
Categorial grammars for computing the
correspondence between syntax and
semantics
An example of interplay between mathematical logic and
computational linguistics

Christian Retoré
Université de Bordeaux, LaBRI-CNRS & INRIA

EALING ENS, Paris, Monday September 22nd, 2008

Warning

This lecture is intended to be nothing more than a lecture:

I assume that the prototypic attendant is a student possibly interested
in mathematical logic.

Colleagues will be left wanting for more, sorry.

Objective: provide a rather detailed example of relevant use of
mathematical logic in formal or computational linguistics by a study of
the simplest deductive system handling both syntax and the
convergence with semantics: AB grammars, Lambek grammars.

2

Introduction: the mathematics of
computational linguistics
1. Statistics and probability
I if plain statistics, linguistically frustrating,
I needs to combine with symbolic methods
I only makes use of mathematically closed questions (afaik)

2. Formal Language theory, logic (model theory) (Stabler’s lecture)
I slightly beyond context free languages
I polynomial parsing
I learnable from positive examples (often left out)

3. Logic, proof theory and (typed) lambda calculus
I for semantics as expected
I but also for syntax (intriguing connections with 2)
I for the correspondence between syntax and semantics

3

Guidelines

Can some fine mathematics be relevant to formal linguistics?

Can linguistics raise some fruitful motivations to logic?

If language is a computation of some kind can it be depicted by
computational logic?

4

Principles of categorial grammars
(CG)

1. Lexical items are mapped into complex categories
(lexicon, a.k.a. dictionnary).

2. Universal rules regulate how categories combine.

3. Rules are deductive rules.

1,2: lexicalised grammars

3: logical CG (Lambek, Moortgat) 6= combinatory CG (Steedman).

5

Standard history

Rather issued from the logical, philosophical side:

Aristotle, Husserl,

Ajdukiewicz (1931) fractions, type checking for formula
wellformedness

Bar-Hillel (1953): AB grammars, directionality for depicting word order

Lambek (1958, happy birthday): rules completed into a logical system

van Benthem, Moortgat (1986): models and modal extensions

6

Subjective history

I would add:

Montague (1970): although he thought that intermediate structures,
CG analyses, should disappear (syntax→ CG analyses→ truth
valued models)

Girard (1987), Abrusci (1991): non commutative linear logic, relation
to intuitonistic logic, proof nets

7

Outcomes of categorial grammars

In this order:

I Relation to semantics (in between syntax and semantics)

I Learning algorithms (Buszkowski, Penn, Kanazawa)

More anecdotic, but interesting: Proof nets and human processing
(Johnson, Morrill)

8

Some beautiful results about
categorial grammars

1992 Pentus Lambek grammars are context free

1994 Kanazawa convergence of the learning algorithm for AB
categorial grammars

2003 Pentus Lambek calculus is NP complete

2007 Salvati Lambek analyses are an Hyper Egde replacement graph
language

9

Current issues in categorial
grammars

Extending CG syntax beyond context-freeness, according to linguistic
theory e.g. categorial minimalist grammars. (Lecomte, Retoré,
Amblard,..),

Practical development of CG for Natural language Processing.
(Moortgat, Moot, Steedman, Hockenmaier,..)

Learning classes of categorial grammars from structured data (Tellier,
Foret, Bechet,...) or from corpora (Hockenmaier, Moot, ...)

10

Current issues in categorial
grammars Cont’ed
Formal grammar in a type theoretical frame work with a mapping to
semantics: abstract categorial grammars (de Groote, Pogodalla,
Salvati,...)

Deductions as trees of formal language theory (Tiede, Retoré,
Salvati,..)

Various kinds of non commutative or partially commutative linear
logic. (Abrusci, Retoré, Ruet,...)

Lexical semantics in a compositional framework

Move from sentence semantics to (short) discourses, compositional
DRT (Muskens, de Groote)

11

Technical contents

I AB grammars

� definition, examples

� relation to CFG

� learnability

I Lambek calculus

� (without product) definition, examples, properties

� relation to Montague semantics

12

Classical categorial grammars:
AB grammars

13

Categories a.k.a. types a.k.a
fractions:

L ::= P | L \ L | L / L

P base categories

S (for sentences)

np (for noun phrases)

n (for nouns),

if you wish pp (for prepositional phrase), vp (for verb phrase)
etc.

14

Lexicon/grammar
generated language

Lex : m: word /terminal 7−→ Lex(m) finite subset of T .

w1 · · ·wn, is of type u whenever there exists for each wi a type ti in
Lex(wi) such that t1 · · · tn −→ u with the following reduction
patterns:

∀u, v ∈ L
u(u \ v) −→ v (\e)
(v / u)u −→ v (/e)

The set of sentences or the language generated by the grammar is
the set of word sequences of type S.

15

Lexicalised grammar with structured non-terminals
(coherent with modern linguistic theories)

The universal rules are called residuation laws, or simplifications, or
elimination rules modus ponens. What do they do?

I If y : A \B then adding any expression a : A on its left yields an
expression ay : B.

I Symmetrically, if z : B / A and a : A then za : B;

The derivation tree is simply a binary tree whose leaves are the ti
and whose nodes are labeled by rules /e and \e.

16

Reduced form for AB grammars

Proposition 1 (Gaifman) Every AB grammar is equivalent to an AB
grammar containing only types of the form

p (p / q) ((p / q) / r)

where p, q, r stand for primitive types.

PROOF : This theorem is an immediate consequence of propositions
3 and 2 to be proved below using Greibach normal form theorem
that is now famous. This enables a simpler proof. �

17

Example: a tiny AB grammar

Word Type(s)
cosa (S / (S / np))

guarda (S / vp)
passare (vp / np)

il (np / n)
treno n

guarda passare il treno : S indeed:

(S / vp) (vp / np) (np / n) n
−→ (S / vp) (vp / np) np
−→ (S / vp) vp
−→ S

18

The derivation tree for this analysis can be written as:

[/e
(S / vp) [/e

(vp / np) [/e
(np / n) n]]]

cosa guarda passare not ok, since no rule can reduce the sequence

(S / (S / np))(S / vp)(vp / np)

19

From CFG to AB grammars
Proposition 2 Every ε-free Context-Free Grammar in Greibach
normal form is strongly equivalent to an AB categorial grammar. Thus
every ε-free Context-Free grammar is weakly equivalent to an AB
categorial grammar.

PROOF : Let us consider the following AB grammar:

I Its words are the terminals of the CFG.

I Its primitive types are the non terminals of the CFG.

I Lex(a), the finite set of types associated with a terminal a
contains the formulae ((· · · ((X /Xn)/Xn−1)/ · · ·)/X2)/X1

such that there are non terminals X,X1, . . . , Xn such that
X −→ aX1 · · ·Xn is a production rule.

It is then easily observed that the derivation trees of both
grammars are isomorphic. �

20

From AB grammars to CFG

Proposition 3 Every AB grammar is strongly equivalent to a CFG in
Chomsky normal form.

21

PROOF : Let G be the CFG defined by:

I Terminals T are the words of the AB grammar.

I Non Terminals NT are all the subtypes of the types appearing
in the lexicon of the AB grammar — a type is considered to be a
subtype of itself.

I The production rules are of two kinds:

�X −→ a whenever X ∈ Lex(a)

�X −→ (X / Z)Z and X −→ Z(Z \X) for all X,Z ∈ NT
— beware that from the CFG viewpoint (Z \X) or (X / Z)
is a single non terminal.

�

22

Learnability of rigid AB grammars

Rigid: one type per word. Contains non regular languages, but does
not contain all of them. Some context free languages, but not even all
regular languages.

Rigid AB grammars are learnable from structures from positive
examples in Gold sense.

Buskowski & Penn algorithm 1990

Proof of convergence (in Gold sense) by Kanazawa 1994

23

A learning function maps finite sets of examples to a grammar which
generates the examples in the set. Here examples are parse tree as
the one produced by an AB, grammar with rules but no type
associated with words.

Given any tree language T generated by an AB grammar and any
enumeration of it t1, t2, ..., there exists an integer N such that for all
n > N , the language generated by the AB grammar
φ({t1, . . . , tN , . . . , tn}) is L.

Here language are parse trees, hence examples are trees as well.

I Assign types to the leaves of the examples {t1, . . . , tn}
I Unify them (make the several types per word one).

I The resulting grammar if any is φ({t1, . . . , tn})

If the examples are from an AB tree language, φ of a finite set of
examples always exists and can be easily computed.

φ converges in the aforementioned sense.

24

Learning example

(1) [\e[/e
a man] swims]

(2) [\e[/e
a fish][\e swims fast]]

Typing:

(3) [S/e
[x2
\e a:(x2 / x1) man:x1] swims:(x2 \ S)]

(4) [S\e[
y2
/e

a:(y2 / y3) fish:y3][
(y2\S)
\e swims:y1 fast:(y1 \ (y2 \ S))]]

25

We end up from the previous steps with several types per word. For
instance the examples above yields:

(5)
word type1 type2

a: x2 / x1 y2 / y3

fast: y1 \ (y2 \ S)
man: x1

fish: y3

swims: x2 \ S y1

Unification:

(6)
σu(x1) = z1

σu(x2) = z2

σu(y1) = z2 \ S
σu(y2) = z2

σu(y3) = z1

26

which yields the rigid grammar/lexicon:

(7)
a: z2 / z1

fast: (z2 \ S) \ (z2 \ S)
man: z1

fish: z1

swims: z2 \ S

27

Key idea for the convergence

Define G @ G′ as the reflexive relation bewteen G and G′ which
holds when there exists a substitution σ such that σ(G) ⊂ G′ which
dos not identify different types of a given word, but this is always the
case when the grammar is rigid — σ(G) ⊂ G′ is a reflexive relation
bewteen G and G′ which holds whenever every assignment a : T in
G is in G′ as well — in particular when G′ is rigid, so is G, and they
are equal. @ is an order between grammars.

If the examples arise from a language, unification never fails, but
increase the size of the grammar, and there are finitely many
grammars below the one to reach.

As opposed to human learning, the language increases instead of
specialising to the target language (except using semantics, variant
by Tellier).

28

Limitations of AB-grammars

(t / u) and (u / v) does not yield (t / v)

Cosa guarda passare?.

(S / (S / np)) (S / vp) (vp / np)
(trans.)−→ (S / (S / np)) (S / np)
−→ S

that/whom, should be (n \ n) / (S / np) hence we would need a
verb np \ (S / np), unnatural

Maths question: categories = subsets of a free monoid, could there
be completeness? (No, see later)

29

Product free Lambek grammars
and calculus

30

Grammar

With the same notion of lexicon and of grammar,

w1 · · ·wn, is of type u whenever there exists for each wi a type ti in
Lex(wi) such that t1 · · · tn −→ u

t1 · · · tn −→ u will be defined by adding extra rules and will be
denoted by t1 · · · tn ` u

31

Rules

We have two more rules:

this rule requires at least two free hyp.

A left most free hyp.
. . . [A]

···
B \i binding A

A \B

∆···
A

Γ···
A \B \eB

32

this rule requires at least two free hyp.

A right most free hyp.
. [A] . . .

···
B /i binding A

B / A

Γ···
B / A

∆···
A /eB

33

Natural deduction in Gentzen style
6= sequent calculus

Γ ` A ∆ ` A \B \e
Γ,∆ ` B

A,Γ ` C \i Γ 6= ε
Γ ` A \ C

∆ ` B / A Γ ` A /e
∆,Γ ` B

Γ, A ` C /i Γ 6= ε
Γ ` C / A

axiom
A ` A

34

An example

Here we take up again our small example of an Italian lexicon:

Word Type(s)
cosa (S / (S / np))

guarda (S / vp)
passare (vp / np)

il (np / n)
treno n

Transitivity of /, Cosa guarda passare with the Lambek calculus (we
use Natural Deduction in Gentzen style):

35

(S / (S / np)) ` (S / (S / np))

(S / vp) ` (S / vp)

(vp / np) ` (vp / np) np ` np /e
(vp / np), np ` vp /e

(S / vp), (vp / np), np ` S /i
(S / vp), (vp / np) ` S / np /e

(S / (S / np)), (S / vp), (vp / np) ` S

Variables ∼ traces in chomskyan terms?

36

Some changes

Allows to reaarrange brackets in the Lambek calculus:
(a \ b) / c ` a \ (b / c), etc.

Fine with object relatives introduced by whom/that having the type
(n \ n) / (S / np) with the unique category (np \ S) / np for a
transitive verb.

x ` (z / x) \ z and x ` z / (x \ z) hold for every categories x and z.

From a semantic viewpoint: an np (an individual) can be viewed as a
(S / np) \ S or S / (np \ S) (a function form one place predicates to
truth values) that is the set of all the properties of this individual.

37

The empty sequence
A \B requires an A object before

if ` A then the empty sequence can be provided

a: np / n

rather (n / n) / (n / n) ... rather boring: (n / n)

adj: n / n (provable)

a rather book ???

a :np / n

rather :(n / n) / (n / n)

[n]α /i−α
n / n /e

n / n book :n /en /enp

38

Normalization of natural deduction

. [A]α . . .··· δ′
B /i−α

B / A

∆··· δ
A/eB

∆··· δ
A

. . . [A]α··· δ′
B \i−α

A \B \eB

Whenever such a configuration appears, it can be reduced as follows:

1. find the hypothesis A which has been cancelled in the proof δ′ of
B under some hypotheses including A

2. replace this hypothesis with the proof δ of A

39

So the configurations above reduce to:

∆··· δ
. A . . .··· δ′

B

∆··· δ
. . . A . . .··· δ′

B

40

Proposition 4 Natural deduction for L without product enjoys strong
normalization, that is there are no infinite reduction sequences. (size
decreases)

Proposition 5 Normalization is a locally confluent process. (they do
not overlap)

A principal branch leading to F a sequence H0, . . . , Hn = F of
formulae of a natural deduction tree such that:

IH0 is a free hypothesis

IHi is the principal premise — the one carrying the eliminated
symbol — of an elimination rule whose conclusion is Hi+1

IHn is F

41

Using this notion, by induction, one obtains:

Proposition 6 Let d be a normal natural deduction (without product),
then:

1. if d ends with an elimination then there is a principal branch
leading to its conclusion

2. each formula in d is the sub-formula of a free hypothesis or of the
conclusion

42

Here is a proposition of Cohen 1967 needed to prove that every
context free grammar is weakly equivalent to a Lambek grammar. It
can be easily obtained using the normalisation result, and the
subformula property for normal deduction.

Let us call the order o(A) of a formula A the number of alternating
implications:

I o(p) = 0 when p is a primitive type

I o(A \B) = max(o(A) + 1, o(B))

I o(B / A) = max(o(A) + 1, o(B))

Proposition 7 A provable sequent A1, . . . , An ` p of the product
free Lambek calculus with o(Ai) ≤ 1 and p a primitive type is
provable with \e and /e only — in other words AB derivations and L
derivations coincide when types are of order at most one.

43

Normalisation

Normal proof without an \i rule followed by an \e rule and without
an /i rule followed by an /e rule.

Proposition 8 In a normal proof of H1, . . . , Hn ` C very formula is a
sub formula of the conclusion C or of some hypothesis Hi. (induction
using principal branch)

Proposition 9 Every proof of a given sequent Γ ` A can be turned
into a normal proof. (straightforward induction)

Thsi entails:

Proposition 10 Proof search in Lambek calculus and therefore
parsing in Lambek grammars is decidable.

44

Lambek calculus
and Montague semantics

45

Semantic types: e: entities, t: truth values

types ::= e | t | types→types

Constant Type
∃ (e→t)→t
∀ (e→t)→t
∧ t→(t→t)
∨ t→(t→t)
⊃ t→(t→t)

and proper constants for the denotation of the words in the lexicon:

46

likes λxλy (likes x) y x : e, y : e, likes : e→(e→t)
<< likes >> is a two-place predicate

Pierre λP (P Pierre) P : e→t, Pierre : e
<< Pierre >> is viewed as

the properties that << Pierre >> holds

Higher order logic in simply typed lambda calculus as Church did.

e→t: e common noun like chair or an intransitive verb like sleep

e→(e→t) a transitive verb like takes

47

Morphism from syntactic types to semantic types:

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposition
np∗ = e a noun phrase is an entity
n∗ = e→t a noun is a subset of the set of

entities

(a \ b)∗ = (b / a)∗ = a∗ → b∗ extends ()∗ to all syntactic types

The lexicon associates to each syntactic type tk ∈ Lex(m) of a word
m a λ-term τk whose type is precisely t∗k, the semantic counter part
of the syntactic type tk.

48

Input for the algorithm computing the semantics

I a syntactic analysis of m1 . . .mn in Lambek calculus, that is a
proof D of
t1, . . . , tm ` S and

I the semantics of each word m1,. . . et mn, that are λ-terms
τi : t∗i ,

49

The algorithm computing the semantics

1. Replace every syntactic type in D with its semantic counterpart;
since intuitionistic logic extends the Lambek calculus the result D∗
of this operation is a proof in intuitionistic logic of
t∗1, . . . , t

∗
n ` t = S∗.

2. Via the Curry-Howard isomorphism, this proof in intuitionistic logic
can be viewed as a simply typed λ-term D∗λ which contains one
free variable xi of type t∗i per word mi.

3. Replace in D∗λ. each variable xi by the λ-term τi — whose type is
also type t∗i , so this is a correct substitution.

4. Reduce the resulting λ-term: this provides the semantics of the
sentence (another syntactic analysis of the same sentence can
lead to a different semantics).

Every normal λ-term of type t without free variables (with solely
bound variables and constants) correspond to a formula of predicate
calculus.

50

The previous algorithm relies on;

I embedding of L in intuitionistic logic,

I normalisation of type lambda terms

I predicate logic in typed lambda calculus

Let us see this at work:

51

word syntactic type u
semantic type u∗

semantics : λ-term of type u∗

xv means that the variable or constant x is of type v
some (S / (np \ S)) / n

(e→t)→((e→t)→t)
λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))

statements n
e→t
λxe(statemente→t x)

speak about (np \ S) / np
e→(e→t)
λye λxe ((speak aboute→(e→t) x)y)

themselves ((np \ S) / np) \ (np \ S)
(e→(e→t))→(e→t)
λPe→(e→t) λxe ((P x)x)

52

Let us first show that Some statements speak about themselves.
belongs to the language generated by this lexicon. So let us prove (in
natural deduction) the following :

(S / (np\S))/n , n , (np\S)/np , ((np\S)/np)\ (np\S) ` S

using the abbreviations So (some) Sta (statements) SpA (speak about)
Refl (themselves) for the syntactic types :

So ` (S/(np\S))/n Sta ` n /e
So, Sta ` (S/(np\S))

SpA ` (np\S)/np Refl ` ((np\S)/np)\(np\S) \e
SpA, Refl ` (np\S) /e

So, Sta, SpA, Refl ` S

53

Using the homomorphism from syntactic types to semantic types we
obtain the following intuitionistic deduction, where So

∗, Sta∗, SpA∗, Refl∗

are abbreviations for the semantic types respectively associated with
the syntactic types: So, Sta, SpA, Refl :

So
∗ ` (e→t)→(e→t)→t Sta

∗ ` e→t→e
So
∗, Sta∗ ` (e→t)→t

SpA
∗ ` e→e→t Refl

∗ ` (e→e→t)→e→t→e
SpA
∗, Refl∗ ` e→t →e

So
∗, Sta∗, SpA∗, Refl∗ ` t

54

The λ-term representing this deduction simply is

((some statements) (themsleves speak about)) of type t

where some,statements,themselves,speak about are variables with
respective types

So
∗, Sta∗, Refl∗, SpA∗

Let us replace these variables with the semantic λ-terms (of the
same type) which are given in the lexicon. We obtain the following
λ-term of type t (written on two lines) that we reduce:

55

((
λPe→t λQe→t (∃(e→t)→t (λxe(∧(P x)(Q x))))

)(
λxe(statemente→t x)

))((
λPe→(e→t) λxe ((P x)x)

)(
λye λxe ((speak aboute→(e→t) x)y)

))
↓ β(

λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(statemente→t x)(Q x))))
)(

λxe ((speak aboute→(e→t) x)x)
)

↓ β(
∃(e→t)→t (λxe(∧(statemente→t x)((speak aboute→(e→t) x)x)))

)

56

The previous term represent the following formula of predicate
calculus (in a more pleasant format) :

∃x : e (statement(x) ∧ speak about(x, x))

This is the semantics of the analysed sentence.

57

Discussion
Fine point: compositionality at work with neat logical tools.

Technical difficulty: how to extend the syntax while keeping this
correspondence? Abstract Categorial Grammars (for tree grammars)
or Categorial Minimalist Grammars.

IMHO Intermediate language (despised by Montague) much more
exciting than models and possible worlds.

What would be a good interpretation?

Discourse and DRT like objections solved by λ DRT or de Groote with
contexts as argument.

IMHO main problem is lexical semantics: how to integrate relation
between the predicates and constants in the model. It is related to a
good interpretation without too much unfolding without too much
knowledge representation.

58

Outcomes of this restricted CGs

Here we have only seen the simplest logical system for grammar as a
deductive system, a purely logical one: Lambek calculus and
grammars.

A grammar system quite different from standard formal language
theory. (Evidence for the difference: the proofs are already in HR
graph/tree grammars, incomparable with context free tree languages).

Because of its relation to ordinary logic, in particular intuitionistic
logic, perfect for computing logical semantic representation in a way
that impements compositionality).

Because of the lexicalisation and of the structure of the
deductions/parse structure, easy to learn from structure, with a
convergent algorithm.

59

Discussion

Pretty mathematical results from formal linguistics motivation.

Assuming the linguistic relevance of the model, are the mathematical
results used?

I The connection with usual logic is clearly used especially for
computing semantic representations.

I The existence of normal proof is used every where, but not the
process of normalisation.

I Free semi group model is appealing, but not really used.

I Learning technique could be used for grammar construction from
corpora (e.g. also works for Lambek grammars Bonato, Retoré)

60

Discussion

Is the linguistic model relevant?

The implicit claim is that deduction in a resource logic is related to
linguistic processing and for some of us that the first includes the
second.

I Orthodox view of deduction as parsing Multi Modal Categorial
Grammars (Moortgat) Various connectives assosciative or not,
commutative or not, modality and postulates for relation among
them.

61

I Valency consumption(for semantic applciation) by commutative
linear logic Intermediate out and word order as a separate
process:

� completely separate (IG Perrier, ACG de Groote)

� partially separate, with the connectives commutative and not
commutative à la de Groote Abrusci Ruet (CMG Lecomte,
Retoré)

62

References

Two-part survey in the journal La Gazette des mathématiciens
(Société Mathématique de France).
Ch. Retoré Les mathématiques de la linguistique computationnelle.
Premier volet: la théorie des langages. Volume 115 janvier 2008 pp.
35-62.
http://smf.emath.fr/Publications/Gazette/2008/115/

Second volet: Logique. Volume 116 avril 2008 pp. 29-63.
http://smf.emath.fr/Publications/Gazette/2008/116/

Lecture notes Ch. Retoré The logic of categorial grammars - Lecture
Notes - Rapport de Recherche INRIA 5703
http://www.inria.fr/rrrt/rr-5703.html

63

http://smf.emath.fr/Publications/Gazette/2008/115/
http://smf.emath.fr/Publications/Gazette/2008/116/
http://www.inria.fr/rrrt/rr-5703.html

	Title slide
	Warning
	Introduction: the mathematics of computational linguistics
	Guidelines
	Principles of categorial grammars (CG)
	Standard history
	Subjective history
	Outcomes of categorial grammars
	Some beautiful results about categorial grammars
	Current issues in categorial grammars
	Current issues in categorial grammars Cont'ed
	Technical contents
	labrimClassical categorial grammars: AB grammars
	Categories a.k.a. types a.k.a fractions:
	Lexicon/grammar generated language
	Reduced form for AB grammars
	Example: a tiny AB grammar
	From CFG to AB grammars
	From AB grammars to CFG
	Learnability of rigid AB grammars
	Learning example
	Key idea for the convergence
	Limitations of AB-grammars
	labrimProduct free Lambek grammars and calculus
	Grammar
	Rules
	Natural deduction in Gentzen style = sequent calculus
	An example
	Some changes
	The empty sequence
	Normalization of natural deduction
	Normalisation
	Discussion
	Outcomes of this restricted CGs
	Discussion
	Discussion
	References

