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USUAL QUANTIFICATION  
Some, a, there is,… 

All, each, any, every,…  
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ARISTOTLE,  
& SCHOLASTICS (AVICENNA, SCOTT, OCKHAM)  

 A and B are terms 
(« term » is vague: middle-age  distinction 
bewteen terms, « suppositionnes », eg. Ockham) 
1.  All A are B 
2.  Some A are B  
3.  No A are B 
4.  Not all A are B 
  Rules, syllogisms  

  Remarks: 
  Little about models or truth condition  
  Always a restriction, sorts, kinds,  

   « not all » is not lexicalized and some A are not B has 
a different focus.  
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FREGE AND ANALYTIC PHILOSOPHY 

 After the algebraic computational approach of  
Leibniz, Boole, De Morgan, Pierce,… 

 Predicate calculus, first order logic 
for instance distinction between  
 ∀x (A(x) → (B(x) ∨ C(x))  
 ∀x (A(x) → B(x)) ∨ ∀x (A(x) → C(x)) 

 Attempt of a deductive system  
 A single universe where variables vary: 

  All A are B 
  ∀x(A(x)→B(x)) 
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THE ADEQUATION  
BETWEEN PROOFS AND MODELS 

  Deduction, proofs (Hilbert) 
using a generic element 

  Models, truth condition (Tarski) 
  Adequation proofs-models: 

completeness theorem (Gödel, Herbrand, ~1930) 
  Whatever is provable is true in any model. 
  What is true in every model is provable.  

  This results holds 
  For classical logic 

Extensions are possible (intuitionistic, modal,…) 
  For first order logic 

No satisfying extension.  
  For usual quantification 

No proper deductive system for generalized quantifiers 6 



HOW DOES ONE ASSERT , USE OR REFUTE  
USUAL QUANTIFIED SENTENCES 

  In classical logic, reductio ad absurdum, tertium 
no datur,   can be used.  

 Otherwise:  
  « Exists » introduction rule  

  (how to prove ∃ as a conclusion) :  
  if for some object a P(a) is proved,  

then we may infer ∃x P(x)  

  « Exists » elimination rule  
  (how to use ∃ as an assumption):  
  if we know that ∃xP(x),  

and that C holds under the assumption P(a)  
with an a which is never present elsewhere, 
we may infer C without the assumption P(a). 
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HOW DOES ONE ASSERT , USE OR REFUTE  
USUAL QUANTIFIED SENTENCES 

  « For all » introduction rule  
  (how to prove ∀ as a conclusion)  
 To establish ∀xP(x), one has to show P(a) for an object 

a without any particular property, i.e. a generic object 
a.   

 If the domain is known, one can conclude ∀xP(x) from 
a proof of P(a) for each object a of the domain. The 
domain has to be finite to keep proofs finite. The 
Omega rule of Gentzen is an exception.  

  « For all » elimination rule  
  (how to use ∀ as an assumption)  
 From ∀xP(x), one can conclude P(a) for any object a.  
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REFUTATIONS 

  How do we refute usual quantification?  
  ∃xP(x): little can be done apart from proving that all 

do not have the property.  
  ∀xP(x):  Any dog may bite.  

this can be refuted in at least two ways:  
  Displaying an object not satisfying P 

Rex would never bite.  
  Asserting that a subset does not satisfy P, 

thus remainig with generic elements:  
Basset hounds do not bite.  

  This is related to the Avicennian idea that a property 
of a term (individual or not) is always asserted for the 
term as part of a class:  
it is more related to type theory than to the Fregean 
view of a single universe.  
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USUAL QUANTIFICATION  
IN ORDINARY LANGUAGE  
EXISTENTIALS 

 Existential are highly common 
Discourse is often structured according to 
existentials as in Discourse Representation 
Theory. 

 They can be with or without restriction, but in 
the later case the restiction is implicit: human 
beings, things, …  
  There's a tramp sittin' on my doorstep 
  Some girls give me money 
  Something happened to me yesterday 

 Focus:  
  Some politicians are crooks. (youtube) 
  ? Some crooks are politicians.  10 



USUAL QUANTIFICATION  
IN ORDINARY LANGUAGE  
UNIVERSALS 

 Less common but present. 
 With or without restriction: 

  Everyone, everything, anyone, anything,…   
  Every, all, each,…  

 Generic (proofs), distributive (models) 
  Whoever, every,  
  All, each,  

 Sometimes ranges over potentially infinite sets:  
  Each star in the sky is an enormous glowing ball of gas.  
  All groups of stars are held together by gravitational forces.  
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USUAL QUANTIFICATION  
IN ORDINARY LANGUAGE  
UNIVERSAL NEGATIVE 

 With or without restriction: 
  No one, nothing, not any, …  
  No,… 

 Generic or distributive:  
  Because no planet's orbit is perfectly circular, the 

distance of each varies over the course of its year. 
  Nothing's gonna change my world.  
  Porterfield went where no colleague had gone 

previously this season, realising three figures.  
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USUAL QUANTIFICATION  
IN ORDINARY LANGUAGE  
EXISTENTIAL NEGATIVE 

 Not lexicalised (in every human language?): 
  Not all, not every + NEG 
  Alternative formulation (different focus): 

some … are not … / some … do not … 

 Harder to grasp (psycholinguistic tests),  
frequent misunderstandings  

 Rather generic reading:  
  Not Every Picture Tells a Story 
  Everyone is entitled to an opinion, but not every 

opinion is entitled to student government funding. 

 Alternative formulation (different focus):  
  Some Students Do Not Participate In Group 

Experiments Or Projects. 13 



INDIVIDUAL CONCEPTS 
Alternative view of individuals and quantification 14 



MOTIVATION  
FOR INDIVIDUAL CONCEPTS 

 Usual semantics with possible worlds: 
It is impossible to believe that  

 Tullius≠Cicero 
with rigid designator 

 To comme back to the notion of TERM 
  Individuals are particular cases of predicates. 

 Quantification is a property of predicates.  
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FIRST ORDER IN SECOND ORDER: PROOFS 

 P is an individual concept whenever IC(P):  
  ∀x ∀ y(P(x) ∧P(y) →x=y) 
  Exists x P(x) 

 First order quantification  
from second order quantification:  
  Forall P IC(P) implies X(P) 
  Exists P IC(P) and X(P) 

 As far as proofs are concerned, this is equivalent 
to first order quantification – and when non 
emptyness is skipped one only as implication 
with first order quantification.  (Lacroix & 
Ciardelli) 16 



MODELS? 

 Natural (aka principal models): no completeness 
 Henkin models: 

 completeness and compactness  
but unnatural,  
e.g. one satisfies all the following formulae:  
  F0:  every injective map is a bijection  

(Dedekind finite) 
  Fn, n≥1:  there are at least n elements 
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GENERALIZED QUANTIFIERS 
Quite common in natural language 

Central topic in analytic philosophy (models) 

Proofs and refutations?  
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DEFINITION 

  Generalized quantifiers are operators that gives a 
proposition from two properties (two unary 
predicates):  
  A restriction 
  A predicate 

  Some are definable from usual first order logic:  
  At most two, 
  Exactly three 

  And some are not (from compactness):  
  The majority of… 
  Few /a few …  
  Most of… (strong majority + vague)  

  Observe that Frege’s reduction cannot apply: 
  Most students go out on Thursday evening. 
  For most people, if they are student then they go out on 

Thursday evening 
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MODELS / PROOFS 

  There are many studies about the models, 
the properties of such quantifiers, 
in particular monotony w.r.t. the restriction or the 
predicate.  

  Some assertion about cardinality are wrong:  
  Most numbers are not prime. 

Can be found in maths textbooks.  
  Test on “average” people:  

  most number are prime (no)  
  most number are not prime (yes) 

  No cardinality but measure, and what would be the 
corresponding generic element? An object enjoying  most of 
the properties?  

  Little is known about the proofs 
(tableaux methods without specific rules, but taking 
the intended model into account).  20 



« MOST OF », « THE MAJORITY OF » 
REMARKS 

 Most of is distinct from the majority of:  
  The majority of French people voted  

  for Chirac in 2002 (82%).  
  for Sarkozy in 2007 (53%).   

  Most of French people voted  
  for Chirac in 2002. (82%) 
  * for Sarkozy in 2007. (53%) 

 The percentage for « most of » to hold is contextual.    
 Most of is a vague quantifier.  
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« THE MAJORITY OF » ATTEMPT  
(PROOF VS. REFUTATION) 

 Two ways of refuting  
the majority of (meaning at least 50%) the A have 
the property P: 
  Only the minority of the A has the property P 
  There is another property Q  

which hold for the majority of the A 
with no A satisfying P and Q.  

  What would be a generic majority element?  
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DEFINE JOINTLY RULES FOR:  
1) THE MAJORITY OF  
2) A MINORITY OF  

  « For all » entails the « majority of »  
  If any property Q which  is true  of the majority 

of Ameets P, then P holds for the majority of the 
A (impredicative definition, needs  further study) 

 A minority of A is NOT P 
should be equivalent to  
The majority of A is P 

 The majority of does not entail a minority of  
 Forall => majority of  
 Only a minority => Exists  
 A linguistic remark why do we say « The 

majority » but « A minority »  23 



WHAT IS A QUANTIFIER? 
Proof-theretical analysis: 

Tools to allow the communication (cut) between 
proofs 
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COMMUNICATION (INTERACTION) 
BETWEEN PROOFS: CUT RULE 

 Cut-rule: two proofs π and ρ may communicate 
(interact) by means of a formula A, i.e. when  
  π ends with a formula A and other formulas Γ 
  ρ ends with the negation  ∼A of A and other formulas 
Λ 

 The communication (interaction) between such a 
pair of proofs produces a proof which ends with 
the formulas Γ and the formulas Λ 

 Cut-elimination procedure: is the development of 
such a communication (interaction) 

  Interaction: ∼A  is the negation of A, and A is the 
negation of ∼A . 25 



PARTICULAR CASE (INTUITIONISTIC 
COMMUNICATION) 

 Cut: communication between a proof π  of the 
conclusion A from the assumptions Γ (i.e. a proof 
which ends with A and the negation of the 
formulas Γ) and a proof ρ  of a conclusion C 
from the assumption A and the assumptions Λ 
(i.e. a proof which ends with C, the negation of A 
and the negation of Λ) 

 The communication between such a pair of proofs 
produces a proof of the conclusion C from the 
assumptions Γ and the assumptions Λ (i.e. a 
proof which ends with C, the negation of the 
formulas Γ and the negation of the formulas Λ). 26 



A SPECIAL CASE OF COMMUNICATION, 
LEADING TO QUANTIFIERS. 

 A proof π  which ends with a formula A(b) and 
formulas Γ 

 A proof ρ which ends with a formula ∼A(d) and 
formulas Λ 

 These proofs may communicate (cut) when one of 
these cases hold: 
  The object b is the same as the object d (indeed, 

replace b by d in A(b), or replace d by b in ∼A(d) ) 
  The object b is generic in π  (i.e. it does not occur in 

the formulas Γ) (indeed, replace b by d in A(b) 
  The object d is generic in ρ (i.e. it does not occur in 

the formulas Λ)  (indeed, replace d by b in ∼A(d) ) 27 



GENERIC OBJECTS :  
HILBERT’S APPROACH, 1 

 Name of generic objects (no quantifier)  
Rules for these names 

 Express the fact that b is a generic object in the 
formula A(b) (in a proof π ), in one of these two 
ways   
  b is an object such that, if b has the property A then 

every object has the property A 
τx A(x) 

  b is an object such that, if some object has not the 
property A, then b has not the property A 

εx ∼A(x) 
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GENERIC OBJECTS :  
HILBERT’S APPROACH, 2 

 Rules for τx: 
  From A(b) with b generic in a proof π, infer A(τxA(x)) 
  From ∼A(d) , infer ∼A(τxA(x))  
  So, one reduces to general case of cut rule 
  The development of cut rule is: replace τxA(x) by d 

 Rules for εx: 
  From A(b) with b generic in a proof π, infer A(εx∼A(x)) 
  From ∼A(d) , infer ∼ A(εx∼A(x)) 
  So, one reduces to general case of cut rule 
  The development of cut rule is: replace εx∼A(x) by d 

 … 
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GENERIC OBJECTS:  
FREGE’S APPROACH 

 Forget generic objects by means of operators ∀,∃ 
Rules of operators ∀,∃ 

 New formulas: ∀xA(x), ∃xA(x), with  
∼∀xA(x) = ∃x∼A(x) 

 Rules of operators ∀,∃ : 
  Rule of ∀ :  

from A(b) with b generic object, infer ∀xA(x) 
  Rule of ∃ : from ∼A(d), infer ∃x∼A(x) 
  So, reduces to the general case of cut rule 
  The development of cut rule will be replace the 

generic object b by d.  
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THE APPROACHES ARE EQUIVALENT.  
ONLY 2 QUANTIFIERS? 

 The following equivalences hold: 
  ∀xA(x)↔A(τxA(x))  
  ∀xA(x)↔A(εx∼A(x)) 
  “Universal quantification” 

 The following equivalence hold:  
  ∃xA(x)↔A(εxA(x))  
  ∃xA(x)↔A(τx∼A(x)) 
  “Existential quantification” 
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THE TWO DEFINITIONS ARE NOT EQUIVALENT 
FOR GENERALIZED QUANTIFIERS 

 Observe that the Fregean definition of 
quantifiers with a single universe is not possible 
with generalized quantifiers:  
  Most student go out on Thursday nights.  
  For most people if they are students then they go out 

on Thursday nights.  

 But still we can ask  whether it is possible to 
introduce other quantifiers, in this proof-
theoretical way.  
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NEW QUANTIFIERS, FROM A PROOF-
THEORETICAL POINT OF VIEW 

  A way inspired by Non Commutative Linear Logic where 
new (multiplicative and non commutative) connectives are 
added to the usual ones 

  Introduce a pair of quantifiers,  
a variant ∀* of ∀, and a variant ∃* of ∃. 

  Decide one of the following two possibilities: 
  ∀*xA(x) implies ∀xA(x) and so ∃xA(x) implies ∃*xA(x) 
  ∃*xA(x) implies ∃xA(x) and so ∀xA(x) implies ∀*xA(x) 
  (the second one is more natural…)  

  In both the cases, one of new quantifiers is obtained by 
adding a new rule, the other one is obtained by restricting 
the rule. 

  …  
  May we define in this way the quantifier  

“the majority of x” or “most x have the property A” … 
33 



CONCLUSION 
Of this preliminary work 34 



RULES FOR  
(GENERALIZED) QUANTIFIERS 

 Which properties of quantifier rules guarantee that 
they behave properly in proofs and interaction?  

  Is it possible to define a proof system for some 
generalized quantifiers?  
  Percentage?  
  Vague quantifiers?  
  … 

 What are the corresponding notions of generic 
elements?  
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PREDICATION,SORTS AND QUANTIFICATION  

 How do we take into account the sorts,what 
linguist call  the restriction of the quantifier  
(in a typed system, a kind of ontology)? 

 To avoid a paradox of the Fregean single sort:  
  Garance is not tall (as a person, for opening the 

fridge).  
  Garance is tall (for a two year old girl).  

 One quantifier per type or a general quantifier 
which specializes?  
On type theory it would be a constant of the 
system F: ForAll/Exists: Π X ((X t) t) 
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THANKS 
Any question?  37 


