
Cellular Automata: Real-Time Equivalence

Between One-Dimensional Neighborhoods

Victor Poupet

LIP (UMR CNRS, ENS Lyon, INRIA, Univ. Claude Bernard Lyon 1),
École Normale Supérieure de Lyon,

46 allée d’Italie 69364 LYON cedex 07 FRANCE

Abstract. It is well known that one-dimensional cellular automata work-
ing on the usual neighborhood are Turing complete, and many accel-
eration theorems are known. However very little is known about the
other neighborhoods. In this article, we prove that every one-dimensional
neighborhood that is sufficient to recognize every Turing language is
equivalent (in terms of real-time recognition) either to the usual neigh-
borhood {−1, 0, 1} or to the one-way neighborhood {0, 1}.
Keywords: Cellular automata, neighborhoods, language recognition,
real-time.

1 Introduction

Cellular automata (CA) are a computation model that is simple at microscopic
scale (local transitions) but can have very complex behaviours at macroscopic
scale (global transitions). As a complex systems, it is natural to wonder what
their compuational capabilities are. It is known that they can simulate any Tur-
ing Machine [15,10,1] (Turing universality) and that there exist “universal” CA
that can simulate the evolution of any other [8] (intrinsic universality).

Once their computational power is known, we investigate the complexity of
such computations (in time and memory). Many famous algorithms [6,5] have
shown that the massively parallel structure of the CA enables complex com-
putations to be realized in a very short time. However, because of the local
communication between cells, it is possible to show that information cannot be
transmitted faster than some “maximal speed”.

In this article, we will work on the problem of language recognition by CA,
and more specifically the recognition of languages in “real time”, which is the
fastest possible time according to the “maximal speed” restriction. Many results
are already known on this topic concerning one-dimensional CA working on
the standard neighborhood [11,7,4,9,12,13], but very little is known about CA
working on different neighborhoods.

Concerning Turing machines, it is easy to show that any computation can be
accelerated by a constant time (as long as the time stays greater than the minimal
time necessary to read the entry). As for cellular automata, C. Choffrut and K.
Čulik in [2] first show that with the neighborhood {−1, 0, 1}, any computation

on a CA can be accelerated by a constant time. In [9], J. Mazoyer and N.
Reimen show that for any positive integers r and q, the neighborhoods [−r, r]
and [−q, q] are time wise equivalent. Moreover, S. Cole [3] showed that on every
neighborhood “complete enough” (such that every cell can, after some finite
time, be affected by the state of any other) it is possible to simulate the behaviour
of any CA working on any other neighborhood. This last result gives a first
computational equivalence between neighborhoods.

Here, a strong “real-time equivalence” between neighborhoods will be proved
that shows that the languages recognized in real-time by CA working on a given
neighborhood “complete enough” (similarly to Cole’s definition) are either ex-
actly the same as the ones recognized in real-time by CA working on the usual
neighborhood or exactly the ones recognized in real-time by CA working on the
one-way neighborhood (one-way cellular automata).

2 Preliminary Study: Neighborhoods Growth

In all this section, a neighborhood will be a finite subset of Z. We will here
study an algebraic property of neighborhoods that is independent of the notion
of cellular automaton.

Given a neighborhood V , we will use the notations V 0 = {0} and for all
k ∈ N, V k+1 = {x + y|x ∈ V, y ∈ V k}. Moreover, we will always consider that
the neighborhoods contain 0.

Definition 21 Let V be a neighborhood. V is

– r-complete if ∀n ∈ N, ∃k ∈ N, n ∈ V k;
– complete if ∀n ∈ Z, ∃k ∈ N, n ∈ V k;
– r-incomplete if it is r-complete but not complete.

Proposition 21 A neighborhood V is r-incomplete if and only if it contains 1
and has no negative element. It is complete if and only if its non-zero elements
are prime altogether (their gcd is 1) and has both a positive and a negative
element.

Proof. It is obvious that a neighborhood that contains 1 and has no negative
element is r-incomplete. Reciprocally, if it doesn’t contain 1 and has no negative
element, then all possible non-zero sums of its elements are greater or equal to
its smallest non-zero element, and 1 cannot be obtained. If it has a negative
element (−xn), then either 1 can be obtained, and therefore the neighborhood is
complete (∀x, x = p.(−xn) + q.1 for some p and q in N) or 1 cannot be obtained
and V is incomplete.

To prove the second equivalence, consider V = {0, v1, . . . , vs}.
If gcd(v1, . . . , vs) = 1 then by Bezout’s theorem,

∃(µ1, . . . , µs) ∈ Z
s,

∑

i∈J1,nK

µivi = 1

And so, as seen before, we have both 1 and a negative element so the neighbor-
hood is complete. Reciprocally, if the neighborhood doesn’t have any positive
element (or negative) then it can obviously not be complete, and if all elements
are not prime altogether, then they are all multiples of an integer k > 1 and
only multiples of k can be obtained and V is not complete. �

Remark. We will see later that the r-complete neighborhoods are the neigh-
borhoods on which a CA can correctly recognize a language.

From now on, if V is an r-complete neighborhood, we will use the following
notations

xp = max V

−xn = min V

tc = min{t ∈ N|J−xn, xpK ⊆ V t+1}

Remark. Proposition 21 ensures that tc is correctly defined.

Proposition 22 Let V be an r-complete neighborhood. For all t ∈ N, we have

J−txn, txpK ⊆ V t+tc ⊆ J−(t + tc)xn, (t + tc)xpK

(see fig. 1)

Proof. The rightmost inclusion is trivial. As for the leftmost one, we prove it
inductively. For t = 0 and t = 1, the property is obvious. For t ≥ 1, we assume
that J−txn, txpK ⊆ V t+tc . So

J−(t + 1)xn, (t + 1)xpK = J−txn, txpK + {−xn, 0, xp} ⊆ V t+tc + V = V t+tc+1

�

����
����
����
����

����
����
����
����

0

V t+tc

t.xp (t + tc).xp−t.xn−(t + tc).xn

Fig. 1. The general form of V (t+tc)

Definition 22 Let V be an r-complete neighborhood. We will call r-shadow of
V at time (t + tc) the set

S+
t+tc

(V) =
(

V t+tc ∩ Jtxp, (t + tc)xpK
)

− txp

Similarly, we’ll call l-shadow of V at time (t + tc) the set

S−
t+tc

(V) =
(

V t+tc ∩ J−(t + tc)xn,−txnK
)

+ txn

Remark. According to the proposition 22,

V t+tc =
[

S−
t+tc

(V) − txn

]

∪ J−txn, txpK ∪
[

S+
t+tc

(V) + txp

]

Proposition 23 Let V be an r-complete neighborhood. The sequences

(

S+
t+tc

(V)
)

t∈N
and

(

S−
t+tc

(V)
)

t∈N

are ultimately constant.

Proof. Let x ∈ S+
t+tc

(V), then (x + txp) ∈ V t+tc and so (x + (t + 1)xp) ∈

V t+tc+1 and finally x ∈ S+
t+1+tc

(V). This proves that
(

S+
t+tc

(V)
)

t∈N
is an in-

creasing sequence (where the considered order is the inclusion). Moreover, this
sequence’s elements are all in the subsets of J0, tcxpK, which is a finite set.
This implies that the sequence is ultimately constant. The proof is similar for
(

S−
t+tc

(V)
)

t∈N
. �

Definition 23 Let V be an r-complete neighborhood. The stabilization time
ts of V is the smallest integer from which the sequences

(

S+
t+tc

(V)
)

t∈N
and

(

S−
t+tc

(V)
)

t∈N
are constant.

We also define S+(V) = S+
tc+ts

, S−(V) = S−
tc+ts

and x0 = min{x ∈ N|x /∈
S+(V)}.

Proposition 23 ensures that ts is correctly defined for all r-complete neigh-
borhoods. We have proven the following theorem

Theorem 21 For all r-complete neighborhood V , there exists an integer ts, and
two sets S−(V) ⊆ J−tcxn, 0K and S+(V) ⊆ J0, tcxpK such that for all t ≥ ts,

V t+tc =
(

S−(V) − txn

)

∪ J−txn, txpK ∪
(

S+(V) + txp

)

����
����
����
����

����
����
����
����

0 txp + x0−txn−(t + tc)xn

J−txn, txpKS−(V) S+(V)

(t + tc)xptxp

Fig. 2. The general form of V (t+tc) for t ≥ ts

3 Language Recognition by Cellular Automata

3.1 Cellular Automata

Definition 31 A cellular automaton (CA) is a triple A = (Q, V, f) where

– Q is a finite set called set of states containing a special quiescent state #;
– V = {v1, . . . , v|V |} ⊆ Z is a finite set called neighborhood that contains 0.
– f : Q|V | → Q is the transition function. We have f(#, . . . , #) = #.

For a given automaton A, we call configuration of A any function C from Z

into Q. The set of all configurations is therefore QZ. From the local function f
we can define a global function F

F : QZ → QZ

C 7→ C′ | ∀x ∈ Z, C′(x) = f(C(x + v1), . . . , C(x + v|V |))

Elements of Z are called cells. Given a configuration C, we’ll say that a cell
c is in state q if C(c) = q.

If at time t ∈ N the CA is in a configuration C, we’ll consider that at time
(t + 1) it is in the configuration F (C). This enables to define the evolution of a
CA from a configuration. This evolution is completely determined by C.

3.2 Language Recognition

Definition 32 We consider a CA A = (Q, V, f) and a set Qacc ⊆ Q of accept-
ing states. Let w = w0w1 . . . wl−1 be a word on a finite alphabet A ⊆ Q. We
define the configuration Cw as follows.

Cw : Z → Q
{

x
x

7→
7→

wx

#
if 0 ≤ x < l
otherwise

We’ll say that the CA A recognizes the word w with accepting states Qacc in
time tw if, starting from the configuration Cw at time 0, the cell 0 is in a state
in Qacc at time tw.

Definition 33 Let A = (Q, V, f) be a CA and L ⊆ A∗ a language on the
alphabet A ⊆ Q. For a given function T from N into N, we’ll say that the
language L is recognized by A in time T if there exists a set Qacc ⊆ Q such
that, for all word w of length l in A∗, the CA A recognizes w with accepting
states Qacc in time T (l) if and only if w ∈ L.

3.3 Real-Time

Definition 34 Given an r-complete neighborhood V , we define the real-time
function on V

TRV : N → N

l 7→ min{t ∈ N|J0, l − 1K ⊆ V t}

Definition 35 Let A = (Q, V, f) be a CA where V is r-complete and L a lan-
guage on A ⊆ Q. We’ll say that the CA A recognizes L in real-time if it recog-
nizes L in time TRV .

4 Constant Speed-Up Theorem

In this section we will prove the following theorem

Theorem 41 Let V be an r-complete neighborhood. For all k ∈ N, if a language
L can be recognized by a CA working on the neighborhood V in time TRV + k
then it is recognized by a CA working on V in real-time.

To prove this theorem, let’s consider an r-complete neighborhood V (and all
the corresponding notations from section 2). Let L be a language on a given
alphabet recognized by a CA A working on V in time TRV + k. Let Q be the
set of states of A.

We will construct a CA A′ working on V that will simulate the evolution of
A but with a constant speed-up (of k generations).

In all the following proof, we will consider the evolution of the automaton A
from the initial configuration corresponding to a word w = w0 . . . wl−1 of length
l. The initial configuration is

. . . ###w0w1 . . . wl−1### . . .

The state of the cell c ∈ Z at time t in the evolution of A will be noted 〈c〉t.
The states of A′ will be tuples of elements of Q.

4.1 The Evolution of A′

Time 0. The initial configuration is the same than the one of A. Each cell c is
in the state 〈c〉0.

Time 0 → (tc + ts). The cells will gather information, meaning that they will
only read the state of their neighbors (the transition rule of A is not applied)
and memorize the state of the cells that are further away from them.

Time (tc+ts). Each cell c knows exactly the states {〈c + x〉0|x ∈ V tc+ts}, and
will “assume” that all states {〈c + x〉0|x ∈ Jtsxp, (tc + ts +k)xpK} that it doesn’t
already know (the ones not in c + V tc+ts) are #. Note that this assumption
is true for the cells that are close enough to the end of the word w, and false
for the others (we’ll see this more in details later). Also each cell will do the
symmetrical assumption that all states in {〈c − x〉0|x ∈ Jtsxn, (tc + ts + k)xnK}
that it doesn’t know are #.

From now on we’ll make a difference between the information that a cell
“knows” and the information it “assumes” on its right and on its left.

Time (tc + ts) → ∞. Here, each cell will apply the transition rule of A to
all the information it knows. This way, at time (tc + ts + t) each cell knows the
states {〈c + x〉t|x ∈ V tc+ts}. Also, it will apply the transition rule to the assumed
information. In this computation, the cell might have incompatible information
(what it has assumed so far and what the cell (c + xp) knows or assumes for
example). In this case, it will always give the priority to the information held by
the cell (c+xp) when computing assumptions on its right, and to the information
held by (c − xn) when computing assumptions on its left.

4.2 Why the Simulation Works

Here we will prove that the automaton A′ described in the previous subsection
recognizes the language L in real-time. We will still focus on the evolution from
the word w and keep the notations of the states in the evolution of A.

Claim 41 At time (tc + ts) the cell c knows the states {〈c + x〉0|x ∈ V tc+ts}.

Proof. By induction, if at time t the cell knows {〈c + x〉0|x ∈ V t} then it can
see its neighbors (V + c) and their stored information. At time (t + 1) it can
therefore have the information

{〈c + v + x〉0|v ∈ V, x ∈ V t} = {〈c + x〉0|x ∈ V t+1}

�

Claim 42 At time (tc + ts + t) the cell c knows the states {〈c + x〉t|x ∈ V tc+ts}.

Proof. Induction again. To compute the states

{〈c + x〉t+1|x ∈ V tc+ts}

the cell c needs to see the states

{〈c + x〉t|x ∈ (V tc+ts + V)}

which it does by looking at its neighbors in (V + c). �

Definition 41 At a given time t, a cell c will be called r-correct if all the as-
sumptions it does on its right are correct. The cell will be called r-incorrect
otherwise.

We have similar definitions of l-correct and l-incorrect for the left side.

Remark. If at time (tc + ts + t) the cell c is r-correct, then it knows or assumes
correctly all the states {〈c + x〉t|x ∈ J−tsxn, (tc + ts + k)xpK}.

Claim 43 At time (tc + ts) all the cells c ≥ (l − tsxp − x0) are r-correct.

Proof. These cells assume that the initial states of the cells c ≥ l are # which
is true according to the initial configuration (by definition (tsxp + x0) is the
smallest positive integer not in V tc+ts) (see fig. 3). �

Claim 44 If the cell (c + xp) is r-correct at time (tc + ts + t) then the cell c is
r-correct at time (tc + ts + t + 1).

������������

���
���
���
���

���
���
���
���

0

w

V tc+ts(c0)

#

l = c0 + tsxp + x0c0 = l − tsxp − x0

Fig. 3. Proof of claim 43

Proof. We have seen that when the cell c applies the transition rule to the
assumed information, it considers the information held by (c+xp) with a higher
priority. To compute correctly the states

{〈c + x〉t+1|x ∈ Jtsxp, (tc + ts + k)xpK}

the cell c needs to see the states

{〈c + x + v〉t|v ∈ V, x ∈ Jtsxp, (tc + ts + k)xpK}

that are all included in

{〈c + xp + x〉t|x ∈ J−tsxn, (tc + ts + k)xpK}

so c sees all the correct information at time (tc + ts + t) and is therefore r-correct
at time (tc + ts + t + 1). �

Claim 45 At time (tc + ts + t), all cells c ≥ l − (ts + t)xp − x0 are r-correct.

Proof. Immediate consequence of claims 43 and 44. �

Claim 46 At every time, the origin and all negative cells are l-correct.

Proof. The proof is easy and similar to the previous ones �

Claim 47 If the length of the word w is such that l ≥ (ts + 1)xp + x0 + 1 then

the real-time (for this word) is TRV (l) ≥ tc +
⌊

l−1−x0

xp

⌋

+ 1.

Proof. Let’s define α =
⌊

l−1−x0

xp

⌋

. We have αxp + x0 ≤ l − 1. Moreover, since

l ≥ (ts + 1)xp + x0 + 1 we have α ≥ ts and so by theorem 21 we have

(αxp + x0) /∈ V tc+α

which means that TRV (l) ≥ tc + α + 1. �

Claim 48 If the length of w is such that l ≥ (ts + 1)xp + x0 + 1 then at time
TRV (l) the automaton A′ can determine whether or not the word w is in L.

Proof. From claim 45, we know that the origin is r-correct at times

t ≥ tc +

⌈

l − x0

xp

⌉

= tc +

⌊

l − 1 − x0

xp

⌋

+ 1

This means that the origin is r-correct at time TRV (l) (from claim 47) and, since
it is always l-correct (claim 46), at time TRV (l) the origin knows (or assumes
correctly) all the states in

{〈c〉TRV (l)−tc−ts
|c ∈ J−(tc + ts + k)xn, (tc + ts + k)xpK}

which contain all the necessary information to compute the state 〈0〉TR+k. The
automaton can therefore determine if w is in L. �

This last proposition and the fact that there is only a finite number of words
of length l ≤ (ts + 1)xp + x0 (so the automaton A′ can handle these exceptions
directly) end the proof of theorem 41.

5 Real-Time Equivalences

Definition 51 For every neighborhood V and every natural number n, we will
define Ln

TR(V) the set of languages on the alphabet J0, n − 1K that can be recog-
nized in real-time by a CA working on V . We will also define

LTR(V) =
⋃

n∈N

Ln
TR(V)

This section is dedicated to the proof of the following theorem.

Theorem 51 Let V and V ′ be two neighborhoods, we have the following rela-
tions:

1. if V is r-complete and V ′ is complete then LTR(V) ⊆ LTR(V ′);
2. if V and V ′ are complete then LTR(V) = LTR(V ′);
3. if V and V ′ are r-incomplete then LTR(V) = LTR(V ′).

Proposition 51 For all r-complete neighborhood V , if −xn = min V and xp =
maxV then LTR(V) = LTR(J−xn, xpK).

Proof. It is obvious that any automaton on V can be simulated by an automaton
on J−xn, xpK without any loss in time. Proposition 22 shows that the difference
between the real-time on V and the real-time on J−xn, xpK is at most tc for any
word. Therefore, from theorem 41, we have LTR(V) ⊆ LTR(J−xn, xpK).

Now if a language L is recognized in real-time by an automaton working
on J−xn, xpK we can construct an automaton working on V that will gather

information during the first tc steps. From there each cell sees enough infor-
mation at each step to apply the transition rule of the automaton working on
J−xn, xpK and update its information. The resulting automaton recognizes L
in time TRJ−xn,xpK + tc which is obviously smaller than TRV + tc, and so by
theorem 41 we have the converse inclusion. �

Proposition 52 For all r-complete neighborhood V and all k ∈ N
∗, we have

LTR(V) = LTR(V k).

Proof. By proposition 51 we can restrict ourself to the connex neighborhoods.
It is clear that for a connex neighborhood V , TRV ≥ k(TRV k − 1). We know
that one step of a CA working on V k can be simulated by a CA working on
V in k steps, so every language L that can be recognized in time TRV k on
V k can be recognized in time kTRV k ≤ TRV + k. From theorem 41 we have
LTR(V k) ⊆ LTR(V).

Reciprocally, it is easy to see that TRV k ≥ ⌊TRV /k⌋. Since we know that
a CA working on V k can simulate k steps of a CA working on V in only one
generation, every language that can be recognized on V in real-time can be
recognized on V k in time ⌈TRV /k⌉ ≤ TRV k +1. Conclusion comes from theorem
41. �

Proposition 53 For all xn ≤ x′
n ∈ N and xp ∈ N

∗, we have

LTR(J−xn, xpK) ⊆ LTR(J−x′
n, xpK)

Proof. It is enough to observe that the real-time functions for both of these
neighborhoods are the same, and since it is obvious that every CA working on
the smaller can be simulated without loss of time by a CA working on the bigger
we have this trivial inclusion. �

Proposition 54 For all xn and xp in N
∗ we have

LTR(J−xn, xpK) = LTR(J−2xn, xpK)

Proof. It is well known that if there is a CA working on J−2xn, xpK that recog-
nizes L in real-time, then there exists another CA working on the same neighbor-
hood that recognizes L in real-time on limited space (meaning that a cell in state
never changes its state). This technique is very similar to the technique used
to prove that Turing machines working on a semi-infinite tape are equivalent to
the ones working on a bi-infinite tape.

To prove the inclusion LTR(J−2xn, xpK) ⊆ LTR(J−xn, xpK), consider an au-
tomaton A working on V2 = J−2xn, xpK that recognizes a language L in real-time
and limited space. Let w = w0w1 . . . wl−1 be a word, and let’s consider the evo-
lution of A from the initial configuration corresponding to w. Like previously,
we will denote as 〈c〉t the state of the cell c at time t in the evolution of A.

Now we will explain the behaviour of a CA working on the neighborhood
V1 = J−xn, xpK starting from the same initial configuration, and recognizing the
language L in exactly the same time as A (the evolution of A′ on an initial
configuration corresponding to a word of length 7 for V1 = J−1, 1K is illustrated
on figure 4).

– Time 0. Each cell c has the information 〈c〉0.

– Time 1. Cell c has the information 〈c〉0 and 〈c + 1〉0. This is possible because
{0, 1} ⊆ V .

– When 1 ≤ t ≤ c, the cell c has the information 〈c + t − 1〉0 and 〈c + t〉0.
This again is possible simply by looking at the cell (c + 1).

– When t = c + k with 0 ≤ k ≤ xn, the cell c has information 〈2c − 1〉0,
〈2c − 1〉1, . . . , 〈2c − 1〉k and 〈2c〉0, 〈2c〉1, . . . , 〈2c〉k. The information up
to time (k − 1) is already on c at the previous time (only memory), and
the information of time k can be computed from the information c sees
because by construction it can now see “twice as far” to the left, from the
compression.

– At time (c + xn + t), the cell c has the information 〈2c − 1〉t, 〈2c − 1〉t+1,
. . . , 〈2c − 1〉t+xn

and 〈2c〉t, 〈2c〉t+1, . . . , 〈2c〉t+xn
. Again, some information

was already on c at the previous time, the rest can be computed.

With such an evolution, we can see that the origin 0 has at each step t the
information 〈0〉t so the automaton A′ can decide whether or not w is in L at
time TRV1

(l) = TRV2
(l), which proves the inclusion. The converse inclusion is

covered by proposition 53. �

Fig. 4. The evolution of A′ (time goes from bottom to top)

. . . # 〈0〉6〈0〉5
〈1〉5〈2〉5
〈1〉4〈2〉4

〈3〉4〈4〉4
〈3〉3〈4〉3

〈5〉3〈6〉3
〈5〉2〈6〉2

. . .

. . . # 〈0〉5〈0〉4
〈1〉4〈2〉4
〈1〉3〈2〉3

〈3〉3〈4〉3
〈3〉2〈4〉2

〈5〉2〈6〉2
〈5〉1〈6〉1

. . .

. . . # 〈0〉4〈0〉3
〈1〉3〈2〉3
〈1〉2〈2〉2

〈3〉2〈4〉2
〈3〉1〈4〉1

〈5〉1〈6〉1
〈5〉0〈6〉0

. . .

. . . # 〈0〉3〈0〉2
〈1〉2〈2〉2
〈1〉1〈2〉1

〈3〉1〈4〉1
〈3〉0〈4〉0

〈5〉0〈6〉0 〈6〉0# # . . .

. . . # 〈0〉2〈0〉1
〈1〉1〈2〉1
〈1〉0〈2〉0

〈3〉0〈4〉0 〈4〉0〈5〉0 〈5〉0〈6〉0 〈6〉0# # . . .

. . . # 〈0〉1〈0〉0 〈1〉0〈2〉0 〈2〉0〈3〉0 〈3〉0〈4〉0 〈4〉0〈5〉0 〈5〉0〈6〉0 〈6〉0# # . . .

. . . # 〈0〉0 〈1〉0 〈2〉0 〈3〉0 〈4〉0 〈5〉0 〈6〉0 # . . .

To prove the 3 propositions of theorem 51, let us consider two r-complete
neighborhoods V and V ′, with −xn = min V , −x′

n = min V ′, xp = maxV and
x′

p = maxV ′.

1. If V’ is complete then x′
n > 0. From propositions 51, 52, 53 and 54 we have,

for some k big enough

LTR(V) = LTR(J−xn, xpK) = LTR(J−x′
pxn, x′

pxpK) ⊆ LTR(J−2kxpx
′
n, xpx

′
pK)

⊆ LTR(J−xpx
′
n, xpx

′
pK) ⊆ LTR(J−x′

n, x′
pK) ⊆ LTR(V ′)

2. This equality is a direct consequence of the previous inclusion.

3. If both are r-incomplete then xn = x′
n = 0 and

LTR(V) = LTR(J0, xpK) = LTR(J0, x′
pxpK) = LTR(J0, x′

pK) = LTR(V ′)

This ends the proof of theorem 51.

6 Conclusion

We have here proven an extension of Cole’s equivalence [3] for one-dimensional
neighborhoods. Since the usual simulation between neighborhoods is linear (in
time), it was already known that linear, polynomial and exponential capabilities
of the complete neighborhoods are all equal. We now know that the real-time
capabilities are the same.

We have also studied an extension of one-way cellular automata: the CA
working on r-incomplete neighborhoods. For these neighborhoods too we have
obtained a strong equivalence. These two kinds of neighborhoods (complete and
r-incomplete) are the only ones that enable a computation power equivalent to
Turing machines. On the other neighborhoods (not r-complete) it is possible to
prove that some cells will never interact with the origin (no matter what their
state is) and that the position of these “invisible cells” is ultimately periodic.
From this observation, it is easy to show that the languages that can be recog-
nized on these neighborhoods are exactly the sub-class of Turing languages that
do not depend on the letters on the “invisible cells”. We can prove a constant
speed-up theorem for this sub-class too.

We have therefore shown that language recognition by one-dimensional cel-
lular automata can always be reduced to a recognition on either the usual neigh-
borhood {−1, 0, 1} or the one-way neighborhood {0, 1}.

In dimension 2 and above, it is known that the different neighborhoods aren’t
equivalent in terms of real-time recognition (of two-dimensional shapes) [14].
Although we can prove a theorem similar to theorem 21 that gives an exact
description of any iteration of a two-dimensional neighborhood, it is unknown if
we have a constant speed-up theorem.

References

1. Albert, J., Čulik II, K.: A simple universal cellular automaton and its one-way and
totalistic version. Complex Systems 1 (1987) 1–16

2. Choffrut, C., Čulik II, K.: On real-time cellular automata and trellis automata.
Acta Informatica 21 (1984) 393–407

3. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Transactions on Computers C-18 (1969) 349–365

4. Čulik, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata.
Phys. D 45 (1990) 357–378

5. Delorme, M., Mazoyer, J.: Reconnaissance parallèle des langages rationnels sur
automates cellulaires plans. Theor. Comput. Sci. 281 (2002) 251–289

6. Fischer, P.C.: Generation of primes by one-dimensional real-time iterative array.
Journal of the Assoc. Comput. Mach. 12 (1965) 388–394

7. Ibarra, O., Jiang, I.: Relating the power of cellular arrays to their closure properties.
Theoretical Computer Science 57 (1988) 225–238

8. Martin, B.: A universal automaton in quasi-linear time with its s-n-m form. The-
oretical Computer Science 124 (1994) 199–237

9. Mazoyer, J., Reimen, N.: A linear speed-up theorem for cellular automata. Theor.
Comput. Sci. 101 (1992) 59–98

10. Smith III, A.R.: Simple computation-universal cellular spaces. J. ACM 18 (1971)
339–353

11. Smith III, A.R.: Real-time language recognition by one-dimensional cellular au-
tomata. Journal of the Assoc. Comput. Mach. 6 (1972) 233–253

12. Terrier, V.: Language recognizable in real time by cellular automata. Complex
Systems 8 (1994) 325–336

13. Terrier, V.: Language not recognizable in real time by one-way cellular automata.
Theoretical Computer Science 156 (1996) 281–287

14. Terrier, V.: Two-dimensional cellular automata and their neighborhoods. Theor.
Comput. Sci. 312 (2004) 203–222

15. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, IL, USA (1966)

