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Abstract

We answer some questions about infinite quasiperiodic words asked by
Marcus in Bulletin 82 of the European Assocation of Theoretical Computer
Science.

1 Introduction

The notion of repetition in Strings is central in a lot of researches (see for in-
stancel[7]/[8]). In this vein, Apostolico and Ehrenfeucht introduced the notion of
quasiperiodic finite words [2] in the following way: “a strirmys quasiperiodic

if there is a second stringgy # z such that every position affalls within some
occurrence ofv in Z'. The reader can consult![1] for a short survey of studies
concerning quasiperiodicity. 10 [10], Marcus extends this notion to infinite words
and he leaves open six questions. We bring answers to the fourth first questions.
The questions will be recalled while treating them.

After some generalities, in Sectiph 3, we recall the notion of quasiperiodic (fi-
nite or infinite) words. Section 4 answers the first question providing an example
of Sturmian words which is not quasiperiodic. In answer to the second question,
Section shows that quasiperiodic words can have an exponential complexity.
Answers to the third and fourth questions are given in Sefion 7. They are based
on a characterization of the set of quasiperiods of the Fibonacci word stated in
Sectior] 6. In conclusion, we briefly consider the two last questions.

2 Generalities

We assume the reader is familiar with combinatorics on words and morphisms
(see, e.q./18]). We precise our notations.
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Given an alphabet A (a non-empty set of letters)js the set of finite words
over A including the empty wor@. The length of a wordv is denoted byw|. A
word u is afactor of w if there exist wordgp ands such thatv = pus If p=¢
(resp.s = &), uis aprefix(resp.syfix) of w. A word u is aborderof a wordw if
uis both a prefix and a s$iix of w. A factoru of a wordw is saidproperif w # u.

Given an alphabed, a(n endanorphism fon A is an application fronA* to
A* such thatf(uv) = f(u)f(v) for any wordsu, v over A. A morphism onA is
entirely defined by the images of elementsfofGiven a morphisnf, powersof
f are defined inductively by® = Id, f' = ff'-! for integersi > 1 (composition
of applications is denoted just by juxtaposition). When for a ledtef(a) = ax
with x # &, for alln > 0, f"(a) is a prefix of f"*(a). If moreover, for alln > 0,
[f"(@)| < |f™(a)|, the limit lim,_,., f"(a) is the infinite word denotefi“(a) having
all the f"(a) as prefixes. This limit is also a fixed point 6f

3 Quasiperiodicity

We need both definitions of finite and infinite quasiperiodic words.

Let us take from([B] definitions in the finite case. A strimgcoversanother
stringzif for everyi € {1, ..., |7}, there existg € {1,...,|w|} such that there is an
occurrence ofv starting at positiom— j+ 1 in stringz. Alternatively we say thaw
Is aquasiperiodof z. If zis covered by # z, thenzis quasiperiodic A stringzis
superprimitiveif it is not quasiperiodic (Marcus [10] calls minimal such words).
One can observe that any word of length 1 is not quasiperiodic. The string

z = abaababaabaababaaba

hasaba abaabaabaababaabas quasiperiods. Onbbais superprimitive. More
generally in[8], it is proved that any quasiperiodic word has exactly one super-
primitive quasiperiod. This is a consequence of the fact that any quasiperiod of a
finite wordw is a proper border ofv.

When defining infinite quasiperiodic words, instead of considering the starting
indices of the occurrences of a quasiperiod, for convenience, we choose to con-
sider the words preceding the occurrences of a quasiperiod. An infinitewvord
is quasiperiodidf there exist a finite wordk and words pn)n-0 Such thatpy = &
and, forn > 0, 0 < |pns1l — IPal < X @and p,x is a prefix ofw. We say thatx
covers w The wordx is also called ajuasiperiodand we say that the sequence
(PnX)ns0 is a covering sequence of prefixes of the wordinv[9], Marcus proves
that any infinite word having all finite words as factors is not quasiperiodic. In
[10], several examples of quasiperiodic words are given. They have all the form

(rs)rr(rs)r. ..
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for two wordsr, s # £ and non-zero integers, 1. Let us give another example
of quasiperiodic word which does not follow this form. For this, kor 2, we
consider the endomorphisgy defined onZy = {a,...,ad by ¢k(@) = a1a;1

if i # Kandgk(ax) = a. This morphism extends the well-known Fibonacci
morphism defined oija, b}* by ¢(a) = ab and¢(b) = a. Marcus mentioned
that the Fibonacci word, the fixed point @f is quasiperiodic (with quasiperiod
aba= ¢?(a)). More generally, we have:

Lemma 3.1. For k > 2, the fixed wordp’(a;) is quasiperiodic with quasiperiod
k
90k(al)-

Proof. Let (u)i-o be the sequence of words definedgy= &, u; = ¢(Ui_1)a, for
i > 1. The reader can verify the following properties fox 1 < k:

e U = U_1aUi_1. In particular,u; is a prefix ofu; when 0<i < j < k. (We
can also note thaf is a palindrom.)

o p(a) =uayjforl<j<k-i, ¢fa)=uul,  fork—i<j<k where
uv-! denotes the word such thatu = wv (this notation can be used only if
vis a sufix of u).

Consequently we can observe thgfa;) = uu,' = ux covers each word
pi(@ja) = uui® Uk The wordgy(a;) can be decomposed ovig(as), ¢y(azan),

.. ¢k(akae)}. Sogpf(ag) coverspl(ay). O

We end this section with another definitions. We will need to consider infinite
words covered by two words and not only one. We say that thixaetb} covers
w if xaandxb are factors ofv and there exist wordgpfxa,)n-0 With a, € {a, b}
such thatpy = &, and, forn > 0, 0 < |1l — IPnl < X/ + 1 andppXa, is a prefix of
w. Once again the sequenaga Xa,)nso iS calleda covering sequence of prefixes
of the word w

4 About Sturmian words

The first question in [10] is: “Is every Sturmian word quasiperiodic?”. Proposi-
tion[4.] below provides a negative answer.

Proposition 4.1. Not all Sturmian words are quasiperiodic.

Let us recall that there are several equivalent definitions of Sturmian words
(see [4] for instance). A convenient tool to deal with Sturmian words is the set
of Sturmian endomorphismig, ¢, E} wherey and E are defined or{a, b} by
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¢(a) = ba, ¢(b) = aandE(a) = b, E(b) = a. The set{p, ¢, E}* is exactly the

set of morphisms that preserves Sturmian words (the image of a Sturmian word is
Sturmian)[12]. Itis also well-known that if a Sturmian morphism generates an in-
finite word then this fixed point is a Sturmian word. Let us consider the Sturmian
morphismEgyE. Propositiorj 4.]1 is a corollary of the following result:

Lemma 4.2. The infinite word EppE)“(a) is not quasiperiodic.

Proof. Let f = EgpE: f(a) = ab, f(b) = abh. The proof of this lemma holds by
contradiction. Assume thatis a quasiperiod of“(a) of minimal length. Note
that x is a prefix of f“(a) = ababbababbabhb.. We observe thax] > 5. By
construction off “(a), x ends withabb, ab or a. If x ends withabb, for each word
p such thatpx is a prefix of f“(a), there exist wordg’, X' such thatp = f(p’),

x = f(X) and|X| < |X|. In factx does not depend op. Consequently we can
verify thatx’ is a quasiperiod of “(a). This contradicts the choice af If x ends
with a thenxb is also a quasiperiod df*(a). So we can assumeends withab
andf“(a) has no quasiperiod of length less than or equét|te 2. Let (pn)ns0 b€
a covering sequence of prefixessf(a). Sincex starts witha, there exist words
(Pn=0 @and a unique word’ such thatp, = f(p;) andx = f(x)ab. Moreover
from|x| > 5, we deducéx'al < |x| — 2. Consequently’a cannot be a quasiperiod
of f“(a). It follows that xa and xb are factors off“(a) (otherwisexb = f(x'b)
or x = f(x'a) and we can deduce thatb or x'a is a quasiperiod of“(a)). So
{xa, xb} coversf“(a).

Lety be a non-empty word such thgta, yb} coversf“(a). Note thaty must
end withab. Let (p,yan)n=0 (With a, € {a, b} for all n > 0) be a covering sequence
of prefixes off“(a). Sincely| > 2, y starts withab. Consequently there exist
words (,)n=0 andy’ such thatp, = f(p;,) andy = f(y’)ab. Moreover @}y an)n=0
is a covering sequence of prefixesfsf(a). From what precedes, it follows that
the wordy is one of the word, defined byxy = € andx, = f(x,.1) forn > 1.
Note that we can see by induction that forralt 1, x,b has no proper gtix which
is a prefix ofx,.

Let us consider again the quasiperied The wordxb is a factor off“(a).
Sincex coversf®(a) and sincex starts witha, the wordxb has a proper gfix
which is a prefix ofx. Sincex # &, this contradicts what was said about thés.

So [EgeE)“(a) has no quasiperiod. |

Let us observe that the womdsuch that EggE)“(a) = aw starts withba and
can be decomposed ovdra, bba}. So it is quasiperiodic with quasiperitdb.
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5 Complexity

The second question of [10] is “What about the complexity function of a quasiperi-
odic infinite word?”. Let recall that the complexity functigig,(n) of an infinite
word wis the function which associates to each integer 0 the number of fac-
tors of lengthn of w. Our aim is to show that there exists no relation between
guasiperiodic words and complexities.

First we consider words with lowest complexity. It is well known (se€e [8] for
instance) that a wordl has a bounded complexity if and onlyf= uv” for words
u,v # &. Whenu = g, vis a quasiperiod olv. Whenu # ¢, w can be quasiperiodic
as for instancab(ab@® or it can be non-quasiperiodic as for instaiad®.

In [11], it is shown that Sturmian words are the words with lowest unbounded
complexity. We know there exist quasiperiodic (the Fibonacci word [10]) and
non-quasiperiodic Sturmian words (Sectign 4).

In [5], Cassaigne characterizes couples of integerg)(for which there exists
an integemy > 0 and an infinite word ovelia, b} having complexityen + 3 for all
n > ng. They are the couples {0, 1} x (N \ {0})) U(N\ {0, 1}) xZ. Whena > 1, the
word given for example by Cassaigne is a quasiperiodic word. More precisely, itis
the wordg (¢’ (a1)) wherej, |, k are suitable integers, j is the morphism defined
by g.j(a) = ab'*] andgy is the morphism defined in Sectiph 3. We leave open the
guestion to find non-quasiperiodic words with these complexities whei0, 1}.

We end this section showing that there exist quasiperiodic words with expo-
nential complexity. As already said, in/[9], it is shown that all words having all
finite words as factors are not quasiperiodic. These words are those with com-
plexity p(n) = 2" for alln > 0.

Let w be such a word ovdg, b}. Sincey?(a) = abaandy?(b) = ab, the word
©?(w) is quasiperiodic with quasiperiaba

We now evaluate the complexity of the wogd(w). For this, leta, (resp.
bn, Cv) be the number of factors @ff(w) ending withb (resp. ba, aa). We have
p(0) = 1, p(1) = 2, pu(n) = a,+by+c, for n > 2. Sincea® andb? are not factors of
©?(w), we havea, = b, = ¢, = 1 and fom > 2, an,1 = by+Cy, bry1 = @n, Cer = by
Consequently fon > 3,an,1 = an1 + @2, bpy1 = b1 + b2, Cy1 = Ch1 + Cro.
Sop(2)=3andforn > 3,p(n+1) = p(n—1)+ p(n - 2).

The first values of the sequenqg#lf)).-1 are:

2,3,4,5,7,9,12 16,21, 28, 37,49, ...

This sequence is part of the Padovan sequence (see sequence A000931 in [13])
defined byayg = 1,8, = 0,a, = 0 and forn > 3 a, = a,_» + a,_3 (Mmore precisely
p(n) = a,;g for n > 1). It is known (see [13] for instance) that is asymptotic to
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/(2 = r + 3) wherer = 1.3247179572447. ., is the real root of&® = x + 1 (r is
called the plastic constant [14]). $¢n) = 6(r").

To end with complexity, let us quote a new question: what is the maximal
complexity of a quasiperiodic infinite word?

6 Quasiperiods of the Fibonacci word

In order to answer other questions|of[10], we characterize the quasiperiods of the
Fibonacci word (Proposition §.5). In particular, we show that this word has an
infinite number of superprimitive quasiperiods (Proposifion 6.6). We start with a
useful lemma:

Lemma 6.1. Let wbe an infinite word ovefa, b} and let xe {a, b}*.
If x is a quasiperiod ofp(w) then x verifies one of the three following proper-
ties:

a) X = ¢(X’) where xis a quasiperiod of w
b) x = ¢(x")a where Xis a quasiperiod of w
C) X = ¢(X’)a for a word X such that{x'a, xX'b} covers w

Proof. Assume thak is a quasiperiod op(w). Sincep(w) starts with the lettea
and sincex is a prefix ofg(w), X starts witha.

First we consider the case whetends with the letteb. Sincex is a factor of
»(w), x ends withab. Let (p,X)ns0 be a covering sequence of prefixesp@fv). Let
n > 0. We havepy| < |pns1l < [pnX. SO|Pnsal < IPnXl < |Pn:2X| @nd the following
situation holds.

There exist wordy, z t such tha = yz= zt. Notely| = |pn1]—|pnl # 0. Since
x starts witha and ends witb, there exist wordy’, Z, t’, p, such thaty = ¢(y),
z=¢(Z), t = ¢(t"), pn = ¢(p) andpn.1 = (pLy’). Sincep, is a prefix ofpn,s
which is itself a prefix ofp,x, we deducep;| < |p..,,| < |p,X| wherex' = y'Z,
Sincey is injective, we also havg’ = Zt'.

What precedes is valid for atl > 0 and due to injectivity ofp, the words
(p)n=0 andx’ are defined uniquely. S@{X')n-0 iS a covering sequence of that
IS, X' is a quasiperiod ofv. Moreoverx = ¢(X).
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(Note that sincex ends withb, X’ ends witha.)

Now we consider the case whexends with the lettea.

If xais a quasiperiod op(w), one can see as previously that ¢(x’) for a
quasiperiodk’ of w.

If each occurrence ox is followed by an occurrence of the lettey thenx
ends with the lettea. Since it also starts with, there exists a word’ such that
X = ¢(X’)a. Moreover in this current casgx cannot be a factor af(w). Sop(x’)
is a quasiperiod op(w). We can deduce that is a quasiperiod oiv.

Finally we have to consider the case wh&rends with the lettea and some
occurrences ok are followed bya and others by. Thus we cannot say thaa
or xb is a quasiperiod oW. Let (p,X)n=0 be a covering sequence of prefixes of
e(w). Forn > 0, leta, be the letter such thai,xa, is a prefix ofp(w). Let by,
be the letter ina, b} \ {a,}. There exist a word’ and prefixegy, of w such that
Pn = ¢(pr), X = ¢(X)a. Moreoverxa, = ¢(x'b,) whena, = b andx = ¢(x'by)
whena, = a. We can deduce thap{x'b/)n-o is a covering sequence of prefixes
of w, that is,{x'a, X'b} coversw. |

The converse of Lemnja 6.1 partially holds. We let the reader verify that:

Lemma 6.2. If aword x verifies Case a or b in Leminal6.1 then x is a quasiperiod
of w.

This does not hold ik fulfils Casec. We can only deduce théta, xb} covers
¢(w). Indeed there exist wordg, X’ such that = ¢(x'a) does not covep(w). For
instance ifxX’ = ab andw = abaabgbba)“ then{x'a, Xb} = {aba abb} coversw.
But ¢(x')a = abaadoes not covep(w) = abaabaabaab@aag®.

In order to characterize the quasiperiods of the Fibonacci Womle need to
study what happens when Casef Lemmg 6.1 occurs.

Lemma 6.3. The words y such thdya, yb} covers Fare the wordguy,)n-o defined
by b = &, U1 = ¢(uy)aforn> 1.
Moreover for n> 2, u, is a quasiperiod of F

The proof of this lemma is a direct consequence of the following result and of
the fact thau, = abais a quasiperiod of .

Lemma 6.4. Let w be an infinite word ovefa, b} that does not contain bb as
factor. Let ye {a, b}* such thaty| > 1.
The setfya, yb} coversp(w) if and only if y= ¢(2)a and{za zb} covers w.



Proof. First assume thdta zb} coversw. Since each occurrence @fzb) in ¢(w)
is followed by the letter, the sef{y(za), p(zb)a} = {¢(2)ab, p(2)aa} coversp(w).

Assume now thatya, yb} coverse(w) andly] > 1. The wordy starts and
ends with the letten. Let (phyan)ns0 be a sequence of prefixes coverip@v)
with a, € {a b}. There exist wordgy, and z such thatp, = ¢(p;) andy =
¢(2a. Forn > 0, letb, = aif a, = bandb, = bif a, = a. Letn > 0. By
definition of a covering sequence of prefixgs, < [pPn:1l < Ipnyanl. If &, = b,
le(Pp)l < le(pr, )l < le(phzim)l. Sincepy, is a prefix ofpy, itself a prefix ofp;zh,,
Ipnl < 1p;,4| < Iphzhnl. Observe now thatayais not a factor ofp(w) (Indeed since
y starts and ends with, this would imply thabaais a factor ofp(w) but this is not
possible sincébis not a factor ofw). Thus whera, = a, |pnl < |Pns1l < [PrYanl,
that is, | Pl < [Pl < [Pyl = lp(pzly)l. Once againp;| < Ip,,,| < Ip;zhyl. So the
sequenceft,zh,)ns0 IS a covering sequence of prefixesngfthat is,{za zb} covers
W. |

Now we can describe the set of quasiperiods of the Fibonacci word){ et
{aba and forn > 1 Q, = {¢(u), p(u)a | u € Qn1}.

Proposition 6.5. The set of quasiperiods of the Fibonacci wor@Qn.

n>0

The proof of this proposition is a consequence of Lemmds 6.1 apd 6.3.
To illustrate the previous proposition, let us note that the first quasiperiods of
F are:aba abaah abaaba abaababaabaababaaabaababaababaababaaba

Let f, = ¢"(a) for n > 0. We can see by induction that, for any integer 2,
Qn = {fr2fifi,...fi, |10<k<nn-1>i;>1i,>...ix = 0}. S0Q, contains 2
distinct elements. Moreover fare Qy, | foi2l < X < |fasal. It follows that( L, Q
has 2+! — 1 distinct elements each of length less thip|.

The reader interested by similar results can consult [6] that provides a descrip-
tion of the quasiperiods of the wordgconsidered as circular.

Proposition 6.6 shows in particular that the Fibonacci word has an infinite
number of quasiperiods. This could have been obtained observing the particular
guasiperiodg"(aba) for n > 0.

We now want to state a greatfiirence between quasiperiodic infinite words
and quasiperiodic finite words. We have already recalled that any quasiperiodic
finite word has a unique superprimitive quasiperiod. We show that the Fibonacci
word has an infinite number of superprimitive quasiperiods.



Proposition 6.6. The set of quasiperiods of &e the wordgq,)n-0 defined (for
n > 0) by:

n
Oon = f2n+1 n f2(n—i)

iy
n

Qons1 = Fonez l_[ famoiy1
iy

Before proving this proposition let us give the first superprimitive quasiperi-
ods: qp = fifg = aba g, = f,f; = abaah q, = f3f,fy = abaababaaqg; =
f,f3f; = abaababaabaabab

Proof of Proposition[6.6. First we note that all the words, are quasiperiods
of F. Indeedq, = abae Qp and forn > 0, Qan1 = ¢(G2n) € Qzne1 ANATGons2 =
o(Oni1)a € Qonso. Observe that the sequenag)(so IS a sequence of length
increasing words.

We now want to prove thaj, does not coveq,, for anyn < m. For this note
that if nis odd andmis even,g, ends withb andg,, ends witha. Soq,, does not
covergm. Casen even andnodd is similar. Assume now = 2p andm = 2q. The

n+1

n
word gy, ends Withabn f(n-iy Wwhereas the word., ends Withn famr1-iy and
i=0 i=0

n
so with ban fom-iy. ONce agaimy, cannot coveny,. Casen andm both odd is
similar. =0
To end the proof of Propositidn 6.6, we need to see fhabes not have a
quasiperio that coversy, for an integemn > 0 with |x| < |qn|. This can be stated
showing by induction that the set of superprimitive quasiperiods tfat belong
to Qnis{qg | 0 <i < n}. Thisis a consequence of Lemmal6.2

7 About set of quasiperiods

In this section, we consider the third and four questions in [10]. The third one is
an open question: “What about the set of quasiperiods of an infinite word?”.

As seen in previous section, there exists at least one word (the Fibonacci word)
which has an infinite number of quasiperiods. It is easy to construct other such
examples. Indeed taking two infinite wordsandv over {a, b} having the same
guasiperiodz starting with the lettem, considering the morphism defined by
f(a) = u, f(b) = v, the fixed pointf“(a) has the quasiperiodd'(z) for anyn > 0.
Indeed for any worav having a quasiperios, f(w) hasf(x) as quasiperiod.
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We now want to show that there are a lot of intermediate cases between infinite
words having no quasiperiod [10] and infinite words having an infinite number of
superprimitive quasiperiods (as the Fibonacci word).

Lemma 7.1. Let w= abaabdbba). For n > 0, the wordy™*(w) has| L, Q as
set of quasiperiods andyg . ., g, as superprimitive quasiperiods.

We let the reader prove this result using lemmas of the previous section.

In [10], Marcus defines “the quasiperiodicity of ordethat where the inter-
section of two diferent occurrences of a superprimitive quasiperiod is never larger
thanp, but sometimes it is equal §@'. He provides examples of words for each
positive order. He asks: “Does there exist a quasiperiodic infinite word which is
of no orderp (p=1,2,3,...)? The Fibonacci word provides a positive answer.

Lemma 7.2. The Fibonacci word has no order.

Proof. The covering sequences of prefixesFohssociated with the quasiperiod
Jo = abastarts withe, aba abaab In particular the second and third occurrences
of abaoverlap and the overlap has length=1fy|. We have seen in the proof of
Propositior] 6.6 thatpn = ¢(02n-1) andOan1 = ¢(Gen)a. Thus by induction on

n > 0, one can see tha, has two occurrences overlapping with an overlap of
length at leastf,|. So the Fibonacci word has no order. O

8 Conclusion

The two last questions of [10] concerns infinite words such that all their factors
are also quasiperiodic. These questions should certainly be precised or trans-
formed since any prefix of length 1 of a non-empty word is not quasiperiodic.
One possible way to transform Question 6 (Does there exist a non-quasiperiodic
infinite word such that all its factors are quasiperiodic?) is to search for a non-
quasiperiodic infinite word having an infinity of quasiperiodic prefixes. We pro-
vide such an example.

Let (Un)n=0, (Vn)n=0 b€ the sequences of words definedupy= aa, and forn >
0, Vy, = Uyb, Unyq = vﬁ. Souy = aa, Vo = aab, u; = aabaal v; = aabaabbu, =
aabaabbaabaahbv, = aabaabbaabaabbbOf course, since eaal, is a square
it is a quasiperiodic word. By induction one can see that forrapy0, the word
b™! occurs only once iw, as a sfiix. Sov, is superprimitive. Consequently the
word lim,_,., Uy = lim,_,, V, IS @ non-quasiperiodic infinite word having infinitely
many quasiperiodic prefixes.
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