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| @ USUAL QUANTIFICATION

K Some, a, there is,...

All, each, any, every,...




ARISTOTLE,
& SCHOLASTICS (AVICENNA, SCOTT, OCKHAM)

A and B are terms
(« term » 1s vague: middle-age distinction
bewteen terms, « suppositionnes », eg. Ockham)
All A are B
Some A are B
No A are B
Not all A are B

Rules, syllogisms

Remarks:
Lattle about models or truth condition
Always a restriction, sorts, kinds,

« not all » 1s not lexicalized and some A are not B has
a different focus.



FREGE AND ANALYTIC PHILOSOPHY

After the algebraic computational approach of
Leibniz, Boole, De Morgan, Pierce,...

Predicate calculus, first order logic
for instance distinction between

Vi (A(x) = (B(x) v C(x))
Vx (A(x) — B(x)) v Vx (A(x) — C(x))
Attempt of a deductive system

A single universe where variables vary:
All A are B

Vx(A(x)—B(x))



THE ADEQUATION
BETWEEN PROOFS AND MODELS

Deduction, proofs (Hilbert)
using a generic element

Models, truth condition (Tarski)

Adequation proofs-models:

completeness theorem (Godel, Herbrand, ~1930)
Whatever 1s provable 1s true in any model.
What is true in every model is provable.

This results holds

For classical logic
Extensions are possible (intuitionistic, modal,...)

For first order logic
No satisfying extension.

For usual quantification
No proper deductive system for generalized quantifiers



HOW DOES ONE ASSERT , USE OR REFUTE
USUAL QUANTIFIED SENTENCES

In classical logic, reductio ad absurdum, tertium
no datur, can be used.

Otherwise:

« Exists » introduction rule
o (how to prove 3 as a conclusion) :
o if for some object a P(a) 1s proved,
then we may infer dx P(x)
« Exists » elimination rule

o (how to use d as an assumption):

o if we know that dxP(x),
and that C holds under the assumption P(a)
with an a which i1s never present elsewhere,
we may infer C without the assumption P(a).



HOW DOES ONE ASSERT , USE OR REFUTE
USUAL QUANTIFIED SENTENCES

« For all » introduction rule

o (how to prove V as a conclusion)

o To establish VxP(x), one has to show P(a) for an object
a without any particular property, 1.e. a generic object
a.

o If the domain 1s known, one can conclude VxP(x) from
a proof of P(a) for each object a of the domain. The
domain has to be finite to keep proofs finite. The
Omega rule of Gentzen is an exception.

« For all » elimination rule

o (how to use Y as an assumption)

o From VxP(x), one can conclude P(a) for any object a.



REFUTATIONS

How do we refute usual quantification?

dxP(x): little can be done apart from proving that all
do not have the property.
VxP(x): Any dog may bite.
this can be refuted in at least two ways:
Displaying an object not satisfying P
Rex would never bite.

Asserting that a subset does not satisfy P,
thus remainig with generic elements:
Basset hounds do not bite.

This 1s related to the Avicennian idea that a property
of a term (individual or not) is always asserted for the
term as part of a class:

1t 1s more related to type theory than to the Fregean
view of a single universe.



USUAL QUANTIFICATION
IN ORDINARY LANGUAGE

EXISTENTIALS

Existential are highly common
Discourse 1s often structured according to
existentials as 1n Discourse Representation
Theory.
They can be with or without restriction, but 1n
the later case the restiction 1s implicit: human
beings, things, ...

There's a tramp sittin' on my doorstep

Some girls give me money

Something happened to me yesterday

Focus:
Some politicians are crooks. (youtube)
? Some crooks are politicians.



USUAL QUANTIFICATION
IN ORDINARY LANGUAGE
UNIVERSALS

Less common but present.

With or without restriction:
Everyone, everything, anyone, anything,...
Every, all, each,...

Generic (proofs), distributive (models)
Whoever, every,

All, each,

Sometimes ranges over potentially infinite sets:
Each star in the sky 1s an enormous glowing ball of gas.
All groups of stars are held together by gravitational forces.



USUAL QUANTIFICATION
IN ORDINARY LANGUAGE
UNIVERSAL NEGATIVE

With or without restriction:

No one, nothing, not any, ...
No,...

Generic or distributive:

Because no planet's orbit is perfectly circular, the
distance of each varies over the course of its year.

Nothing's gonna change my world.

Porterfield went where no colleague had gone
previously this season, realising three figures.



USUAL QUANTIFICATION
IN ORDINARY LANGUAGE
EXISTENTIAL NEGATIVE

Not lexicalised (in every human language?):
Not all, not every + NEG

Alternative formulation (different focus):
some ... are not ... / some ... do not ...

Harder to grasp (psycholinguistic tests),
frequent misunderstandings
Rather generic reading:

Not Every Picture Tells a Story

Everyone is entitled to an opinion, but not every
opinion 1is entitled to student government funding.

Alternative formulation (different focus):

Some Students Do Not Participate In Group
Experiments Or Projects.



INDIVIDUAL CONCEPTS

Alternative view of individuals and quantification




MOTIVATION
FOR INDIVIDUAL CONCEPTS

Usual semantics with possible worlds:

It 1s 1impossible to believe that
Tullius#Cicero

with rigid designator

To comme back to the notion of TERM

Individuals are particular cases of predicates.

Quantification 1s a property of predicates.



FIRST ORDER IN SECOND ORDER: PROOFS

P 1s an individual concept whenever 1C(P):
Vx V y(P(x) AP(y) —x=y)
Exists x P(x)
First order quantification
from second order quantification:
Forall P IC(P) implies X(P)
Exists P IC(P) and X(P)

As far as proofs are concerned, this 1s equivalent
to first order quantification — and when non
emptyness 1s skipped one only as implication

with first order quantification. (Lacroix &
Ciardell)



MODELS?

Natural (aka principal models): no completeness

Henkin models:

completeness and compactness
but unnatural,

e.g. one satisfies all the following formulae:

F,: every injective map 1s a bijection
(Dedekind finite)

F_, n>1: there are at least n elements



(GENERALIZED QUANTIFIERS

Quite common in natural language

Central topic in analytic philosophy (models)

Proofs and refutations?




DEFINITION

Generalized quantifiers are operators that gives a
proposition from two properties (two unary
predicates):

A restriction
A predicate

Some are definable from usual first order logic:
At most two,
Exactly three

And some are not (from compactness):
The majority of...
Few /a few ...
Most of... (strong majority + vague)

Observe that Frege’s reduction cannot apply:

Most students go out on Thursday evening.

For most people, if they are student then they go out on
Thursday evening



MODELS / PROOFS

There are many studies about the models,

the properties of such quantifiers,

1n particular monotony w.r.t. the restriction or the
predicate.

Some assertion about cardinality are wrong:

Most numbers are not prime.
Can be found in maths textbooks.
Test on “average” people:

most number are prime (no)

most number are not prime (yes)

No cardinality but measure, and what would be the
corresponding generic element? An object enjoying most of
the properties?

Little 1s known about the proofs
(tableaux methods without specific rules, but taking
the intended model into account).



« MOST OF », « THE MAJORITY OF »
REMARKS

Most of 1s distinct from the majority of:

The majority of French people voted
o for Chirac 1n 2002 (82%).
o for Sarkozy 1n 2007 (563%).

Most of French people voted
o for Chirac 1n 2002. (82%)
o * for Sarkozy in 2007. (53%)

The percentage for « most of » to hold 1s contextual.
Most of 1s a vague quantifier.



« THE MAJORITY OF » ATTEMPT
(PROOF VS. REFUTATION)

Two ways of refuting
the majority of (meaning at least 50%) the A have
the property P:

Only the minority of the A has the property P

There 1s another property Q
which hold for the majority of the A

with no A satisfying P and Q.
What would be a generic majority element?



DEFINE JOINTLY RULES FOR:
1) THE MAJORITY OF
2) A MINORITY OF

« For all » entails the « majority of »

If any property Q which is true of the majority
of Ameets P, then P holds for the majority of the
A (impredicative definition, needs further study)

A minority of A 1s NOT P
should be equivalent to
The majority of Ais P

The majority of does not entail a minority of
Forall => majority of
Only a minority => Exists

A linguistic remark why do we say « The
majority » but « A minority »



WHAT IS A QUANTIFIER?

Proof-theretical analysis:

Tools to allow the communication (cut) between
proofs




COMMUNICATION (INTERACTION)
BETWEEN PROOFS: CUT RULE

Cut-rule: two proofs m and 0 may communicate
(iInteract) by means of a formula A, 1.e. when
1 ends with a formula A and other formulas [
©0 ends with the negation ~A of A and other formulas
A
The communication (interaction) between such a
pair of proofs produces a proof which ends with
the formulas [ and the formulas A

Cut-elimination procedure: is the development of
such a communication (interaction)

Interaction: ~A 1s the negation of A, and A is the
negation of ~A .



PARTICULAR CASE (INTUITIONISTIC
COMMUNICATION)

Cut: communication between a proof 1 of the
conclusion A from the assumptions [ (1.e. a proof
which ends with A and the negation of the
formulas [ ) and a proof o of a conclusion C
from the assumption A and the assumptions A
(1.e. a proof which ends with C, the negation of A
and the negation of A)

The communication between such a pair of proofs
produces a proof of the conclusion C from the
assumptions [ and the assumptions A (i.e. a
proof which ends with C, the negation of the
formulas [ and the negation of the formulas A).



A SPECIAL CASE OF COMMUNICATION,
LEADING TO QUANTIFIERS.

A proof m which ends with a formula A(b) and
formulas [

A proof o which ends with a formula ~A(d) and
formulas A

These proofs may communicate (cut) when one of
these cases hold:

The object b 1s the same as the object d (indeed,
replace b by d in A(b), or replace d by b in ~A(d) )
The object b 1s generic in 1 (1.e. 1t does not occur in
the formulas [') (indeed, replace b by d in A(b)

The object d 1s generic in 0 (i.e. it does not occur in
the formulas A) (indeed, replace d by b in ~A(d) )



GENERIC OBJECTS :
HILBERT'S APPROACH, 1

Name of generic objects (no quantifier)
Rules for these names

Express the fact that b 1s a generic object in the
formula A(b) (in a proof 1 ), in one of these two
ways

b 1s an object such that, if b has the property A then

every object has the property A

™ A(x)
b 1s an object such that, if some object has not the
property A, then b has not the property A

ex ~A(x)



GENERIC OBJECTS :
HILBERT'S APPROACH, 2

Rules for tx:
From A(b) with b generic 1n a proof m, infer A(txA(x))
From ~A(d) , infer ~A(txA(x))
So, one reduces to general case of cut rule
The development of cut rule is: replace wA(x) by d

Rules for &x:
From A(b) with b generic in a proof m, infer A(ex~A(x))
From ~A(d) , infer ~ A(ex~A(x))
So, one reduces to general case of cut rule
The development of cut rule is: replace ex~A(x) by d



GENERIC OBJECTS:
FREGES APPROACH

Forget generic objects by means of operators V,3
Rules of operators V,d

New formulas: VxA(x), dxA(x), with
~VxA(x) = dx~A(x)
Rules of operators V,3 :

Rule of V :
from A(b) with b generic object, infer VxA(x)

Rule of 3 : from ~A(d), infer Ix~A(x)
So, reduces to the general case of cut rule

The development of cut rule will be replace the
generic object b by d.



THE APPROACHES ARE EQUIVALENT.
ONLY 2 QUANTIFIERS?

The following equivalences hold:
VxA(x)oA(txA(x))
VxA(x)oA(ex~A(x))

“Universal quantification”

The following equivalence hold:
dxA(x)oA(exA(x))
dxA(x)eA(tx~A(x))

“Existential quantification”



THE TWO DEFINITIONS ARE NOT EQUIVALENT
FOR GENERALIZED QUANTIFIERS

Observe that the Fregean definition of
quantifiers with a single universe is not possible
with generalized quantifiers:

Most student go out on Thursday nights.

For most people if they are students then they go out

on Thursday nights.
But still we can ask whether 1t 1s possible to
introduce other quantifiers, in this proof-
theoretical way.



NEW QUANTIFIERS, FROM A PROOF-
THEORETICAL POINT OF VIEW

A way inspired by Non Commutative Linear Logic where
new (multiplicative and non commutative) connectives are
added to the usual ones

Introduce a pair of quantifiers,

a variant V* of V, and a variant 3* of 3.

Decide one of the following two possibilities:
V*xA(x) implies VxA(x) and so dxA(x) implies I*xA(x)
d*xA(x) implies dxA(x) and so VxA(x) implies V*xA(x)
(the second one is more natural...)

In both the cases, one of new quantifiers is obtained by
adding a new rule, the other one is obtained by restricting
the rule.

May we define in this way the quantifier
“the majority of x” or “most x have the property A” ...



CONCLUSION

Of this preliminary work




RULES FOR
(GENERALIZED) QUANTIFIERS

Which properties of quantifier rules guarantee that
they behave properly in proofs and interaction?
Is 1t possible to define a proof system for some
generalized quantifiers?

Percentage?

Vague quantifiers?

What are the corresponding notions of generic
elements?



PREDICATION,SORTS AND QUANTIFICATION

How do we take 1nto account the sorts,what
linguist call the restriction of the quantifier
(In a typed system, a kind of ontology)?

To avoid a paradox of the Fregean single sort:

Garance 1s not tall (as a person, for opening the
fridge).

Garance 1s tall (for a two year old girl).

One quantifier per type or a general quantifier
which specializes?

On type theory it would be a constant of the
system F: ForAll/Exists: IT X (X 2t) =2t)



THANKS

Any question?




