Folksonomies

Coherence Spaces

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Natural Language, Ontologies, Coherence

Christophe Fouqueré

(with M. Abrusci and M. Romano) Laboratoire d'Informatique de Paris-Nord Université Paris 13 - CNRS 7030

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What does a linguistic concept denote? What does a syntactic or semantic type denote?

What kind of coherence is there between elements of such denotations?

What are the consequences of using types/formulas?

Concepts/Types in NL ●0000	Ontologies oooooooo	Folksonomies	Coherence Spaces
Concepts and Tv	nes		

Types as kinds of tags used in linguistic formal theories:

- Noun, Phrase, Verb, ...
- *e* and *t* (for individuals and truth-values)

➡ Types used to analyze, to control inferences.

Two terms with same type should be in some sense interchangeable: their 'duals' are mutually *acceptable* contexts.

And duals of such a set of contexts should define a type.

Concepts/Types in NL ○●○○○	Ontologies	Folksonomies	Coherence Spaces
Concepts and Typ	bes		

→Concepts in *Linguistics*:

- ...
- Grammar: tense, aspect, mood, modality, ...
- Syntax: phrase, clause, grammatical function, grammatical voice
- Semantics, Pragmatics

► Concepts in Natural Language: Being, ..., Table, ...

"A conceptualization is an abstract view of the world."

Concepts/Types in NL 00●00	Ontologies oooooooo	Folksonomies	Coherence Spaces
Types and Linear	Logic		

Categorial Grammar is widely used, as such or in variants, as it relates Natural Language as a typed functional language, hence to λ -calculus:

 linguistic information is encoded in the lexicon via the assignment of syntactic types to lexical items,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• expressions are either functions or arguments.

Concepts/Types in NL	Ontologies	Folksonomies	Coherence Spaces
00000			

Curry-Howard correspondence allows to view linguistic theories as formulas in a suitable Logics.

Linear Logic extends the intuitionnistic approach:

- Full Linear Logic may be viewed as a strongly typed programming language
- Non-intuitionnism may be interpreted for example as exception handling

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Formulas may be interpreted as usable resources

Concepts/Types in NL	Ontologies	Folksonomies
00000		

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Questions remain:

- What does a type denote?
- Is there any relation between elements of (denotations of) concepts and types?

The Geometry of Interaction program initiated by JY Girard tries to fully integrate syntax and semantics:

logical objects give the denotation of their use.

So let us look at ontologies and concepts ...

Quoting Guarino ("Handbook on Ontologies"):

"A body of formally represented knowledge is based on a conceptualization: the objects, concepts, and other entities that are assumed to exist in some area of interest and the relationships that hold among them.

A conceptualization is an abstract, simplified view of the world that we wish to represent for some purpose.

Every knowledge base, knowledge-based system, or knowledge-level agent is committed to some conceptualization, explicitly or implicitly." Quoting Quine's slogan ("On what there is"): "To *be* is to be the value of a bounded variable"

The logic to be adopted, according to Quine, is First Order Logic relying on set theory.

Hence:

- concepts and relations are denoted by sets of objects,
- data that are recorded in the system as instantiating those concepts and relations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ontologies

However:

- such a choice implies that any change in the extensional picture produces also a change of conceptualization
- It means that even the turn-over, over the time, of the instances of a concept causes an unending change of the reference conceptualization.

Concepts/Types in NL	Ontologies 00000000	Folksonomies	Coherence Spaces
Ontologies			

(works done with Abrusci and Romano)

The focus is on the extensional level, i.e. on "real" objects:

- relations among resources are encoded in a logical framework,
- hence the logical interpretation should rely on structures richer than sets: *Coherence Spaces*

The interpretation of a concept produces:

- graph theoretical objects
- the determination of the extensional counterpart within the collection of *resources*.

Concepts/Types	NL	

Folksonomies

Coherence Spaces

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ontologies

What is a resource?

- In concrete / web ontologies: data stored in some base, tags put by a user
- In Natural Language: words, sentences produced or heard, dialogues, ...

Concepts/Types in NL	Ontologies ooooooooo	Folksonomies	Coherence Spaces
Ontologies			

Formal Ontology:

- Set of concepts together with relations (or roles) between them
- Presented as a first-order theory:
 - A concept is a unary predicate
 - A relation (or role) is a binary predicate
 - An entity (or individual, or datum) is a constant
- Presented as two parts:
 - A **T-box**, the *terminology*: a set of axioms on concepts and relations (without constants)

(日) (日) (日) (日) (日) (日) (日)

• A **A-box**, the *assertions*: a set of atomic axioms with constants (without variables)

Ontologies

Folksonomies

Coherence Spaces

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- standard description languages (OWL and variants)
- reasoning by means of description logics or modal logics

Concepts/Types in NL 00000	Ontologies ○○○○○○●	Folksonomies	Coherence Spaces
Ontologies			

- typical kinds of inferences on T-boxes: (all reducible to C ⊂ D)
 - satisfiability: of a concept wrt a theory
 - subsumption: extension of C is included in extension of D
 - equivalence: equality of extensions
- typical kinds of reasoning with A- and T-boxes:
 - consistency: of the A-box wrt the T-box
 - retrieval: of instances of some concept
 - property expansion: given properties of an entity, infer other concepts this entity is instance of
- **querying** an ontology: queries by means of graph patterns (SPARQL)

Concepts/Types in NL	Ontologies	Folksonomies	Coherence Spaces
00000	oooooooo	●00000	
Folsksonomies			

Current developments: Web2.0

- give back to the Web its original nature, that of a networked platform where every node of the net is as important as any other
- differences with Web1.0:
 - Content Management Systems (structured by owner) vs Wikis (structured by community)

(日) (日) (日) (日) (日) (日) (日)

Directories (hence taxonomies) vs Tagging (hence folksonomies)

Concepts/Types in NL 00000	Ontologies	Folksonomies o●oooo	Coherence Spaces
Folsksonomies: ta	agging		

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What is (free) tagging?

- Everybody can stick tags on everything!
- To put triples User Tag Resource

Concepts/Types in NL	Ontologies	Folksonomies	Coherence Spaces
00000	oooooooo	oo●ooo	
Folsksonomies			

In a first approximation, one may relate free tagging to ontology:

A **concept** defines a class of **objects** by means of some linguistical formulation, typically the **term** that signals the concept.

More precisely (Monnin, Romano):

Concepts/Types in NL	Ontologies	Folksonomies	Coherence Spaces
00000	00000000	○○○●○○	
Eolekeenemiee			

Two (broad) types of use:

- Users tag references to resources discovered on the web, and may share their taggings
- Users tag resources (their own, and may also add tags to other users' resources)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Concepts/Types in NL 00000	Ontologies	Folksonomies ○○○○●○	Coherence Spaces
Folsksonomies			

Note that:

- "Semantics" of tag is user-dependent
- Tag names may be useless for understanding their usage

What is important is the whole tagging mechanism, not necessarily at first names used for tags or labels. *Even if semantics of tag names or labels may be more and more precise, the further they are used.*

Hence necessity to take into account *what* is related by tags.

(日) (日) (日) (日) (日) (日) (日)

Conce	ots/	Туре	s in	NL

Folksonomies

Coherence Spaces

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ontologies / Folksonomies

Needs for a change the viewpoint:

- from a predefined, typed, uniform, perspective,
- to a (maybe) post-definable, a priori untyped, subjective (in some way) perspective
- from immutable data, concepts and relations,
- to interpretations subject to variation

Concepts/Types	NL

Folksonomies

Coherence Spaces

Coherence Spaces

Coherence Spaces are defined as a denotational semantics for Linear Logic.

Definition

A coherence space *A* is a countable graph with vertices |A| and a coherence relation \bigcirc_A reflexive and symmetric.

- A propositional letter is denoted by a coherence space.
- Connectives are denoted by operations on coherence spaces.

What results?

- A proof is denoted by a clique.
- A (multiplicative) proof structure (formulas, axioms, cuts) is a proof iff its *experiments* are coherent wrt the par of the conclusions.

Folksonomies

Coherence Spaces

Coherence Spaces: operations

Definition

- A[⊥] is defined such that |A[⊥]| = |A| and x ⊃_{A[⊥]} y iff x = y or x ≠_A y
- $\mathbf{A} \otimes \mathbf{B}$ is defined such that $|A \otimes B| = |A| \times |B|$ and $(x, x') \circ_{A \otimes B} (y, y')$ iff $x \circ_A y$ and $x' \circ_B y'$

• A
$$\multimap$$
 B is defined such that $|A \multimap B| = |A| \times |B|$
and $(x, x') \bigcirc_{A \multimap B} (y, y')$
iff $(x \bigcirc_A y$ then $x' \bigcirc_B y'$ and $x \neq y$ then $x' \neq y'$?

• $\mathbf{A} \oplus \mathbf{B}$ is defined such that $|A \oplus B| = \{0\} \times |A| \cup \{1\} \times |B|$ and $(0, x) \supset_{A \oplus B} (0, x')$ iff $x \supset_A x'$, $(1, y) \supset_{A \oplus B} (1, y')$ iff $y \supset_B y'$, $(0, x) \not\simeq_{A \oplus B} (1, y)$.

Folksonomies

Coherence Spaces

A D F A 同 F A E F A E F A Q A

Coherence Spaces and Ontologies

An *ontology* is a triple (O, M, Φ) such that:

- O is a set of predicate and relation symbols
- *M* is a set of **individuals** (or constants)
- Φ is defined on *O* such that:
 - Φ(P) ⊂ M: each predicate symbol is associated to a set of individuals,
 - φ(R) ⊂ (M × M): each relation symbol is associated to a
 set of pairs of individuals.

In the following, we restrict ourself to *decidable* ontologies.

Folksonomies

Coherence Spaces

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coherence Spaces and Ontologies

We build the coherence space forgetting about what means *a priori* individuals, predicates and relations.

Definition

An *ontological compatibility space* (OCS) \mathfrak{O} defined on a KB (O, M, Φ) is a coherence space such that:

- $|\mathfrak{I}| = \bigcup_{o \in O} \Phi(o)$
- $x \subset_{\mathfrak{O}} x$

•
$$x \simeq_{\mathfrak{O}} \langle x', y' \rangle$$
 and $\langle x, y \rangle \simeq_{\mathfrak{O}} x'$.

- $x \circ_{\mathfrak{O}} y$ when $\exists P \in O, \{x, y\} \subset \Phi(P)$
- $\langle x, y \rangle \circ_{\mathfrak{O}} \langle x', y' \rangle$ iff $\exists R \in O, \{ \langle x, y \rangle, \langle x', y' \rangle \} \subset \Phi(R)$

Concepts/Types	NL

Folksonomies

Coherence Spaces

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Coherence Spaces and Ontologies

Let us consider the following example in RDF (Romano):

```
<rdf:RDF
  xmlns:rdf="http://www.w3.org/1999/02/22--rdf--svntax--ns#"
   xmlns:rdfs="http://www.w3.org/2000/01/rdf--schema#"
   xmlns:foaf="http://xmlns.com/foaf/0.1/">
   <foaf:Personrdf:TD="me">
      <foaf:name>MarcoRomano</foaf:name>
      <foaf:workInfoHomepagerdf:resource
                             ="http://logica.uniroma3.it/~romano"/>
      <foaf:mboxrdf:resource="mailto:m.romano@uniroma3.it"/>
      <foaf:knows>
         <foaf:Person>
         <foaf:name>V.MicheleAbrusci</foaf:name>
         <foaf:mboxrdf:resource="mailto:abrusci@uniroma3.it"/>
         </foaf:Person>
      </foaf:knows>
   </foaf:Person>
</rdf:RDF>
```

Ontologies

Folksonomies

Coherence Spaces

Coherence Spaces and Ontologies

The interpretation is the following one:

```
<rdf:RDF
```

```
. . .
  <foaf:Personrdf:TD="me">
    <foaf:name>M. Romano</foaf:name>
    <foaf:workInfoHomepagerdf:resource
        ="http://logica.uniroma3.it/~romano"/>
    < foaf · mboxrdf · resource
        ="mailto:m.romano@uniroma3.it"/>
    <foaf:knows>
      <foaf:Person>
        <foaf:name>M. Abrusci</foaf:name>
        <foaf:mboxrdf:resource
            ="mailto:abrusci@uniroma3.it"/>
      </foaf:Person>
    </foaf:knows>
  </foaf:Person>
</rdf:RDF>
```

2 Persons,

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Ontologies

Folksonomies

Coherence Spaces

Coherence Spaces and Ontologies

The interpretation is the following one:

```
<rdf:RDF
```

```
. . .
  <foaf:Personrdf:TD="me">
    <foaf:name>M. Romano</foaf:name>
    <foaf:workInfoHomepagerdf:resource
        ="http://logica.uniroma3.it/~romano"/>
    < foaf · mboxrdf · resource
        ="mailto:m.romano@uniroma3.it"/>
    <foaf:knows>
      <foaf:Person>
        <foaf:name>M. Abrusci</foaf:name>
        <foaf:mboxrdf:resource
            ="mailto:abrusci@uniroma3.it"/>
      </foaf:Person>
    </foaf:knows>
  </foaf:Person>
</rdf:RDF>
```

2 Persons, 2 Emails,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Ontologies

Folksonomies

Coherence Spaces

Coherence Spaces and Ontologies

The interpretation is the following one:

<rdf:RDF

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2 Persons, 2 Emails, 1 Web page,

Ontologies

Folksonomies

Coherence Spaces

Coherence Spaces and Ontologies

The interpretation is the following one:

<rdf:RDF

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2 Persons, 2 Emails, 1 Web page, 2 pairs Person-Email

Folksonomies

Coherence Spaces

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coherence Spaces and Ontologies

We remark the following immediate points:

- Any concept of an ontology, i.e. the extension of a predicate or a relation, is a **clique** of the corresponding OCS.
- The empty set is a clique: it denotes an "impossible" concept.
- Each clique may be interpreted as a *potential* concept.

Coherence Spaces and Ontologies

One may ask which cliques may *really* be concepts: maximal cliques ?

A *Maximal clique C* may be defined in different ways:

- clique of elements such that two individuals share a *common* property:
 IF *x* is s.t. ∀*y* ∈ *C*, *y* ≠ *x*, ∃*P* s.t. {*x*, *y*} ⊂ φ(*P*) THEN
 x ∈ *C*
- clique of elements such that a set of properties is shared by all individuals:

IF x is s.t. $\forall P \in \mathcal{P}, x \in \phi(P)$ THEN $x \in C$

o ...

However, it may be more useful to consider that 'concepts' are defined by interaction with user requests.

	00000000	000000	000000000000000000000000000000000000000
Coherence Space	es and Ontolo	aies	

Standard operations and relations on ontologies (1):

Operations

- An ontology O is a segment of an ontology O' if O is a restriction of O' to a part of its language
- An ontology O inherits from an ontology O' wrt a language L if the theory of O' restricted to L is included in the theory of O'

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

00000	00000000	000000	000000000000000000000000000000000000000
Coherence S	paces and On	tologies	

Standard operations and relations on ontologies (2):

• Union of two (distinct) ontologies

Operations

- Mapping α from an ontology (O, M, φ) to another one (O', M', φ'):
 - If $a \in \phi(P)$, $\alpha(a)$, $\alpha(P)$ defined, then $\alpha(a) \in \phi'(\alpha(P))$
 - If $\langle a, b \rangle \in \phi(R)$, $\alpha(a)$, $\alpha(b)$, $\alpha(R)$ defined, then $\langle \alpha(a), \alpha(b) \rangle \in \phi'(\alpha(R))$
- Refinement, Alignment as special cases of mapping
- Merging of two ontologies (O, M, φ) and (O', M', φ') as a partial alignment and inheritance of what is not aligned.

00000	ooooooo	COCCOC	
Coherence Sp	aces and On	tologies	

Operations on ontologies may be interpreted in terms of operations on OCS:

Operations

- The ⊕ operation on OCS corresponds to the union of two ontologies.
- The operation on OCS corresponds to mapping ontologies:
 - A mapping α is represented as a clique in $\mathfrak{O}\multimap\mathfrak{O}'$

(ロ) (同) (三) (三) (三) (○) (○)

• $P \times \alpha(P)$ and $R \times \alpha(R)$ are cliques of $\mathfrak{O} \otimes \mathfrak{O}'$

Concepts/Types in NL	Ontologies	Folksonomies	Coherence Spaces
			000000000000000000000000000000000000000

Coherence Spaces and Ontologies

Such a framework allows to relate also folksonomies to ontologies.

- 2 resources are in relation if they have some *quality* in common (maybe subjective)
- a tag, a concept is represented as a clique
- Note that the viewpoint may be changed: 2 tags are in relation if there exists a common resource, ...
- What is a point? What is a coherence structure?
 - Mainly logical structures, i.e. proofs,
 - that may be questioned, i.e. reduced by cuts.

(日) (日) (日) (日) (日) (日) (日)

• Hence Ludics or Game Semantics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Thanks for your attention