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Identity Types (1)

are the most intriguing concept of intensional
Martin-Löf type theory (ITT). They are given
by the rules

Γ � A
(Id-F )

Γ, x, y:A � IdA(x, y)

Γ � A
(Id-I)

Γ � rA(x) : IdA(x, x)

Γ, x, y:A, z : IdA(x, y) � C(x, y, z) Γ, x:A � d : C(x, x, rA(x))

(Id-E)

Γ, x, y:A, z : IdA(x, y) � J((x)d)(z) : C(x, y, z)

together with the conversion rule

J((x)d)(rA(t)) = d[t/x]

and motivated by the intention that all con-
cepts appear as inductively defined (families
of) types.
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Identity Types (2)

Using J one can define operations

cmpA ∈ (Πx, y, z:A) IdA(x, y)→IdA(y, z)→IdA(x, z)

invA ∈ (Πx, y:A) IdA(x, y) → IdA(y, x)

validating (where we write idx for rA(x))

(a) (Πx, y, z, u:A)
(Πf :IdA(x, y))(Πg:IdA(y, z))(Πf :IdA(z, u))
IdIdA(x,u)(cmp(f, cmp(g, h)), cmp(cmp(f, g), h))

(b) (Πx, y:A) Id(cmp(idx, f), f) ∧ Id(cmp(g, idy), g)

(c) (Πx, y:A)(Φf :IdA(x, y))
Id(cmp(f, inv(f)), idx) ∧ Id(cmp(inv(f), f), idy)

rendering type A as an internal groupoid

where the groupoid equations hold only

in the sense of propositional equality, i.e.
for instance (a) means that there is a term
assocA(f, g, h) of type
IdIdA(x,u)(cmp(f, cmp(g, h)), cmp(cmp(f, g), h))
which may be thought of as a 2-cell in the
sense of higher dimensional categories.
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The Groupoid Model

In early 1990ies I observed that one can prove

(ΠA:Set)(Πx, y:A)(Π:f, g:IdIdA(x,y)(f, g))

i.e. proof irrelevance for equality proofs (PIE).
using the following natural extension of MLTT

Γ, x:A, z : IdA(x, x) � C(x, z) Γ, x:A � d : C(x, rA(x))
(Id-E�)

Γ, x:A, z : IdA(x, x) � K((x)d)(z) : C(x, z)

In 1994 [HS95] M. Hofmann and I constructed
a groupoid model for ITT where K does not
exists and (a)-(c) hold in the sense of judge-
mental equality. The key idea was to in-
terpret types as groupoids and families of

types as fibrations of groupoids and

IdA(x, y) as A(x, y)

which may contain more than one element if
the groupoid is not posetal. Thus

PIE fails in the groupoid model!
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Towards Weak ω-Groupoids

Already in [HS95] we observed that

the bureaucracy of identity types

forces one to check all coherence

conditions when reasoning up to iso-
morphism

i.e. when treating ‘isomorphic’ as ‘equal’ (as
categorists like to do) which sometimes is a
source of mistakes when done naively!

Already in [HS95] it was observed that ∞-
groupoids might be more appropriate since in
ITT the types IdA(x, y) are groupoids them-
selves and not just sets.

We also observed that strict ω-groupoids are
not sufficient either because in ITT the con-
ditions (a), (b) and (c) do not hold in the

sense of judgemental equality but only in

the sense of propositional equality, i.e.
that weak ω-groupoids are more appro-

priate.
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Towards Weak ω-Groupoids

Many definitions of hdc’s and hdg’s are fairly
complex. Therefore, in a talk in Uppsala
(November 2006) I suggested to consider the
easiest notion of weak higher dimensional grou-
poid, namely Kan complexes in the category
(topos) SS = �∆ of simplicial sets. Accord-
ingly, families of types will be modeled as
Kan fibrations.

The latter form part of the classical Quillen
model structure on SS. Awodey & Warren
promoted the idea of interpreting Id-types
in Quillen model structures. But there is
a problem with BC which can be overcome
when having a universe available.

Independently, V. Voevodsky (October 2006)
suggested to interpret type theory in simpli-
cial sets (see www.math.ias.edu/~vladimir). In
particular, he came up with a construction
of universes and suggested his Equivalence

Axiom roughly saying that types are equal iff
there is a weak equivalence between them.
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A Recap of SS

Let ∆ be the category of finite nonempty
ordinals and order preserving maps between
them. We write [n] for {0,1, . . . , n}. The
maps of ∆ are generated by the morphisms

di
n : [n−1] → [n] si

n : [n] → [n−1]

where the first one is monic and omits i and
the second one is epic and “repeats” i.
We write SS for Set∆

op
and ∆n for Yoneda

of [n].

For 0 ≤ i ≤ n let ∂i∆n be the subobject of
∆n consisting all maps u : [m] → [n] with

i �∈ im[u]. Let ∂∆n =
n�

i=0
∂i∆n called the

boundary of ∆n.
For 0 ≤ k ≤ n let Λn

k =
�

i�=k
∂i∆n, i.e. the

union of all (n−1)-faces of ∆n containing the
node k.
Λn

k is an inner horn iff 0 < k < n.
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Pictures of Horns

The horn Λ2
1 can be depicted as

2

0 ✲

✲

1

✻

where the omitted faces are indicated by bro-
ken lines.

Λ2
1 is an inner horn as opposed to the horns

Λ2
0 and Λ2

2 depicted as

2 2

0 ✲

✲

1

✻

0 ✲

✲

1

✻

respectively.
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Kan Fibrations

A horn in a simplicial set X is a morphism
h : Λk[n] → X. A Kan complex is a simplicial
set X such that every horn h : Λn

k → X in X

can be extended to some h̄ : ∆n → X making

X

Λn
k
⊂ ✲

h

✲

∆n

h̄

✻

commute (this extension need not be unique!).

Remark Requiring this only for inner horns
gves rise to Joyal’s notion of quasi-category.

A Kan fibration is a morphism p : E → B in
SS such that every commuting square

Λn
k

h
✲ E

∆n
❄

∩

k
✲

h̄

✲

B

p

❄

has some (generally non-unique) filler h̄.
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Quillen structure on SS

There is an obvious functor from ∆ to Sp

whose left Kan extension we denote as

| · | : SS → Sp

and call geometric realization. We call a
map w in SS a weak equivalence iff |w| is a
homotopy equivalence in Sp.

The classical Quillen model structure on
SS is given by (C,W,F) where

C = class of monomorphisms

W = class of weak equivalences

F = class of Kan fibrations.
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Closure Properties of F

Since SS is a topos it is in particular locally
cartesian closed. As F is defined by a weak
orthogonality condition it is obvious that F
is closed under Σ and Π, i.e.

(Σ) F is closed under composition

(Π) Πf(g) ∈ F whenever f, g ∈ F.

Thus (SS,F) gives a model of type theory
without Id-types.

Let ∆ � Γ : SS → Set. Then all discrete
simplicial sets ∆(S) are Kan complexes and
all ∆(f) are Kan fibrations.

Thus (SS,F) contains Set as a submodel.
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Interpreting Id-Types (1)

Awodey and Warren have suggested to inter-
pret Id-types in Quillen model structures as
follows. For a fibration a : A → I the map δa

A

A×IA ✲

δa

✲

A

================

A
❄

a
✲

================

I

a

❄

is a fibration, too. We may consider

A✲
rA ✲ IdA

A×IA

pA

❄

δa
✲

with pA ∈ F and rA ∈ C ∩W.
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Interpreting Id-Types (2)

Given a fibration pC : C → IdA and d : A → C

with pC ◦ f = rA then we have

A
d

✲ C

IdA

rA

❄

====

J(
d)

✲

IdA

pC

❄

for some J(d).

But the problem is that J(d) is not unique
and thus one does not know how to make a
choice which is stable under pullbacks along
substitutions u : J → I.

This problem, however, can be overcome when
instantiating I by the generic context

A : Set, C : (x, y:A)SetIdA(x,y), d : (x:A)C(x, x, rA(x))

where Set is some appropriate universe since
then one has to split just once and for all !
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Lifting Universes

If U is a (Grothendieck) universe in Set and
C is a small category then this gives rise to a
type-theoretic universe pU : �U → U in SetC

op
.

The object U is defined as

U(I) = U(C/I)op
U(α) = UΣop

α

where for α : J → I the functor Σα : C/J →
C/I is postcomposition with α.
The presheaf �U is defined as

�U(I) = {�A, a� | A ∈ U(I) and a ∈ A(idI)}

and

�U(α)(�A, a�) = �U(α)(A), A(α α→ idI)(a)�

for α : J → I in C.
The map pU : �U → U sends �A, a� to A.

One easily checks that pU is generic for maps
with fibres small in the sense of U, i.e. these
maps are up to iso precisely those which can
be obtained as pullback of pU along some
map in �C.
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Lifting Universes to SS
Now in case C = ∆ we adapt this idea in such
a way that pU is generic for Kan fibrations
with fibres small in the sense of U. For this
purpose we redefine U as

U(n) = {A ∈ U(∆/[n])op
| PA is a Kan fibration}

where PA : Elts(A) → ∆[n] is obtained from A

by the Grothendieck construction. For maps
α in ∆ we can define U(α) as above since
Kan fibrations are stable under pullbacks. We
define �U and pU using the same formulas as
above but understood as restricted to U in
its present form.

Obviously, families of simplicial sets with U-
small fibres are closed under Σ, Π.

Voevodsky has shown that U is a Kan com-
plex and pU is a Kan fibration. Thus pU gives
rise to a universe Set appropriate for inter-
preting Id-types.

14



Prop in SS
Starting from U = {0,1} = {∅, {∅}} one gets
a universe pU = El → Prop. Apparently Prop
is closed under arbitrary Π’s.

Notice that Prop([n]) consists of all monos
m : P � [n] which are Kan fibrations. These
are known to be trivial, i.e. either minimal or
maximal. Thus, in SS we have Prop ∼= 2 =
1 + 1 and

Prf✲ ✲ 1

Prop
❄

✲
[�,⊥]

✲ Ω

�
❄

i.e. this way we obtain an interpretation of
Prop which is 2-valued, boolean and proof-
irrelevant.

Although the interpretation of logic is quite
as in Set equality on Set is fairly noncanonical
because it validates Voevodsky’s
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Equivalence Axiom

We first introduce a few abbreviations

iscontr(X : Set) = (Σx : X)(Πy : X) IdX(x, y)

hfiber(X, Y : Set)(f : X → Y )(y : Y ) =
= (Σx : X) IdY (f(x), y)

isweq(X, Y : Set)(f : X → Y ) =
= (Πy : Y ) iscontr(hfiber(X, Y, f, y))

Weq(X, Y : Set) = (Σf : X → Y ) isweq(X, Y, f)

Using the eliminator J for identity types one
easily constructs a map

eqweq(X, Y : Set) : IdSet(X, Y ) → Weq(X, Y )

Then the Equivalence Axiom

EquAx : (ΠX, Y : Set) isweq(eqweq(X, Y ))

postulates that all maps eqeweq(X, Y ) are
themselves weak equivalences.

Voevodsky has shown that the Equivalence
Axiom holds in the above model in simplicial
sets.
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Conclusion and Problems

• Simplicial sets provide a classical model
of impredicative type theory extending the
naive model in Set.

• Types are interpreted as Kan complexes,
i.e. weak higher dimensional groupoids.
Families of types are Kan fibrations.

• Types in the universe Set validate the
Equivalence Axiom roughly saying that
types in Set are propositionally equal iff
there is a weak equivalence between them.
IdSet(X, Y ) is not a proposition but a type
in a universe containing Set as an ele-
ment.

• There is no obvious computational mean-
ing of the Equivalence Axiom!
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