

Which type theory for lexical semantics?

Christian Retoré (Université de Bordeaux, LaBRI & INRIA) Joint work with Bruno Mery and Christian Basac

16^e rencontres du groupe de travail Logique, Algèbre et Calcul

2010, Novembre 16th

Contents

I Lexical issues	
in compositional semantics	3
II The usual framework:	
Montague semantics	6
	·
III Extending the type system	16
IV Integrating facets	
in a compositional lexicon	22
•	
V Intermezzi: tricky questions	38
VI Critics, towards a linear alternative	43
VII Conclusion	48

Part I Lexical issues in compositional semantics

1. Typical examples of meaning slips

- Qualia
 - A quick cigarette (telic)
 - A partisan article (agentive)
- Dot Objects
 - An interesting book (I)
 - A heavy book (φ)
 - A large city (T)
 - A cosmopolitan city (P)

2. Typical examples of copredication

- Co-predications
 - A heavy, yet interesting book
 - Paris is a large, cosmopolitan city
 - -? A fast, delicious salmon
 - ?? Washington is a small city of the East coast and attacked Irak

Part II The usual framework: Montague semantics

3. Back to the roots: Montague semantics. Types.

Simply typed lambda terms $types ::= e \mid t \mid types \rightarrow types$ chair, $sleep e \rightarrow t$ likes transitive verb $e \rightarrow (e \rightarrow t)$

4. Back to the roots: Montague semantics. Syntax/semantics.

(Syntactic type)*	=	Seman	tic type
S *	=	t	a sentence is a proposition
np*	=	е	a noun phrase is an entity
n*	=	$oldsymbol{e} ightarrow t$	a noun is a subset of the
			set of entities
$(A \setminus B)^* = (B/A)^*$	=	$A \rightarrow B$	extends easily to all syn-
			tactic categories of a Cat-
			egorial Grammar e.g. a
			Lambek CG

5. Back to the roots: Montague semantics. Logic within lambda-calculus 1/2.

Logical operations (and, or, some, all the,....) need constants:

Constant	Туре
Ξ	(e ightarrow t) ightarrow t
\forall	$(e \rightarrow t) \rightarrow t$
\wedge	t ightarrow (t ightarrow t)
\vee	t ightarrow (t ightarrow t)
\supset	$t \rightarrow (t \rightarrow t)$

6. Back to the roots: Montague semantics. Logic within lambda-calculus 2/2.

Words in the lexicon need constants for their denotation:

likes	$\lambda x \lambda y$ (likes y) x	$x: e, y: e, \text{likes}: e \to (e \to t)$		
« likes » is a two-place predicate				
Garance	λP (<i>P</i> Garance)	$P: e \rightarrow t$, Garance : e		
« Garance » is viewed as				
the	properties that	« Garance » holds		

7. Back to the roots: Montague semantics. Computing the semantics. 1/5

- 1. Replace in the lambda-term issued from the syntax the words by the corresponding term of the lexicon.
- 2. Reduce the resulting λ -term of type *t* its normal form corresponds to a formula, the "meaning".

8. Back to the roots: Montague semantics. Computing the semantics. 2/5

word	semantic type u*
	semantics : λ -term of type u^*
	x_v the variable or constant x is of type v
some	$(oldsymbol{e} ightarrow t) ightarrow ((oldsymbol{e} ightarrow t) ightarrow t)$
	$\lambda P_{e \to t} \lambda Q_{e \to t} (\exists_{(e \to t) \to t} (\lambda x_e(\wedge_{t \to (t \to t)} (P x)(Q x))))$
statements	$oldsymbol{e} ightarrow t$
	$\lambda \mathbf{X}_{e}(\texttt{statement}_{e ightarrow t} \mathbf{X})$
speak_about	$oldsymbol{e} ightarrow (oldsymbol{e} ightarrow t)$
	$\lambda y_{e} \; \lambda x_{e} \; ((\texttt{speak_about}_{e ightarrow (e ightarrow t)} \; x) y)$
themselves	$(oldsymbol{e} ightarrow (oldsymbol{e} ightarrow t)) ightarrow (oldsymbol{e} ightarrow t)$
	$\lambda P_{e \to (e \to t)} \lambda x_e ((P x)x)$

9. Back to the roots: Montague semantics. Computing the semantics. 3/5

The syntax (e.g. a Lambek categorial grammar) yields a λ -term representing this deduction simply is

((some statements) (themsleves speak_about)) of type t

10. Back to the roots: Montague semantics. Computing the semantics. 4/5

$$\begin{array}{c} \left(\left(\lambda P_{e \to t} \ \lambda Q_{e \to t} \ (\exists_{(e \to t) \to t} \ (\lambda x_e(\land (P \ x)(Q \ x)))) \right) \\ \left(\left(\lambda x_e(\texttt{statement}_{e \to t} \ x)) \right) \\ \left(\left(\lambda P_{e \to (e \to t)} \ \lambda x_e \ ((P \ x)x) \right) \\ \left(\lambda y_e \ \lambda x_e \ ((\texttt{speak_about}_{e \to (e \to t)} \ x)y)) \right) \end{array} \right)$$

$$\begin{array}{c} \downarrow \beta \\ (\lambda Q_{e \to t} (\exists_{(e \to t) \to t} (\lambda x_e(\wedge_{t \to (t \to t)} (\texttt{statement}_{e \to t} x)(Q x))))) \\ (\lambda x_e ((\texttt{speak_about}_{e \to (e \to t)} x)x)) \end{array}$$

 $\downarrow \beta$ $(\exists_{(e \to t) \to t} (\lambda x_e(\land (\texttt{statement}_{e \to t} \ x)((\texttt{speak_about}_{e \to (e \to t)} \ x)x))))$

11. Back to the roots: Montague semantics. Computing the semantics. 5/5

This term represent the following formula of predicate calculus (in a more pleasant format):

 $\exists x : e (\texttt{statement}(x) \land \texttt{speak_about}(x, x))$

This is a (simplistic) semantic representation of the analyzed sentence.

Part III Extending the type system

12. More general types and terms. Many sorted logic. TY_n

Extension to TY_n without difficulty nor suprise: *e* can be divided in several kind of entities. It's a kind of flat ontology: objects, concepts, events,...

13. More general types and terms. Second order types (Girard's F).

One can also add type variables and quantification over types.

- Constants *e* and *t*, as well as any type variable α in *P*, are types.
- Whenever *T* is a type and *α* a type variable which may but need not occur in *T*, Λ*α*. *T* is a type.
- Whenever T_1 and T_2 are types, $T_1 \rightarrow T_2$ is also a type.

14. More general types and terms. Second order terms (Girard's F).

- A variable of type *T* i.e. *x* : *T* or *x^T* is a *term*. Countably many variables of each type.
- (*f* τ) is a term of type *U* whenever τ : *T* and *f* : *T* \rightarrow *U*.
- $\lambda x^T \cdot \tau$ is a term of type $T \to U$ whenever x : T, and $\tau : U$.
- τ {*U*} is a term of type $T[U/\alpha]$ whenever τ : $\Lambda \alpha$. *T*, and *U* is a type.
- Λα.τ is a term of type Λα.T whenever α is a type variable, and τ : T without any free occurrence of the type variable α.

15. More general types and terms. Second order reduction.

The reduction is defined as follows:

- (Λα.τ){U} reduces to τ[U/α] (remember that α and U are types).
- $(\lambda x.\tau)u$ reduces to $\tau[u/x]$ (usual reduction).

16. More general types and terms. A second order example.

Given two predicates $P^{\alpha \to t}$ and $Q^{\beta \to t}$ over entities of respective kinds α and β when we have two morphisms from ξ to α and to β we can coordinate entities of type ξ : $\Lambda \xi \lambda x^{\xi} \lambda f^{\xi \to a} \lambda g^{\xi \to b}$.(and (P(f x))(Q(g x)))

One can even quantify over the predicates *P*, *Q* and the types α , β to which they apply: $\Lambda \alpha \Lambda \beta \lambda P^{\alpha \to t} \lambda Q^{\beta \to t} \Lambda \xi \lambda x^{\xi} \lambda f^{\xi \to \alpha} \lambda g^{\xi \to \beta}.(and (P(f x))(Q(g x)))$

Part IV Integrating facets in a compositional lexicon

17. Principles of our lexicon

- Remain within realm of Montagovian compositional semantics (but no models).
- Allow both predicate and argument to contribute lexical information to the compound.
- Integrate within existing discourse models (λ-DRT).

We advocate a system based on optional modifiers.

18. The Types

- Montagovian composition:
 - Predicate include the typing and the order of its arguments.
- Generative Lexicon style concept hierarchy:
 - Types are different for every distinct lexical behavior
 - A kind of ontology details the specialization relations between types

Second-order typing, like Girard's F system is needed for arbitrary modifiers:

 $\Lambda \alpha \lambda x^{A} y^{\alpha} f^{\alpha \to R} . ((\text{read}^{A \to R \to t} x) (f y))$

19. The Terms: main / standard term

- A standard λ -term attached to the main sense:
 - Used for compositional purposes
 - Comprising detailed typing information
 - Including slots for optional modifiers
 - e.g. $\Lambda \alpha \beta \lambda x^{\alpha} y^{\beta} f^{\alpha \to A} g^{\beta \to F}.((eat^{A \to F \to t} (f x)) (g y))$ - e.g. Paris^T

20. The Terms: Optional Morphisms

- Each a one-place predicate
- Used, or not, for adaptation purposes
- Each associated with a constraint : rigid, \varnothing

$$* \left(\frac{Id^{F \to F}}{\varnothing}, \frac{f_{grind}^{Living \to F}}{rigid} \right) \\ * \left(\frac{Id^{T \to T}}{\varnothing}, \frac{f_{L}^{T \to L}}{\varnothing}, \frac{f_{P}^{T \to P}}{\varnothing}, \frac{f_{G}^{T \to G}}{rigid} \right)$$

21. A Complete Lexical Entry

Every lexeme is associated to an *n*-uple such as:

Paris^T,
$$\frac{\lambda x^T \cdot x^T}{\varnothing}$$
, $\frac{\lambda x^T \cdot (f_L^{T \to L} x)}{\varnothing}$, $\frac{\lambda x^T \cdot (f_P^{T \to P} x)}{\varnothing}$, $\frac{\lambda x^T \cdot (f_G^{T \to G} x)}{rigid}$

22. RIGID vs flexible use of optional morphisms

Type clash:
$$(\lambda x^V. (P^{V \rightarrow W}x))\tau^U$$

$$(\lambda x^V. (P^{V \to W} x)) (f^{U \to V} \tau^U)$$

f: optional term associated with either *P* or τ *f* **applies once to the argument** and not to the several occurrences of *x* in the function. A conjunction yields $(\lambda x^V. (\land (P^{V \rightarrow W}x) (Q^{V \rightarrow W}x)) (f^{U \rightarrow V}\tau^U)$, the argument is uniformly transformed. Second order is not needed, the type *V* of the argument is known and it is always the same for every occurrence of *x*.

23. FLEXIBLE vs. rigid use of optional morphisms

f, *g*: optional terms associated with either *P* or τ . For each occurrence of *x* with different *A*, *B*, ... with different *f*, *g*, ... each time.

Second order typing:

anticipates the yet unknown type of the argument
 factorizes the different function types in the slots.

The types $\{U\}$ and the associated morphism *f* are inferred from the original formula $(\lambda x^V, (P^{V \to W}x))\tau^U$.

24. Standard behaviour

 ϕ : physical objects

small stone

(small τ) $^{\varphi}$

25. Qualia exploitation

wondering, loving smile

 $\overbrace{(\lambda x^{P}. (\text{and}^{t \to (t \to t)} (\text{wondering}^{P \to t} x) (\text{loving}^{P \to t} x)))}^{\text{smile}} \overbrace{\tau^{S}}^{smile}}_{(\lambda x^{P}. (\text{and}^{t \to (t \to t)} (\text{wondering}^{P \to t} x) (\text{loving}^{P \to t} x))))}(f_{a}^{S \to P} \tau^{S})}_{(\text{and} (\text{loving} (f_{a} \tau)) (\text{loving} (f_{a} \tau)))}$

26. Facets (dot-objects): incorrect copredication

Incorrect co-predication. The rigid constraint blocks the copredication e.g. $f_g^{Fs \rightarrow Fd}$ cannot be **rigidly** used in

(??) The tuna we had yesterday was lightning fast and delicious.

27. Facets, correct co-predication. Town example 1/3

 $T \operatorname{town} L \operatorname{location} P \operatorname{people} f_p^{T \to P} f_l^{T \to L} k^T \operatorname{København}$

København is both a seaport and a cosmopolitan capital.

28. Facets, correct co-predication. Town example 2/3

Conjunction of $cospl^{P \to t}$, $cap^{T \to t}$ and $port^{L \to t}$, on k^T If T = P = L = e, (Montague) $(\lambda x^{e}(\text{and}^{t \to (t \to t)}((\text{and}^{t \to (t \to t)}(\text{cospl } x)(\text{cap } x))(\text{port } x))) k.$ Here AND between three predicates over different kinds $P^{\alpha \to t}$. $Q^{\beta \to t}$. $R^{\beta \to t}$ $\Lambda \alpha \Lambda \beta \Lambda \gamma$ $\lambda P^{\alpha \to t} \lambda O^{\beta \to t} \lambda B^{\gamma \to t}$ $\Lambda \xi \lambda x^{\xi}$ $\lambda f^{\xi \to \alpha} \lambda a^{\xi \to \beta} \lambda h^{\xi \to \gamma}.$ (and(and(P(f x))(Q(q x)))(R(h x)))f, g and h convert x to **different** types.

29. Facets, correct co-predication. Town example 3/3

AND applied to P and T and L and to $cospl^{P \to t}$ and $cap^{T \to t}$ and port^{L \to t} yields:

 $\Lambda \xi \lambda x^{\xi} \lambda f^{\xi \to \alpha} \lambda g^{\xi \to \beta} \lambda h^{\xi \to \gamma}.$ (and(and (*cospl*^{P \to t} (*f*_p *x*))(*cap*^{T \to t} (*f*_t *x*)))(port^{L \to t} (*f*_l *x*)))

We now wish to apply this to the type *T* and to the transformations provided by the lexicon. No type clash with $cap^{T \rightarrow t}$, hence $id^{T \rightarrow T}$ works. For *L* and *P* we use the transformations f_p and f_l .

```
(and^{t \to (t \to t)})
(and^{t \to (t \to t)})
```

 $(\operatorname{cospl}(f_{\rho} k^{T})^{\rho})^{t})(\operatorname{cap}(\operatorname{id} k^{T})^{T})^{t})^{t}(\operatorname{port}(f_{l} k^{T})^{L})^{t})^{t})$

30. The calculus, summarized

- First-order λ -bindings: usual composition
- Open slots: generate all combinations of modifiers available
- As many interpretations as well-typed combinations

Paris is an populous city by the Seine river

 $((\Lambda \xi . \lambda x^{\xi} f^{\xi \to P} g^{\xi \to L} . (and(populous^{P \to t}(f x))(riverside^{L \to t}(g x)))$ $\{T\} \text{ Paris}^T \lambda x^T (f_P^{T \to P} x) \lambda x^T . (f_L^{T \to L} x))$

31. Logical Formulæ

- Many possible results
- Our choice: classical, higher-order predicate logic
- No modalities

and(populous(*f*_P(Paris), riverside(*f*_L(Paris)))

Part V Intermezzi: tricky questions

32. Counting — Situation

A shelf.

- Three copies of Madame Bovary.
- Two copies of L'éducation sentimentale.
- The collected novels of Flaubert in one volume (L'éducation sentimentale, Madame Bovary, Bouvard et Pécuchet)
- A volume contains *Trois contes: Un coeur simple, La légende de Saint-Julien, Salammbô*
- One copy of the two volume set called *Correspondance*.

33. Counting — Questions

- I carried down all the books to the cellar.
- Indeed, I read them all.

- How many books did you carry?
- How many books did you read?

34. Counting — Solution

Solved by projection, count **after** the appropriate transformation, pronouns refer to noun phrase **before** transformation.

Provided the language issue is made clear. (*book*≠*livre*)

Similar to: Raccoons settled in the garage. They give live births.

35. Influence of syntax

When one of the two predicates is nested within a syntactic clause, copredication can become felicitous.

* This lightning fast salmon is delicious.
?? This once lightning fast salmon is delicious.
This salmon that used to be lightning fast is delicious.

(Not a yes/no acceptability.)

Modeled by unlocking the rigidity condition.

Part VI Critics, towards a linear alternative

36. Critics

- The classical solution with products: forces $\langle p_1(u), p_2(u) \rangle = u$ (doubtful)
- (Asher's solution with pullbacks) too tight relation type structure / morphisms (only and always canonical morphisms) and unavoidable relation to product
- (Ours) not enough relation types/morphisms (no relation at all), typing does not constrain morphims,

37. Language vs. (discourse) universe

How things are and works / Lexical description Ambiguity: does the lexicon describe

- the world of the discourse universe (ontology)
- or a language dependent ontology:

Ma voiture est crevée. even *J'ai crevé.* (*une roue de ma voiture est crevée*). but

- * Ma voiture est bouchée. (le carburateur)
- * Ma voiture est à plat. (la batterie)

38. Language variation is mainly lexical

This shows there is a language dependent way for words and pronouns to access facets.

Such examples as well as cross linguistic comparisons indicate a distinction should be made.

Language acts as an idiosyncratic filter over the (discourse) universe — we can possibly model this.

Language also creates specific connections (captivus: cattivo vs. chétif, morbus: morbide vs. morbido) — more difficult to model.

39. Linear alternative

Direct representation with monoidal product $A \otimes B$ and replication !

- *A* ⊗ *B*
 - without $\langle p_1(u), p_2(u) \rangle = u$
 - without canonical morphism(s)
 - but the type of a transformation relates to the structure of the type.
- Types of morphisms in a linear setting either:
 - <u>irreversible</u>: $A \multimap U$ since $A \not\multimap U \otimes A$
 - <u>reusable</u>: $A \rightarrow B = (!A) \multimap U$ since

 $(!A) \multimap U \otimes (!A)$

Part VII Conclusion

40. Our solution and further studies

Extension of Montague semantics with type modifications: already implemented in the categorial parser Grail devloped by Richard Moot.

- Grammar extracted from regional historical corpus, Le Monde
- Semantics relations difficult to extract, mainly and written data in a small part of the lexicon.

The linear model: study of first order linear logic, in particular models. First exploring intuitionistic models, in particular sheaf models.

Longue et heureuse retraite à René!