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Abstract

A graph-theoretical look at multiplicative proof nets lead us to two new descriptions
of a proof net, both as a graph endowed with a perfect matching.

The first one is a rather conventional encoding of the connectives which never-
theless allows us to unify various sequentialisation techniques as the corollaries of a
single graph theoretical result.

The second one is more exciting: a proof net simply consists in the set of its axioms
— the perfect matching — plus one single series-parallel graph which encodes the
whole syntactical forest of the sequent. We thus identify proof nets which only differ
because of the commutativity or associativity of the connectives, or because final
par have been performed or not. We thus push further the program of proof net
theory which is to get closer to the proof itself, ignoring as much as possible the
syntactical "bureaucracy".

1 Presentation

This paper introduces two new ways of looking at proof structures and nets,
and their correctness criteria. Our basic tool for describing proof nets is edge-
bicoloured graph, that we call R&B-graphs: one of the colours, B, defines a
perfect matching or 1-factor of the graph, — a standard topic in graph theory:
a matching B is a set of pairwise non-adjacent edges, and it is said to be perfect
whenever each vertex is incident to an edge of B. An edge not in B is in R. We
then consider &-cycles — alternate elementary cycles — i.e. the even cycles
with edges alternatively in B and in R, which does not use twice the same
edge. We prove a theorem related to one by Kotzig [7] which characterises
the R&B-graph without @-cycles as an inductively defined class of R&B-graphs
which recursively contain a B-isthmus.

In the first of our two approaches, the connectives are directly encoded in
the R&B-graph. The criterion is the absence of &-cycle. Using our theorem,
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we obtain a B-isthmus, and this is actually enough for establishing sequen-
tialisation. We then consider two mappings of a proof net into a R&B-graph
without @-cycle. This enables us to obtain from the same graph theoretical
theorem the existence of a splitting tensor link (sequentialisation a la Girard,
[5]) and the existence of a section or splitting par link (sequentialisation a la
Danos-Regnier, [2,3]).

The second approach, inspired by the first, is a more abstract representa-
tion of proof nets. A proof net is still a R&B-graph which simply consists in a
perfect matching B which encodes the axiom links, and a single series-parallel
graph R (this inductive class of graphs is rather famous [6,10] ) which encodes
the whole of the syntactical forest of the sequent, while the criterion is that
any &-cycle should contain a given configuration.

This presentation identifies proof nets which only differ because of commu-
tativity and associativity, or because final pars have been or not performed.
So we push further the research program associated with proof net which is
to get as close as possible from the proof itself, ignoring as much as we can
the syntactical "bureaucracy'.

One can wonder whether we admit or not the mix rule. Actually, these
results apply to both systems (with or without the mix rule). Nevertheless,
in the body of the paper we concentrate on proof nets with mix, because
their theory is a bit more general and their sequentialisation is a bit more
difficult. We then explain in a short section how the connectivity condition
which excludes the mix rule may be added to our presentation: it is simple
and harmless.

As usual in this kind of study, we ignore the cut-rules and links, viewing
them as tensor rules or links.

The combinatorial proofs are more developed than the logical ones, for
which we assume some familiarity.

2  Multiplicative proof structures and nets.

Let P be a set of propositional variables, and let ' = P U P* be the set of
atoms. The multiplicative formulae F are defined by F ::= N | FQF | FoF.
A proof structure simply consists in a multiset of formulae where atoms

— elements of N/ — have been indexed in such a way that, for any index ,,
L

either , does not appear or , appears exactly twice: one on a, and one on «a;

for some a € P.

From this we easily get a graph as follows. Turn each formula into its
sub-formula tree. Add an edge between propositional variables who share the
same index.

The proof structure is said to be a proof net whenever each cycle of this
graph contains the two edges of some par branching of one of the sub-formula
tree. They exactly correspond to the proofs of the multiplicative sequent
calculus enriched with the mix rule [2,4]. We refer to this description of proof
structures and nets as DR proof structures and nets.

Here is an example of a proof structure with three conclusions, which is a
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proof net: EX = a. , (((ai@ay)?aj)@(ozz?(aj@au))) , ozj

3 Basic terminology:
graphs, matchings, series-parallel graphs

I recall the basic terminology that I use, because there are a lot of little
variations that can be puzzling sometimes — I mostly follow [9].

3.1  Graphs and matchings

A graph consists of a finite non-empty set of elements called vertices written
a,b,...,u,v,... and of a multi-set of unordered pairs of vertices called edges.
An edge is written xy, possibly with an integral index when there are multiple
xy edges. We do not allow edges of the form xx (except in the appendix). A
graph is said to be simple whenever there are no multiple edges — i.e. in
case the multi-set of edges is a set. Here are a few graphs and nicknames for
some particular simple graphs:

a a b a b a b
Q Ky E P4[a,b,c,d] : I C4[a,b,c,d] I:I
d d

d c c c

A bijective function f mapping the vertices of GG onto the vertices of H
such that both f and f=! preserve the number of edges joining each pair of
vertices is called an isomorphism, and when there exists an isomorphism
from GG to H, G and H are said to be isomorphic.

If there is an edge xy in a graph G, xy is said to join vertices x and vy,
to be be incident with vertices x and y, and vertices x and y are said to be
adjacent. Two edges which share a vertex are also said two be adjacent. A
set of edges is said to be independent if no two edges are adjacent.

The degree of a vertex x is the number of edges incident to x. In case the
degree of x is one, the vertex and its unique incident edge are said to be be
pendant.

A path is an alternating sequence of vertices and edges, beginning and
ending with vertices, two consecutive items being incident. A path is said to
join its first and last vertices. If all vertices are distinct the path is said to
be elementary, and if all edges are distinct the path is said to be simple.
The length of a path is the number of occurences of edges in it. A cycle is
a path of length at least two whose end vertices are equal. A cycle is said to
be elementary if all its vertices are distinct but the first and last. A chord
of a cycle is an edge joining two vertices of the cycle, but not in the cycle.

If G is a graph and H is also a graph the vertices and edges of which are
vertices and edges of ¢, H is said to be a subgraph of G. If H is a subgraph
of GG and if every edge joining two vertices of H which lies in G also lies in H,
we call H an induced subgraph of G. Given a graph H, a graph  having
no induced subgraph isomorphic to H is said to be H-free.

3
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A graph is connected if every two vertices are joined by a path. The
maximal connected induced subgraphs of G are called its components. An
edge xy is called an isthmus whenever (G — xy has more components than G.

A set of edges in a graph (i is called a matching if no two edges are
adjacent. A matching is said to be perfect if every vertex is incident to an
edge of the matching.

Given a graph G and a matching B, a path p is said to be alternating if
the edges of p are alternately in B and not in B.

Given a graph and a matching, an alternating elementary path will be
written an @-path. An alternating elementary cycle of odd length is called an
az-loop. An alternating elementary cycle of even length is called an =-cycle,
An a-cycle is said to be minimal when none of its chords induces a shorter
a-cycle.

3.2 Series-parallel graphs, the SymPa class

Two vertices x and y of a graph G = (V; R) are said to be equivalent if the
bijective function mapping x onto y, y onto x and any other vertex onto itself
is an isomorphism from (' onto itself. If further more xy is an edge in GG, they
are said to be $-equivalent, and otherwise to be ||-equivalent.

Write (G1]|Gy (instead of Gy @& (3) for the disjoint union of the simple
graphs (¢; and (G5 and call disjoint union Parallel composition. !

Define the Symmetrical series composition of two disjoint simple graphs
G = (V; Ry) and Gy = (Va5 Rs) as the simple graph obtained from G4]|Gs by
adding an edge x;x, for all x; in V§ and x3 in V5.

The class SymPa of series-parallel graphs is the smallest class of simple
graphs which contains the one-vertex graphs and which is closed under parallel
and symmetrical series composition. 2

Proposition 3.1
(i) If a graph is Pa-free, then any of its full subgraph is Py-free as well.

(i1) A graph is Py free iff its complement is.

(iii) A graph is in SymPa if and only if it is Py free.

(iv) In a SymPa graph there always exists two equivalent vertices, either
$-equivalent or ||-equivalent. If we identify them, we also obtain a SymPa
graph, and the resulting vertex is respectively denoted by X°8Y or X@VY.

(v) Given a SymPa graph, its decomposition by means of § and || is unique up

to the associativity and commutativity of $ and ||.

Examples: Kq = a$h$cSd  C4a, b, c,d] = (allc)$(b||d).

! These series-parallel graphs have been (re)discovered and studied many times, firstly in
the forties [13] for electronic circuits, hence the name series-parallel, but also, for scheduling,
concurrency and graph decomposition.

2 This SymPa class of graphs exactly are the “contractile” coherent spaces, that Girard
studied and characterised, i.e. the one defined from 1 by & ($) and & (||). But I think that
such an additive notation would be misleading.
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Proof. Points (i) and (ii) are obvious. Using (i) and (ii) we easily prove (iii),
by showing that the P4 freeness implies that either the graph or its complement
is not connected, by induction on the number of vertices. Points (iv) and (v)
are also not difficult. All this is more or less known, see among others [6,10].0

4 R&B-graphs and SymPa-R&Bgraphs

4.1 R&B-graph

Definition 4.1 An R&B-graph G = (V; B, R) consists of two simple graphs
Gr = (V,R) and Gg = (V, B) with the same vertices, such that B is a perfect
matching of the underlying graph G = (V; B @& R). The R&B-graph G is said

to be simple or connected whenever G is.

Thus G is not simple if and only if there exists an edge xy common to B
and R.

An R&B-graph can clearly be pictured as an edge-bicoloured graph: the
B-edges, the ones of GGp will be Blue or Bold, while the R-edges, the ones G'r
will be Red or Regular.

Definition 4.2 R&Btis the smallest class of R&B-graphs which contains all the
one edge R&B-graphs G = ({x,y};xy,0) (notice this unique B-edge must be a
B-edge) and which is closed under disjoint union® and the following operation:

G = (Vi; By, R1) and Gy = (Va; B2, Ry) be two disjoint R&B-graphs

x; and x5 be two new vertices

Let
V| be a non-empty subset of V}

V) be a non-empty subset of V;

define a new R&B-graph from the R&B-graph G'1 & xq & xo & G5 by adding:
- the B-edge x1xz
- all R-edges vix; for vertices vy in V{

- all R-edges xyvy for vertices vy in V)

3if we skip the closure under disjoint union, we exactly obtain the connected R&B-graphs
of R&B*
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Notice that all R&B-graph of R&B* are simple.

Theorem 4.3 Given an R&B-graph G = (V; B, R) the following properties are
equivalent:

(i) G contains no ®-cycle (alternating elementary cycle)
(ii) B is the unique perfect matching of the underlying graph G
(iii) G belongs to R&BT

Proof. If G is not simple, there is an R-edge xyr and a B-edge xyp and

(i) is false: x,xym,y,yxgr, X is an &-cycle.

(ii) is false too: exchange the colours B and R of the two xy edges.

(iii) is false as well: as noticed above, a R&B-graph of R&B¥is simple.

Thus we can assume that G is simple.
=(1) = —(ii) Assume G contains an &-cycle ¢. Every edge incident to a vertex
of ¢ but not in ¢ is an R-edge. Exchanging the colours of the edges of ¢, we
obtain an other perfect matching of G — notice that the fact that an &-cycle
is elementary is necessary: otherwise we could obtain adjacent B-edges.
=(i1) = —(i) Assume G is also the underlying graph of G' = (V; B', R") with
XoX1 in B but not in B — or the converse, the question being symmetrical.

We extend a path of G starting with xox; which will be an &-path both in
G and G': the (2p + 1)™ edge is in B but not in B’, hence in R’ and the 2p't
edge is in B’ but not in B, hence in R.

Assume the path already built is of odd length: its last edge e isin R’; since
B’ is a perfect matching of G/, there must be a (unique) edge €’ in B” adjacent
to e. Because e is in B, e and ¢’ are incident, and B is a (perfect) matching
¢/ is in R. When the path already built is of even length, the argument is
symmetrical.

Since (G is finite, we meet a vertex x again, and thus we found an =-path
from a vertex to itself. The first and last edge may not be of the same colour
in either of the R&B-graph G and G’: they would be both in B or both in B’
while B and B’ are (perfect) matching.

Therefore this @-path is an &-cycle (both in G and G").

(iii) = (i) Straightforward induction.
(i) = (iii) May be deduced from (i) = (u7) and (i7) = (i7¢), which is known
[7]. In the literature it is deduced from difficult results: “cathedral structure
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theorem” [9] or Tiitte’s theorem [1]. That is the reason why we give in ap-
pendix our own simple proof of (¢) — (i17) — which yields (i7) = (u12) together
with (i7) = (¢); furthermore it is a simple and algorithmic proof. O

Proposition 4.4 The equivalent clauses of the previous theorem are checked
in less than O(|B|*) = O(|V|?), using the characterisation (i) and a standard
breadth search algorithm.

4.2 Series-parallel R&B-graphs: SymPa-R&B-graphs

Definition 4.5 A symmetrical series-parallel R&B-graph or SymPa-R&B-graph
G'= (V; B, R) is an R&B-graph such that Gr = (V; R) is a series parallel graph.

An =-path is said to contain a bow tie if it contains two R-edges x,X,+1
and x,x,4+1 such that the R-induced subgraph on x,,x,11,%,,%,41, contains
Ca[Xp, Xpt1,Xg41,Xq] and is not Ky.

27N 27N
OK
Xp+1 R
X
Xp Xg+1
~_ 7 ~_ 7

An =zcycle is said to strictly contain a bow tie whenever the R-induced
subgraph on X,, Xp11, Xq, Xg+1, 18 Ca[Xp, Xpt1, X441, X,] (left most picture).

Proposition 4.6 Given a SymPa-R&B-graph G = (V; B, R) the two following
properties are equivalent:

(i) each =-cycle contains a bow tie

(ii) each minimal 2-cycle strictly contains a bow tie

Proof. (i) = (ii) is obvious. (¢) = (i7) is proved by induction on the number
of symbols in R plus the size of the &-cycle plus the number of B-edges: it is
too lengthy to be given here. O

5 Proof structures and nets as R&B-graphs,
and a first sequentialisation

Let us defines the links as R&B-graphs in the following way:
7
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Links
Name axiom par tensor
Premises none Aand B Aand B
R&B-graph
T a8
S
A% B A®B
Conclusions at and a AeB ARB
The R&B-tree T'(C') of a formula C' is defined inductively as follows:
Formula C acN A9B A®B
R&B-tree T'(C)
T(A) T(B)
a A B
S
AsB AB

Definition 5.1 A R&B proof structure or R&B-PS is a simple R&B-graph such
that there exists a partition of its edges such that each class together with its
incident vertices is isomorphic to a R&B-link — in such a way that the labels
of the labelled vertices unify. Pendant vertices are called the conclusions of
the R&B-PS.

An alternative definition is to say that a R&B-PS consists of the R&B-trees
of some formulae C'y, ..., C,, together with a matching of B-edges joining each
atom to a dual atom.

A R&B proof structure is said to be a R&B proof net whenever it does not
contain any =-cycle.

Theorem 5.2 (sequentialisation) Any proof of the sequent calculus is
mapped onto a proof net. Conversely, any proof net corresponds to at least
one proof of the sequent calculus.

Proof. Firstly, a straightforward induction shows that a PS inductively con-
structed according to a sequent calculus proof can not contain any &-cycle.
The converse is a consequence of the theorem 4.3, which shows that there
exists a non-pendant B-edge which is a B-isthmus.
As usual, we may assume that every conclusion is the conclusion of a
tensor or axiom link, and that II is connected — otherwise apply mix-rules
to the sequentialisations of its components.

8
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If we suppress the pendant vertices C; (i.e. the conclusions), their unique
B-adjacent vertex c¢;, and the R-edges incident to ¢; we obtain a simple R&B-
graph II° with no &-cycle.

Because of the link structure, there are at most two R-edge incident to c;,
and each time we suppress two incident R-edges ¢;x and ¢;y there is an R-edge
xy. Thus a B-isthmus of II° is a B-isthmus of II. For the same reason if 11° is
connected since 1T is.

If TI° is empty, the PN II consists of an axiom-link, or of a tensor-link
between two axiom-links, and the sequentialisation of II is trivial.

If T1° is not empty we apply the theorem 4.3 to II°: it contains a B-isthmus,
which is an inner B-isthmus of II as well. By induction we obtain a sequent
calculus proof for each part, and by "plugging" them we obtain a sequent
calculus proof corresponding to II.

isthmus from the theorem

1[0/ H]

1 1 1 1 1 replace H*

with T in II}

As we only defined axiom links for atoms, because of n-expansion, one
should first substitute a variable for H, and then replace it again with H. O

6 Two other mappings from proof structures
to R&B-graphs and sequentialisation techniques

In this (sketchy) section, I denotes a proof net & la Danos-Regnier [2,3].

6.1 Sequentialisation a la Girard: finding a splitting tensor link

We map II onto a R&B-graph Iy as follows. The vertices of Il correspond to
the premises of tensor links. The pair of premises are linked via a B-edge:
thus we have one B-edge per tensor link. We put a R-edge between a premise
A of a tensor link A®B and a premise A’ of another tensor link A'®B’
whenever an atom of A is linked via an axiom link to an atom of A’. There is
an obvious bijection between splitting tensor and B-isthmuses — notice that
[T ignores the final par links. It is easily seen that this R&B-graph Il contains
no &-cycle if and only of if IT is a proof net. If it is so, Ilg is in R&B*tand thus,
still using Theorem 4.3, Il contains a B-isthmus, i.e. a splitting tensor link.
Thus we can perform sequentialisation as in Girard original paper [5], possibly
using the mix rule when Il is not connected.
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6.2 Sequentialisation a la Danos-Regnier:
finding a section, a.k.a. splitting par link

We can also map II onto a R&B-graph Il.

Remember that a block [2,4] in a DR proof structure is a component of
the graph minus the axiom and tensor edges, and write b(A) for the block of
the vertex (occurrence of formula) A. Thus b(A) N b(B) # 0 is equivalent to
b(A) = b(B).

IT3 is defined as follows.

Vertices are pairs of premises of par links and conclusions of par links.
We put a B-edge between the vertex corresponding to the pair of premises of
a given par link and the vertex corresponding to the conclusion of the same
par link. We put an R-edge between

(A, B) and (A’, B") iff b(A) U b(B) intersects b(A’) U b(B’)
(A, B) and A"¢ B’ iff b( A) U b(B)) intersects b(A"s B')
A B and A" B’ iff b(A%® B) intersects b(A"e B’)

There is an obvious bijection between the B-isthmuses of I,y and the "sec-
tions" or splitting par links of [2]. Whenever we start with a proof net II,
the resulting R&B-graph I,y contains no &-cycle, i.e. is in R&B*. Thus still
using Theorem /.3, we find a section, and we can perform sequentialisation
as in Danos’ thesis. The correctness of I,y does not, in this case, imply the
correctness of II, unless II contains no &-cycle in its blocks.

7 SymPa-R&B proof structures and nets:
a perfect matching plus a series-parallel graph

7.1  Definition

Definition 7.1 A SymPa-R&B proof structure with conclusions C4,...,C,
is a SymPa-R&B-graph ¢ = (V; B, R) whose vertices are the occurences of
atoms in C1,...,C, and which satisfies (i) and (ii):

(i) an edge of the perfect matching B joins two dual vertices

(ii) there is an R-edge between two vertices whenever they meet on a @ in
the syntactical forest

A SymPa-R&B proof structure is said to be a SymPa-R&B proof net whenever
every =-cycle contains a bow tie.

Our example, EX as a Sympa-R&Bproof net:

R=a|((atsa)llat) $ (all(atsa)) || ot
The conclusions are defined as follows: any partition of the components

10
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of R defines the conclusions up to associativity and commutativity of the
connectives. To find an expression for a conclusion, write R from the atoms
by means of || and §, and turn || into 2, and § into @.

As usual there is no particular difficulty in proving that translating rule by
rule a proof of the sequent calculus into a Sympa-R&Bproof structure, we obtain
a proof net, i.e. a Sympa-R&B-graph such that every &-cycle contains a bow tie.
The par-rule is translated into identity, the mix-rule into disjoint union. The
tensor-rule A®B is translated into the symmetrical series composition ap-
plied to the conclusion A (a union of some R-components) of one premise,
and the conclusion B of the other premise. However this is a straightforward
consequence of Proposition 7.3 of next subsection.

7.2 Sequentialisation: from R&B-PS to R&B-PS and vice-versa

In order to prove sequentialisation we introduce a generalisation of both R&B-PS
and R&B-PS, which may have its own interest. Let us call them Sympa+R&B
proof structures.

They consists in a R&B-proof structure plus some SymPa graph /relation R
between its conclusions. We write H% for a Sympa+R&B proof structure whose
conclusions are ' and whose SymPa relation on I' is R.

A Sympa+R&B proof structure H% is said to be a SymPa-R&B proof net or to
be correct whenever every z-cycle of H% contains a bow tie.

An example:

(at@a)ypat ag(at@a)

R=a|[((a*@a)|a®)$ (a|(at@a) ]| a*

It R is empty then it is a R&B proof structure, which is a R&B proof net if
and only if it is a Sympa+R&B proof net: since there are no C4 in a R&B- proof
structure, to say that each z-cycle contains a bow tie means that there is no
a-cycle.

If there is no link but axiom-link, it is a SymPa-R&B proof structure, and
it is a SymPa-R&B proof net if and only if it is a Sympa+R&B proof net.

Now, we consider the following invertible transformation between Sympa+R&B
proof structure:

Definition 7.2 Let * be either § or || and correspondingly let x be either @
(when * = §) or %@ (when * = ||).

Let Hg[cc*g;] be a Sympa+R&B proof structure, with SymPa relation R =
S[C * C'] on its conclusions — this entails that ¢ and C’ are *-equivalent
with respect to the SymPa relation R = S[C % C'] on conclusions. The

g[’g:g,/] is obtained from the Sympa-R&B proof

by performing the following operations :

Sympa+R&B proof structure II

r,c.o!
S[CxC7]

(i) add to the underlying R&B proof structure I1

structure 11

r.c.c'
S[CxC7]

a *-link with premises

11
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' and C’: this yields a R&B proof structure H—F’O@*C/

(ii) add to this R&B proof structure the SymPa relation S[C'*C’] obtained by
identifying the two *-equivalent vertices C' and C” and calling it CxC’

Performing these operations in the reverse order, — this time with no

condition on S[C*C'] — we see that this transformation obviously has an
O’ r,oc’
~ to II
[C%C] 3

inverse, leading from Hg R

Proposition 7.3

r.c,c’ I, CxC’
I, = I—2"—— is correct <= 11" = [l ———— is correct
S1C* ] * S[C*C
Proof. We must check that the transformation and its converse preserve the
two following properties:

o each time the transformation introduces an &-cycle, it contains a bow tie

b1 each time an R-edge appearing in the bow tie of an &-cycle is (re)moved,
either the &-cycle vanishes or it still contains a bow tie.

Let Zi,...,Z; be the conclusions Z such that ZC,ZC’' € R — since
and C' are equivalent, ZC' is in R if and only if ZC" is in R.

Remember that an z-cycle contains a bow tie whenever it contains two R-
edges x,x,+1 and x,x,11 such that the R-induced subgraph on x,,X,+1, Xy, Xg41
contains Ca[Xy, Xp41,Xg, Xg+1] and is not Kq. The bow tie is said to depend on
the R-edges x,X,4+1 and x,X,41, which are said to be essential to the bow tie.

II, correct = 1I correct

o There are fewer ®-cycles in II%, because some are no more elementary
in II: they use twice the B-edge incident to (CxC").
B Assume there is in I, an #-cycle whose bow tie depends on two R-

edges one of which is either CC’ (if * = §) or a CZ; or a C'Z;. Firstly, in
case * = 3, a bow tie of II, may not depend on the R-edge C'C": indeed,
because ' and C’ are $-equivalent the bow tie would necessary be K4, which
is not possible. Assume the bow tie depends on the R-edges C'Z; and XY,
containing C4[C,Y, X, Z;] then Y is some Z;. Thus, if X = C’ the =-cycle
vanishes. Otherwise because €' and (' are equivalent, we also have the R-
edges C'Z; and C'Z;. Thus, in I} the edges C*C’Z; and X Z; define a bow tie
in the image of the ®-cycle. Indeed we may not have both the R-edge Z;Z;

12
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and X (CxC" in 1%, since we would have both C'X and Z;7;, which conflicts

* 9

with C'Z; Z;X being a bow tie. Hence we also have a bow tie in II(C x C").
II7 correct = 1L, correct

B Firstly any R-edge of the suppressed x-link may not belong to a bow tie.
So we can assume that the bow tie depend on an R-edge (CxC") 7 of an =-cycle
of II7, and because &-cycle are elementary the other R-edge it depends may not
be a (CxC")7Z; R-edge. Thus this bow tie contains some Cq4[(CxC"), Z1, X, Z,],
with X being none of the Z;.

The &-cycle ¢ of 11T either pass by C or by C’, say C, and is mapped is
mapped onto an &-cycle of I, passing through ', while the bow tie of 117 is
mapped onto a bow tie of 1l depending on C'Z; and Z; X.

o If an &-cycle appears in Il,, while there was none in IIF then it contains
two R-edges C'Z; and C'Z; with i # 5. lf x = || or Z,7; € R there is a bow tie
containing C4[C, Z;, Z;, C'] — the condition ensures it is not a Kq. If * = § we
have in 1IF an &-cycle ¢, containing C'C" as well as its two adjacent B-edges.
This &-cycle ¢ contains a bow tie in II}, which is mapped on a bow tie of II7,
because of the previous alinea (ii).

O

Out of this proposition we easily obtain sequentialisation for SymPa-R&B
proof nets. Let Il be Sympa-R&B proof net. Perform the previous transfor-
mation in order to obtain a R&B proof net IIgr — not in a unique way, due
to commutativity and associativity of '®/|| and ©@/$, and to the possibility of
stopping as soon as R is empty, or of going on until we have a single conclusion.

For instance, the example that we gave of a Sympa+R&B proof structure is
an intermediate state between the R&B proof structure form and the SymPa-R&B
form of our example EX.

The sequentialisation theorem for a Sympa-R&B proof net follows from the
easy observation that any sequent calculus proof corresponding to any R&B
proof net Ilgr associated with II translates into the SymPa-R&B proof net II.

8 What about the mix rule?

Actually, if one wants to exclude the mix rule and to have the standard mul-
tiplicative sequent calculus, it is quite simple. To the various criteria we
introduced, one must always add:

There exists a bow tie free =-path between any two vertices.

For R&B proof structures which contain no C4 and therefore no bow tie, it
simply means that there is an &-path between any two vertices.

9 Conclusions

This work was actually developed for pomset logic [12,8] in order to obtain
a sequentialisation theorem. In this case we also have to take into account
directed series composition which corresponds to the non-commutative and

13
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self-dual connectivebefore. A first step would be to have a close look at a
direct proof of sequentialisation for the Sympa-R&B proof nets.

A direct look at cut-eliminations is rather amusing: it remind us of Girard’s
turbo cut-elimination, but it even seems that this time there are multiple inlet
valves! Notice that two conclusions, one the negation of the other, correspond
to complementary series-parallel relations.

Finally we have the feeling that this presentation of proof net as SymPa-R&B-
graphs is really a meeting point between syntax and semantics.

Appendix: an algorithmic proof of a theorem by Kotzig

Coming back to theorem 4.3, here we prove (1) = (i17). Together with —=(7) =
=(17) that we already gave, it gives a simple proof of (iz) = (ii7) , known as a
theorem by Kotzig [7].

I actually obtained this proof on the dual structures, for which it was a bit
more difficult to formalise [12,11].

Definition 9.1 Let ' = (V; B, R) a R&B-graph, and ¢ be an &-loop on v: / is
an &-path of odd length whose end vertices are the same vertex v — thus the
two edges of £ incident to v are R-edges.

Contracting the loop £ consists in identifying all its vertices with v (quotient

graph).

Lemma 9.2 Assume a B and R coloured graph G' is obtained from a R&B-
graph G = (V; B, R) by contracting a loop on v . Then:
i is a gra 0ssibly with an R-edge vv) with a perfect matching — the
(i) G' is a graph (possibly with an R-edge v ) with a perfect matching — th
B-edges of G not in (.
il is not a -gra en it is because il is not anymore a simple
i) If G' i t a R&B-graph, then it is b it t any mpl
graph, and, if so, G contains an &-cycle.
(iii) If there exists an ®-path between two vertices of G then there exists one
in G too, with endings of the same colour.

(iv) If G contains no z-cycle so does G'.

(v) Whenever a B-edge is a B-isthmus in G, it is a B-isthmus in G too.

Proof.

(i) The fact that the B-edges of G’ still define a perfect matching is clear.
Two cases may occur: either G’ contains an R-edge between v and itself, or
a R-edge between v and u, the other ending of the unique B-edge incident
to v.

(ii) If the =-path in G’ does not use any of the new edges vw, than it is
itself an @-path in . Otherwise, notice the R-edge vw of the =-path
may be replaced by an &-path of G starting and ending with a R-edge:
p:VvR...BRw . When replacing the R-edge vw of the -path in G’ with
the @-path p in G, there is no risk of getting a non-elementary path in GG,
since it only uses B-edges which do not belong to G'.

14
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(iii) Because of the previous remark, if there was an &-path from v to itself
there would be one in G.

(iv) Notice the loop and v belong to the same 2-edge-connected block of G.
O

Theorem 9.3 Gliven a R&B-graph G = (V; B, R), and a vertex x € V, there
exists an ®-path from x to an &-cycle, or to a B-isthmus.
In particular if G has no &-cycle, then there exists a B-isthmus.

Proof. We extend an =-path starting with the unique B-edge incident to x,
using the following algorithm, which stops when it finds one of the two wanted
configurations. An easy induction on the number of B-edges proves its termi-
nation.

1.When ending on an R-edge, we can only extend the path with the B-edge
incident to the end vertex, which may not be already met, since each vertex
of the path is incident to a B-edge, while B-edges are a matching.

2.When ending on a B-edge,

2.1 if there is no R-edge incident to it, we are done: this B-edge is a B-isthmus.
2.2. Otherwise we randomly choose an R-edge extending the path.

2.2.1. If it is still elementary, we extend the &-path.

2.2.2. If this path is no more elementary,

2.2.2.1. either we have an =-cycle, and an &-path from x to this elementary
cycle,

2.2.2.2. or an &-loop f on the end vertex v of the &-path. In this latter case
we contract this &-loop on v.

2.2.2.2.1. If the graph is not a R&B-graph, Lemma 9.2 (iii) shows that G
contains an &-path from x to v and an &-cycle containing v.

2.2.2.2.2. Otherwise, we proceed with G’ which has at least one B-edge less,
remembering that a wanted configuration in ' defines a similar configuration
in GG, by lemma 9.2. Hence, by induction on the number of B-edges we are
done. O

Proposition 9.4 This algorithm works in polynomial time. When used to
sequentialise a proof net as in section 4, we first check if the proof structure
is correct in O(|V'|?) and then we use this algorithm to find a isthmus: as the
cases 2.2.1. and 2.2.2.2.1. may not appear, the isthmus is found in O(|V]?).
Thus the sequentialisation is performed in O(|V]?).
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