.2. Switch

The switch happens between a block and its facing block. During the switch a cell of one
block takes the state of its facing block. To make sure that the switch is conservative and
reversible we have to make sure that both blocks are well formed and that each considers the
other as its facing block.

For a given cell, all the cells in its facing block are located in a radius 3 neighborhood.
Since a radius 5 neighborhood was needed to find the block of a cell, by looking at a radius 8
neighborhood, a cell can check that the blocks of all the cells it considers as its facing block also
consider themselves as being in its facing block.

If this is the case it take the state of these cells (switch). Otherwise, it does nothing.

6

The switch is a virtual step, which means that the cell does not actually change its state
yet. But if the conditions for the switch are met, and that the next step (mix) does not happen,
the cell will really take the switched state at the end of the transition.

4.3. Mix

The mix is very similar to the switch. However it is necessary to check a larger area: the
cell must check that all its brother blocks are well formed and that all the facing blocks of its
brother blocks are too in order to make sure that all the brother blocks have made a successful
switch.

The cells in the facing block of a brother block of a given cell are all located in a radius
5 neighborhood of the cell, which means that by looking at a radius 10 Moore neighborhood
around itself the cell can check that all its brother blocks have successfully performed their
switch and will also perform the mixing step, meaning that it will look at the states of the
facing blocks of its brother blocks and will apply the rule of the PCA to determine its own new
state.

If an error is spotted while checking before the mix, the cell does not mix with its brother
blocks and therefore keeps the switched state. Otherwise, the switched state is mixed and the
switch remains a virtual step.

5. Correctness of the Automaton

5.1. Number-Conservation

The number-conservation is guaranteed by the strong verifications that we do all the time.
In fact, in most cases the cell keeps its own state.

First of all it is important to notice that modifications of states occur in block transitions,
that is to say that a cell only decides to change its state when it knows that it is part of a well
formed block and by the definition of a well formed block all cells of the same block consider
themselves in the same block (this means that if a cell c considers that c′ is in its block then c′

considers that c is in its block). The consequence of this is that each time that c will change its
state, this change is made as a “block change” and therefore c′ will change its state the same
way.

This means that a cell that isn’t part of a well formed block will never change its state.
Once we have this in mind, we see that a block will only change its state in two occasions

: either after a switch with its facing block or after a mix with its brother blocks.
In the first case the block first checks that the facing block is correctly oriented so that this

facing block will in turn take the current block’s information. There is therefore a real block
exchange, no state is lost nor created, there is evidently number-conservation when a switch
occurs.

In the second case the block also checks that all three other brother blocks are well formed
and correctly oriented and that they have already performed a switch so that they will in turn
decide to perform the mix. This ensures that all four apply the rule of the original PCA and
thus as the rules of the PCA are number-conserving (this is our hypothesis) the mix operation
is also number-conserving.

Therefore, every time there is any kind of change in the states of a block we have guaranteed
that this change is compensated by the change of 1 or 3 other blocks (and of course this
guarantees the conservation at the level of the cells because every block has exactly 3 cells that
have all the same state).

7

5.2. Reversibility

IfAp is reversible, then so isAr: given a configuration C ofAr, we can rebuild its predecessor
(because it is reversible, the CA is bijective as a consequence of the Moore-Myhill theorem).

The important thing to see is that a well formed block stays well formed as Ar evolves
and that a non well formed block cannot become well formed (with the exception of large areas
of blank cells that can be considered as both well formed and not well formed, without any
consequence because the blank state is quiescent).

Because of this, one can check the status of a given cell. If it is in no well formed block or
that its facing block is not well formed we know that it didn’t change its state. If it is part of
a well formed block, that its facing block is also well formed but that one of its brother blocks
or the facing block of one of its brother blocks is not well formed, then the block has simply
switched with its facing block. Lastly, if all the surrounding blocks are correct, the cell (and its
whole block) has applied the rule of the reversible PCA /ACAp, which is a reversible local rule,
so the pre-image of the cell can be determined by looking at its brother blocks’ states.

5.3. Simulation of the Original PCA

In order to be useful in any way, our automaton must be able to simulate the behaviour of
the original PCA.

This simulation is very easy to realize as the rules of our automaton have been designed for
it.

As we have explained earlier, any configuration of the PCA Ap can be translated into a
valid configuration of the resulting CA Ar. Conversely, every valid configuration of Ar trivially
corresponds to a configuration of the original one (applying the obvious reverse transformation).

Moreover, the rules of the automaton have been designed in such a way that in a valid
configuration every cell could find its block, its orientation and therefore its facing and brother
blocks, that are the ones that correspond to the facing and brother partitions in the partitioned
automaton.

The only times when a cell cannot find its block in a valid configuration is when it is
part of a blank block corresponding to a blank partition surrounded by blank partitions in the
original PCA. In this case, the cell will do nothing (because it cannot determine whether or not
the configuration is valid) which incidentally happens to be what it is supposed to do because
the blank state is quiescent (so a blank partition surrounded by other blank partitions should
remain blank).

After the blocks have been found, the switch and mix steps will occur correctly. The mix
is the step that eventually applies the local rule of Ap (the switch has no incidence in a valid
configuration, it is only used to guarantee conservation in an invalid configuration).

The simulation property can be expressed by using the simple translation function τ from
the configurations of Ap into valid configurations of Ar. For any configuration C of Ap, we have

Fp(C) = τ−1(Fr(τ(C)))

where Fp is the global transition rule of Ap and Fr that of Ar.

6. Comments

6.1. Another Solution

There is a simpler solution if one wants only to convert a number-conserving and/or re-
versible PCA into a regular CA that conserves these properties.

The solution is to increase the number of states fourfold by adding a directional layer : if
Q is the set of partitioned states of the original PCA, we make a CA working on the states
Q× {↑,←, ↓,→}.

8

A square cell of Ap is here transformed into a 2×2 square of cells, each holding a partitioned
state and the arrow indicating the partition it corresponds to. The arrows do not change over
time.

The behavior of the automaton is then similar to the one explained in the article but the
needed neighborhood is smaller (a radius 2 neighborhood is sufficient because the configura-
tions are more compactly represented and there are less possibilities for errors that have to be
checked).

Fhe four directions are given the weights 0, |Q|, 2|Q| and 3|Q| respectively, and the weight
of a cell is the sum of its state and the weight of its direction.

This method is simpler to implement but has many disadvantages over the one described
in the article, most notably that it requires finite configurations to be translated into non finite
ones (but still ultimately periodic) and that it increases the number of states.

6.2. Rotation Invariance

In the whole construction that we have described in this article, all four directions (up, left,
down and right) have been considered similarly. Even the translation τ from configurations of
Ap into configurations of Ar is rotation-invariant.

This means that if the PCA Ap has a rotation-invariant local rule then our resulting au-
tomaton Ar will also be. This is a good thing when devising simple PCA based on physical
principles (both number-conservation and reversibility are often sought after because of physical
considerations).

6.3. Other Partitions

In this article we have only considered two-dimensional 4-partitioned cellular automata.
However there exist other kinds of partitioned cellular automata.

Important variants include for example one dimensional 2-partitioned and 3-partitioned
cellular automata and two-dimensional 5-partitioned cellular automata.

For all of these different forms of PCA it is possible to adapt the construction explained
in this article to obtained similar results. The key lies in the correct choice of the translation
function τ that will define valid configurations.

Some important points are to be observed when choosing such a function:
• All resulting blocks must comprise the same number of cells. If not, the switch and mix

steps are not conservative anymore.
• Marking blank states cannot be omitted. These states are more than mere fillers since

they are the only way to determine the orientation of blocks. Markers must also be
blank, not only to ensure that finite configurations have a finite total weight but also
because the marking state must be quiescent (in case a cell is surrounded by cells in the
marking state). In a number-conserving PCA all states are quiescent, but that is not
necessarily the case for a reversible PCA.
• The translation pattern must be rotation invariant if rotation invariance is to be con-

served by the transformation.
• Blocks must not necessarily be connex but non-connexity will probably increase the size

of the required neighborhood in order to perform the necessary checks.
There are some simple translation functions that fit the aforementioned variants of PCA

which make the results valid on these too. A smaller translation pattern might also exist for
the 4-partitioned cellular automata considered in this article.

9

7. Conclusion

We have therefore shown how any partitioned cellular automaton can be converted into a
regular cellular automaton in such a way that important properties such as number-conservation,
reversibility and rotation invariance are conserved in the process.

The number of states is not increased (it is even decreased if we consider that a PCA has
Q4 states where Q is the set of its partitioned states) but the considered neighborhood is.

The result is mainly interesting as a theoretical equivalence (there is no other real need to
translate a PCA into a regular CA) because some constructions are much easier to perform on
PCA. For instance, K. Morita was able to devise a PCA with only 3 states that is reversible,
number-conserving, rotation invariant and Turing-complete. Our construction gives a regular
CA that has all these same properties (although it works on a quite large neighborhood).

References

[1] U. Frisch, B. Hasslacher, and Y. Pomeau: Lattice-Gas Automata for the Navier-Stokes Equation, Physica
49D (1991) 295-322.

[2] N. Margolus: Physics-Like Models of Computation, Physica 10D (1984) 81-85.
[3] K. Morita and K. Imai: Number-Conserving Reversible Cellular Automata and their Computation-

Universality, Proceedings of MFCS’98 Workshop on Cellular Automata, Brno (1998) 51-68.
[4] K. Morita, Y. Tojima and K. Imai: A Simple Computer Embedded in a Reversible and Number-Conserving

Two-Dimensional Cellular Space, Multiple-Valued Logic, vol.6 (2001) 483-514.
[5] K. Morita, Y. Tojima, K. Imai and T. Ogiro: Universal Computing in Reversible and Number-Conserving

Two-Dimensional Cellular Spaces, Collision Based Computing, Springer-Verlag (2002).
[6] K. Nagel and M. Schreckenberg: A Cellular Automaton Model for Freeway Traffic, Journal of Physics I, 2

(1992) 2221-2229.

10

