

Matteo Acclavio & Christian Retoré Roma, 12 sept. 2019 For Michele Abrusci on the occasion of his retirement and birthday workshop

Results on pomset logic:

- Issued from (a remark of Girard on) coherence semantics which has a non commutative self dual multiplicative connective.
- 2. **Proof net calculus** (with cut-elimination): π correct \Leftrightarrow [π] is a clique
- 3. Handsome proof-nets calculus (no links) with rewriting (as in deep inference)
- Complete sequent calculus? Work by me, S. Pogodalla, L. Strassburger...Solved by Sergey Slavnov in 2019

Pomset logic

- 1. Family: calculus of structures, deep inference
- 2. An extension of MLL
- 3. Semantics of proofs (coherence semantics)
- 4. Proof nets with cuts & coherence caraterisation)
- 5. Sequent calculus (Slavnonv 2019)

Michele's NL

- Family: Lambek, Cyclic, Abrusci, Abrusci-Ruet
- A restriction of LL (or restriction + commutative LL)
- Truth value semantics (phase semantics)
- Proof nets (cuts?)
- Perfect sequent
 calculus from the
 begining

Coherence Semantics

Formulae: (possibly infinite) graphs
Proofs up to normalisation: cliques
Morphisms, linear maps:

- F sends cliques to cliques
- When a union is a clique:
 - Commute with union
 - Commute with intersection

Multiplicative coherence spaces Girard's remark

- Vertices: pairs of vertices
- Par: both —
- Times: both
- One non commutative«< »:
 A: and B:
- No other multiplicative.

$A \setminus B$	$ $ \frown	=	\bigcirc
\frown	\frown	\frown	?
=	$\left \begin{array}{c} \end{array} \right $	=)
\smile	?))

Before

Written <</p>

- Non commutative
- Associative
- Self-dual $(A < B)^{\perp} \equiv (A^{\perp} < B^{\perp})$

Girard's question: what syntax for this calculus?

Bicoloured proof nets

Name	axiom-link	<i>par</i> -link	<i>before</i> -link	<i>times</i> -link	
Premises	none	$A \text{ and } B \qquad A \text{ and } B$		A and B	
R&B-graph	a^{\perp} a	$ \begin{array}{ccc} A & B \\ \circ & \circ \\ & \circ \\ & A & \circ \\ & A & \circ \\ & B \\ \end{array} $	$A \qquad B \\ \circ \qquad < \circ \\ A < B$	$\begin{array}{c} A & B \\ & &$	
Conclusions	$a ext{ and } a^\perp$	$A \wp B$	A < B	$A\otimes B$ Invi	

Proof nets

Extra-arc for denoting an order (preferably SP, definable) between conclusions

Criterion no alernate elementary cycle

• Viewing cuts as $(\exists K)K \otimes K$ they take part in the order

Cut elimination

perserves correctness

Cut elimination

perserves correctness and order

Cut elimination

perserves correctness and order

Cut times/par

Interpreting proofs

 Choose a token for each axiom
 Collect the tuples: they are a clique of the coherence space associated with the partially ordered set of conclusions:

$$\vec{x} \smile \vec{y}[(A_i)_{i \in (I,<)}] \\ \Leftrightarrow \\ \exists i \ x_i \smile y_i \land (\forall j > i \ x_j = y_j) \end{cases}$$

Interpreting proofs: soundness and « completeness »

Proof: would lead to an infinite alternate elementary path incoherent moving up, coherent moving down.

Moreover the converse is true: if the proofnet is not correct, some interpretations are not cliques even in a single finite coherence space: N (isomorphic to its orthogonal Z)

Directed cographs

Directed cographs for denoting formulae:

- Containing the single vertex graphs
- Closed under
 - Disjoint union
 - Undirected series composition
 - Directed series composition
 - (Hence under complementation if an undirected edge is viewed a pair of opposite directed edges)

Directed cographs

Universal characterisation:

- The directed part is an SP order
- The undirected part is a cograph
- Weak transitivity

 $(x,y) \in R \land (y,x) \notin R \land (y,z) \in R \Rightarrow (x,z) \in R$

 $(x,y) \in R \land (y,z) \in R \land (z,y) \notin R \Rightarrow (x,z) \in R$

Handsome proofnets

- Vertices: propositional variables and their negations
- A directed cograph (the formula)
- Plus a perfect matching (the axioms)
- Criterion:
 - Every alternate elementary cycle contains a chord

Uncorrect

Correct

Fold

 Π_{ullet}

Unfold

 $\Pi_{\widehat{\bullet}}$

Correct

Correct with a link

Correct with three links

Property

Fold and unfold preserve the criterion that every alternate lementary cycle contains a chord.

Observe that when there are only links, this means that there is no alternate elementary cycle at all.

Cut-elimination

Works directly on axioms

- Also derives from the one on proof nets with links.
- Looks like Girard's turbo cut-elimination

Rewriting (black lollipop preserves correctness)

$(\otimes \wp 4)$	$(X \widehat{\wp} Y)$	$\widehat{\otimes}$	$(U\widehat{\wp}V)$	\longrightarrow	$(X \widehat{\otimes} U)$	$\widehat{\wp}$	$(Y \widehat{\otimes} V)$
$(\otimes \wp 3)$	$(X \widehat{\wp} Y)$	$\widehat{\otimes}$	U	-•	$(X \widehat{\otimes} U)$	$\widehat{\wp}$	Y
$(\otimes \wp 2)$	Y	$\widehat{\otimes}$	U	-•	U	$\widehat{\wp}$	Y
$(\otimes <4)$	$(X \widehat{<} Y)$	$\widehat{\otimes}$	$(U \stackrel{\frown}{<} V)$	-•	$(X \widehat{\otimes} U)$	ŝ	$(Y \widehat{\otimes} V)$
$(\otimes < l3)$	$(X \stackrel{\frown}{<} Y)$	$\widehat{\otimes}$	U	-•	$(X \widehat{\otimes} U)$	Ŝ	Y
$(\otimes <\!\! r3)$	Y	$\widehat{\otimes}$	$(U \stackrel{\frown}{<} V)$	-•	U	ŝ	$(Y \widehat{\otimes} V)$
$(\otimes <2)$	Y	$\widehat{\otimes}$	U	-•	U	Ŝ	Y
(<\$4)	$(X \widehat{\wp} Y)$	Ŝ	$(U \widehat{\wp} V)$	-•	$(X \widehat{<} U)$	Q	$(Y \stackrel{\frown}{<} V)$
$(< \wp l3)$	$(X \widehat{\wp} Y)$	Ŝ	U	-•	$(X \stackrel{\frown}{<} U)$	$\widehat{\wp}$	Y
$(< \wp r3)$	Y	Ŝ	$(U\widehat{\wp}V)$	-•	U	$\widehat{\wp}$	$(Y \widehat{<} V)$
$(< \wp 2)$	Y	Ŝ	U	-•	U	$\widehat{\wp}$	Y

Conjecture

All correct handsome proofnets are obtained by the correct rewriting from

$$\bigotimes_i (a_i \mathfrak{S} a_i^{\perp})$$

(True for MLL)

Sequent calculus?

Times as usual

- Par as usual
- MIX introduces the order the restrictions of K to G and D should be I and J

$$rac{dash \Gamma[I]}{dash \Gamma,\Delta[K]}$$

Yields all correct proof nets?

Alternative conjecture (would directly yield sequentialisation)

Given a correct handsome proofnet, there exists a partition A₁ A₂ of the axiom links (hence a partition V₁ V₂ of the vertices, since they are a complete matching) such that:

- All the crossing edges are undirected and define a complete bipartite graph K(U₁,U₂) with U₁ included in V₁ and U₂ included in V₂
- All the crossing edges are directed and they all go from V_1 to V_2 or they all go from V_2 to V_1 .

Old references

- 1993 Réseaux et séquents ordonnés PhD Thesis Paris 7
- 1997 Pomset logic a non commutative extension of classical linear logic. TLCA
- 1997 (with Bechet and de Groote) A complete axiomatisation of the inclusion a SP orders. RTA
- 1997 A semantic characterisation of the correctness of a proof nets. MSCS / INRIA Report
- 2003 Handsome proofnets: perfect matchings and cographs. TCS / INRIA Report

Slavnov sequent calulus (hint) 1) rules

- |- X (D)
- **X** multiset of formulas
- D binary relation (decoration) between pairs submultisets of X
 - with the same number of elements and
 - without common elements

(two occurrences of the same formula are considered as distinct elements)

Slavnov sequent calulus (hint)rules acting decorated sequents

- Rules are as usual as far as the multisets of formulas is concerned
- The decoration are merged in 4 various ways but preserve the relation between multisets of other formulas.
- 4 ways:
 - Par
 - Times
 - Directed par (dual of the later)
 - Directed times (dual of the former)

Slavnov sequent calulus (hint) 3) sequentialisation

- Slavnov as a proof net calculus ScMLL
- A sequentialisation theorem Idea: decoration correspond to disjoint directed paths from n conclusions to n conclusions in the proof net (cf. maximal alternate elementary paths in Michele's work with Elena Maringelli)
- Pomset logic is the calculus when
 - Directed par
 - Directed times

are identified into self dual before

Conclusion and perspective

- The recent work by Sergey Slavnov, as well as ongoing research by Lutz Strassburger open new perspectives.
- Relation to deep inference and BV should be explored.
- Application to formal grammars and computational linguistics developed with Alain Lecomte will be better accepted with a seugent calculus (not all linguists like proof nets).
- In particular, it introduces some resemblence with Michele's NL (two pairs of connectives).
- → Merry retirement and happy new year Michele!