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Abstract

We answer some questions about infinite quasiperiodic words asked by
Marcus in Bulletin 82 of the European Assocation of Theoretical Computer
Science.

1 Introduction

The notion of repetition in Strings is central in a lot of researches (see for in-
stance [7],[8]). In this vein, Apostolico and Ehrenfeucht introduced the notion of
quasiperiodic finite words [2] in the following way: “a stringz is quasiperiodic
if there is a second stringw , z such that every position ofz falls within some
occurrence ofw in z”. The reader can consult [1] for a short survey of studies
concerning quasiperiodicity. In [10], Marcus extends this notion to infinite words
and he leaves open six questions. We bring answers to the fourth first questions.
The questions will be recalled while treating them.

After some generalities, in Section 3, we recall the notion of quasiperiodic (fi-
nite or infinite) words. Section 4 answers the first question providing an example
of Sturmian words which is not quasiperiodic. In answer to the second question,
Section 5 shows that quasiperiodic words can have an exponential complexity.
Answers to the third and fourth questions are given in Section 7. They are based
on a characterization of the set of quasiperiods of the Fibonacci word stated in
Section 6. In conclusion, we briefly consider the two last questions.

2 Generalities

We assume the reader is familiar with combinatorics on words and morphisms
(see, e.g., [8]). We precise our notations.
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Given an alphabet A (a non-empty set of letters),A∗ is the set of finite words
overA including the empty wordε. The length of a wordw is denoted by|w|. A
word u is a factor of w if there exist wordsp ands such thatw = pus. If p = ε
(resp.s = ε), u is aprefix(resp.suffix) of w. A word u is aborderof a wordw if
u is both a prefix and a suffix of w. A factoru of a wordw is saidproper if w , u.

Given an alphabetA, a(n endo)morphism fon A is an application fromA∗ to
A∗ such thatf (uv) = f (u) f (v) for any wordsu, v over A. A morphism onA is
entirely defined by the images of elements ofA. Given a morphismf , powersof
f are defined inductively byf 0 = Id, f i = f f i−1 for integersi ≥ 1 (composition
of applications is denoted just by juxtaposition). When for a lettera, f (a) = ax
with x , ε, for all n ≥ 0, f n(a) is a prefix of f n+1(a). If moreover, for alln ≥ 0,
| f n(a)| < | f n+1(a)|, the limit limn→∞ f n(a) is the infinite word denotedf ω(a) having
all the f n(a) as prefixes. This limit is also a fixed point off .

3 Quasiperiodicity

We need both definitions of finite and infinite quasiperiodic words.
Let us take from [3] definitions in the finite case. A stringw coversanother

stringz if for every i ∈ {1, . . . , |z|}, there existsj ∈ {1, . . . , |w|} such that there is an
occurrence ofw starting at positioni− j+1 in stringz. Alternatively we say thatw
is aquasiperiodof z. If z is covered byw , z, thenz is quasiperiodic. A stringz is
superprimitiveif it is not quasiperiodic (Marcus [10] calls minimal such words).
One can observe that any word of length 1 is not quasiperiodic. The string

z= abaababaabaababaaba

hasaba, abaaba, abaababaabaas quasiperiods. Onlyabais superprimitive. More
generally in [3], it is proved that any quasiperiodic word has exactly one super-
primitive quasiperiod. This is a consequence of the fact that any quasiperiod of a
finite wordw is a proper border ofw.

When defining infinite quasiperiodic words, instead of considering the starting
indices of the occurrences of a quasiperiod, for convenience, we choose to con-
sider the words preceding the occurrences of a quasiperiod. An infinite wordw
is quasiperiodicif there exist a finite wordx and words (pn)n≥0 such thatp0 = ε
and, forn ≥ 0, 0 < |pn+1| − |pn| ≤ |x| and pnx is a prefix ofw. We say thatx
covers w. The wordx is also called aquasiperiodand we say that the sequence
(pnx)n≥0 is a covering sequence of prefixes of the word w. In [9], Marcus proves
that any infinite word having all finite words as factors is not quasiperiodic. In
[10], several examples of quasiperiodic words are given. They have all the form

(rs)i1r(rs)i2r . . .
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for two wordsr, s , ε and non-zero integers (in)n≥1. Let us give another example
of quasiperiodic word which does not follow this form. For this, fork ≥ 2, we
consider the endomorphismϕk defined onΣk = {a1, . . . ,ak} by ϕk(ai) = a1ai+1

if i , k andϕk(ak) = a1. This morphism extends the well-known Fibonacci
morphism defined on{a,b}∗ by ϕ(a) = ab andϕ(b) = a. Marcus mentioned
that the Fibonacci word, the fixed point ofϕ, is quasiperiodic (with quasiperiod
aba= ϕ2(a)). More generally, we have:

Lemma 3.1. For k ≥ 2, the fixed wordϕωk (a1) is quasiperiodic with quasiperiod
ϕk

k(a1).

Proof. Let (ui)i≥0 be the sequence of words defined byu0 = ε, ui = ϕk(ui−1)a1 for
i ≥ 1. The reader can verify the following properties for 1≤ i ≤ k:

• ui = ui−1aiui−1. In particular,uj is a prefix ofui when 0≤ i ≤ j ≤ k. (We
can also note thatui is a palindrom.)

• ϕi
k(aj) = uiai+ j for 1 ≤ j ≤ k− i, ϕi

k(aj) = uiu−1
i−1+ j−k for k− i < j ≤ k, where

uv−1 denotes the wordw such thatu = wv (this notation can be used only if
v is a suffix of u).

Consequently we can observe thatϕk
k(a1) = uku−1

0 = uk covers each word
ϕk

k(aja1) = uku−1
j−1uk. The wordϕωk (a1) can be decomposed over{ϕk

k(a1), ϕk
k(a2a1),

. . . ,ϕk
k(aka1)}. Soϕk

k(a1) coversϕωk (a1). �

We end this section with another definitions. We will need to consider infinite
words covered by two words and not only one. We say that the set{xa, xb} covers
w if xa andxb are factors ofw and there exist words (pnxan)n≥0 with an ∈ {a,b}
such thatp0 = ε, and, forn ≥ 0, 0< |pn+1| − |pn| ≤ |x| + 1 andpnxan is a prefix of
w. Once again the sequence (pnxan)n≥0 is calleda covering sequence of prefixes
of the word w.

4 About Sturmian words

The first question in [10] is: “Is every Sturmian word quasiperiodic?”. Proposi-
tion 4.1 below provides a negative answer.

Proposition 4.1. Not all Sturmian words are quasiperiodic.

Let us recall that there are several equivalent definitions of Sturmian words
(see [4] for instance). A convenient tool to deal with Sturmian words is the set
of Sturmian endomorphisms{ϕ, ϕ̃,E} where ϕ̃ and E are defined on{a,b} by
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ϕ̃(a) = ba, ϕ̃(b) = a andE(a) = b, E(b) = a. The set{ϕ, ϕ̃,E}∗ is exactly the
set of morphisms that preserves Sturmian words (the image of a Sturmian word is
Sturmian) [12]. It is also well-known that if a Sturmian morphism generates an in-
finite word then this fixed point is a Sturmian word. Let us consider the Sturmian
morphismEϕ̃ϕE. Proposition 4.1 is a corollary of the following result:

Lemma 4.2. The infinite word(Eϕ̃ϕE)ω(a) is not quasiperiodic.

Proof. Let f = Eϕ̃ϕE: f (a) = ab, f (b) = abb. The proof of this lemma holds by
contradiction. Assume thatx is a quasiperiod off ω(a) of minimal length. Note
that x is a prefix of f ω(a) = ababbababbabb. . . We observe that|x| ≥ 5. By
construction off ω(a), x ends withabb, abor a. If x ends withabb, for each word
p such thatpx is a prefix of f ω(a), there exist wordsp′, x′ such thatp = f (p′),
x = f (x′) and |x′| < |x|. In fact x′ does not depend onp. Consequently we can
verify thatx′ is a quasiperiod off ω(a). This contradicts the choice ofx. If x ends
with a thenxb is also a quasiperiod off ω(a). So we can assumex ends withab
and f ω(a) has no quasiperiod of length less than or equal to|x| − 2. Let (pn)n≥0 be
a covering sequence of prefixes off ω(a). Sincex starts witha, there exist words
(p′n)n≥0 and a unique wordx′ such thatpn = f (p′n) and x = f (x′)ab. Moreover
from |x| ≥ 5, we deduce|x′a| < |x| − 2. Consequentlyx′a cannot be a quasiperiod
of f ω(a). It follows that xa and xb are factors off ω(a) (otherwisexb = f (x′b)
or x = f (x′a) and we can deduce thatx′b or x′a is a quasiperiod off ω(a)). So
{xa, xb} coversf ω(a).

Let y be a non-empty word such that{ya, yb} covers f ω(a). Note thaty must
end withab. Let (pnyan)n≥0 (with an ∈ {a,b} for all n ≥ 0) be a covering sequence
of prefixes of f ω(a). Since|y| ≥ 2, y starts withab. Consequently there exist
words (p′n)n≥0 andy′ such thatpn = f (p′n) andy = f (y′)ab. Moreover (p′ny

′an)n≥0

is a covering sequence of prefixes off ω(a). From what precedes, it follows that
the wordy is one of the wordsxn defined byx0 = ε andxn = f (xn−1) for n ≥ 1.
Note that we can see by induction that for alln ≥ 1, xnb has no proper suffix which
is a prefix ofxn.

Let us consider again the quasiperiodx. The wordxb is a factor of f ω(a).
Sincex covers f ω(a) and sincex starts witha, the wordxb has a proper suffix
which is a prefix ofx. Sincex , ε, this contradicts what was said about thexn’s.

So (Eϕ̃ϕE)ω(a) has no quasiperiod. �

Let us observe that the wordw such that (Eϕ̃ϕE)ω(a) = aw starts withba and
can be decomposed over{ba,bba}. So it is quasiperiodic with quasiperiodbab.
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5 Complexity

The second question of [10] is “What about the complexity function of a quasiperi-
odic infinite word?”. Let recall that the complexity functionpw(n) of an infinite
word w is the function which associates to each integern ≥ 0 the number of fac-
tors of lengthn of w. Our aim is to show that there exists no relation between
quasiperiodic words and complexities.

First we consider words with lowest complexity. It is well known (see [8] for
instance) that a wordw has a bounded complexity if and only ifw = uvω for words
u, v , ε. Whenu = ε, v is a quasiperiod ofw. Whenu , ε, w can be quasiperiodic
as for instanceab(aba)ω or it can be non-quasiperiodic as for instanceabω.

In [11], it is shown that Sturmian words are the words with lowest unbounded
complexity. We know there exist quasiperiodic (the Fibonacci word [10]) and
non-quasiperiodic Sturmian words (Section 4).

In [5], Cassaigne characterizes couples of integers (α, β) for which there exists
an integern0 ≥ 0 and an infinite word over{a,b} having complexityαn+ β for all
n ≥ n0. They are the couples in{0,1}× (IN \{0})∪ (IN \{0,1})×∠Z. Whenα ≥ 1, the
word given for example by Cassaigne is a quasiperiodic word. More precisely, it is
the wordgl, j(ϕωk (a1)) where j, l, k are suitable integers,gl, j is the morphism defined
by gl, j(ai) = albi+ j andϕk is the morphism defined in Section 3. We leave open the
question to find non-quasiperiodic words with these complexities whenα < {0,1}.

We end this section showing that there exist quasiperiodic words with expo-
nential complexity. As already said, in [9], it is shown that all words having all
finite words as factors are not quasiperiodic. These words are those with com-
plexity p(n) = 2n for all n ≥ 0.

Let w be such a word over{a,b}. Sinceϕ2(a) = abaandϕ2(b) = ab, the word
ϕ2(w) is quasiperiodic with quasiperiodaba.

We now evaluate the complexity of the wordϕ2(w). For this, letan (resp.
bn, cn) be the number of factors ofϕ2(w) ending withb (resp. ba, aa). We have
p(0) = 1, p(1) = 2, pw(n) = an+bn+cn for n ≥ 2. Sincea3 andb2 are not factors of
ϕ2(w), we havea2 = b2 = c2 = 1 and forn ≥ 2,an+1 = bn+cn, bn+1 = an, cn+1 = bn.
Consequently forn ≥ 3, an+1 = an−1 + an−2, bn+1 = bn−1 + bn−2, cn+1 = cn−1 + cn−2.
So p(2) = 3 and forn ≥ 3, p(n+ 1) = p(n− 1)+ p(n− 2).

The first values of the sequence (p(n))n≥1 are:

2,3,4,5,7,9,12,16,21,28,37,49, . . .

This sequence is part of the Padovan sequence (see sequence A000931 in [13])
defined bya0 = 1, a1 = 0, a2 = 0 and forn ≥ 3 an = an−2 + an−3 (more precisely
p(n) = an+8 for n ≥ 1). It is known (see [13] for instance) thatan is asymptotic to
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rn/(2 ∗ r + 3) wherer = 1.3247179572447. . ., is the real root ofx3 = x+ 1 (r is
called the plastic constant [14]). Sop(n) = θ(rn).

To end with complexity, let us quote a new question: what is the maximal
complexity of a quasiperiodic infinite word?

6 Quasiperiods of the Fibonacci word

In order to answer other questions of [10], we characterize the quasiperiods of the
Fibonacci word (Proposition 6.5). In particular, we show that this word has an
infinite number of superprimitive quasiperiods (Proposition 6.6). We start with a
useful lemma:

Lemma 6.1. Let wbe an infinite word over{a,b} and let x∈ {a,b}∗.
If x is a quasiperiod ofϕ(w) then x verifies one of the three following proper-

ties:

a) x= ϕ(x′) where x′ is a quasiperiod of w.

b) x= ϕ(x′)a where x′ is a quasiperiod of w.

c) x= ϕ(x′)a for a word x′ such that{x′a, x′b} covers w.

Proof. Assume thatx is a quasiperiod ofϕ(w). Sinceϕ(w) starts with the lettera
and sincex is a prefix ofϕ(w), x starts witha.

First we consider the case wherex ends with the letterb. Sincex is a factor of
ϕ(w), x ends withab. Let (pnx)n≥0 be a covering sequence of prefixes ofϕ(w). Let
n ≥ 0. We have|pn| < |pn+1| ≤ |pnx|. So |pn+1| ≤ |pnx| < |pn+1x| and the following
situation holds.

x

x

zy t

p

p
n+1

n

There exist wordsy, z, t such thatx = yz= zt. Note|y| = |pn+1|−|pn| , 0. Since
x starts witha and ends withb, there exist wordsy′, z′, t′, p′n such thaty = ϕ(y′),
z = ϕ(z′), t = ϕ(t′), pn = ϕ(p′n) and pn+1 = ϕ(p′ny

′). Sincepn is a prefix ofpn+1

which is itself a prefix ofpnx, we deduce|p′n| < |p
′
n+1| ≤ |p

′
nx′| wherex′ = y′z′.

Sinceϕ is injective, we also havex′ = z′t′.
What precedes is valid for alln ≥ 0 and due to injectivity ofϕ, the words

(p′n)n≥0 andx′ are defined uniquely. So (p′nx′)n≥0 is a covering sequence ofw, that
is, x′ is a quasiperiod ofw. Moreoverx = ϕ(x′).
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(Note that sincex ends withb, x′ ends witha.)

Now we consider the case wherex ends with the lettera.
If xa is a quasiperiod ofϕ(w), one can see as previously thatx = ϕ(x′) for a

quasiperiodx′ of w.
If each occurrence ofx is followed by an occurrence of the letterb, then x

ends with the lettera. Since it also starts witha, there exists a wordx′ such that
x = ϕ(x′)a. Moreover in this current case,xx cannot be a factor ofϕ(w). Soϕ(x′)
is a quasiperiod ofϕ(w). We can deduce thatx′ is a quasiperiod ofw.

Finally we have to consider the case wherex ends with the lettera and some
occurrences ofx are followed bya and others byb. Thus we cannot say thatxa
or xb is a quasiperiod ofw. Let (pnx)n≥0 be a covering sequence of prefixes of
ϕ(w). For n ≥ 0, let an be the letter such thatpnxan is a prefix ofϕ(w). Let bn

be the letter in{a,b} \ {an}. There exist a wordx′ and prefixesp′n of w such that
pn = ϕ(p′n), x = ϕ(x′)a. Moreoverxan = ϕ(x′bn) whenan = b andx = ϕ(x′bn)
whenan = a. We can deduce that (p′nx′b′n)n≥0 is a covering sequence of prefixes
of w, that is,{x′a, x′b} coversw. �

The converse of Lemma 6.1 partially holds. We let the reader verify that:

Lemma 6.2. If a word x verifies Case a or b in Lemma 6.1 then x is a quasiperiod
of w.

This does not hold ifx fulfils Casec. We can only deduce that{xa, xb} covers
ϕ(w). Indeed there exist wordsw, x′ such thatx = ϕ(x′a) does not coverϕ(w). For
instance ifx′ = ab andw = abaaba(bba)ω then{x′a, x′b} = {aba,abb} coversw.
But ϕ(x′)a = abaadoes not coverϕ(w) = abaabaabaaba(baaa)ω.

In order to characterize the quasiperiods of the Fibonacci wordF, we need to
study what happens when Casec of Lemma 6.1 occurs.

Lemma 6.3. The words y such that{ya, yb} covers Fare the words(un)n≥0 defined
by u0 = ε, un+1 = ϕ(un)a for n≥ 1.

Moreover for n≥ 2, un is a quasiperiod of F.

The proof of this lemma is a direct consequence of the following result and of
the fact thatu2 = aba is a quasiperiod ofF.

Lemma 6.4. Let w be an infinite word over{a,b} that does not contain bb as
factor. Let y∈ {a,b}∗ such that|y| ≥ 1.

The set{ya, yb} coversϕ(w) if and only if y= ϕ(z)a and{za, zb} covers w.
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Proof. First assume that{za, zb} coversw. Since each occurrence ofϕ(zb) in ϕ(w)
is followed by the lettera, the set{ϕ(za), ϕ(zb)a} = {ϕ(z)ab, ϕ(z)aa} coversϕ(w).

Assume now that{ya, yb} coversϕ(w) and |y| ≥ 1. The wordy starts and
ends with the lettera. Let (pnyan)n≥0 be a sequence of prefixes coveringϕ(w)
with an ∈ {a,b}. There exist wordsp′n and z such thatpn = ϕ(p′n) and y =
ϕ(z)a. For n ≥ 0, let bn = a if an = b andbn = b if an = a. Let n ≥ 0. By
definition of a covering sequence of prefixes,|pn| < |pn+1| ≤ |pnyan|. If an = b,
|ϕ(p′n)| < |ϕ(p

′
n+1)| ≤ |ϕ(p

′
nzbn)|. Sincep′n is a prefix ofpn+1 itself a prefix ofp′nzbn,

|p′n| < |p
′
n+1| ≤ |p

′
nzbn|. Observe now thatyayais not a factor ofϕ(w) (Indeed since

y starts and ends witha, this would imply thataaais a factor ofϕ(w) but this is not
possible sincebb is not a factor ofw). Thus whenan = a, |pn| < |pn+1| < |pnyan|,
that is,|pn| < |pn+1| ≤ |pny| = |ϕ(p′nzbn)|. Once again|p′n| < |p

′
n+1| ≤ |p

′
nzbn|. So the

sequence (p′nzbn)n≥0 is a covering sequence of prefixes ofw, that is,{za, zb} covers
w. �

Now we can describe the set of quasiperiods of the Fibonacci word. LetQ0 =

{aba} and forn ≥ 1 Qn = {ϕ(u), ϕ(u)a | u ∈ Qn−1}.

Proposition 6.5. The set of quasiperiods of the Fibonacci word is
⋃
n≥0

Qn.

The proof of this proposition is a consequence of Lemmas 6.1 and 6.3.
To illustrate the previous proposition, let us note that the first quasiperiods of

F are:aba, abaab, abaaba, abaababa, abaababaa, abaababaab, abaababaaba.

Let fn = ϕn(a) for n ≥ 0. We can see by induction that, for any integern ≥ 2,
Qn = { fn+2 fi1 fi2 . . . fik | 0 ≤ k ≤ n,n− 1 ≥ i1 > i2 > . . . ik = 0}. SoQn contains 2n

distinct elements. Moreover forx ∈ Qn, | fn+2| ≤ |x| < | fn+3|. It follows that
⋃n

i=0 Qi

has 2n+1 − 1 distinct elements each of length less than| fn+3|.
The reader interested by similar results can consult [6] that provides a descrip-

tion of the quasiperiods of the wordsfk considered as circular.

Proposition 6.5 shows in particular that the Fibonacci word has an infinite
number of quasiperiods. This could have been obtained observing the particular
quasiperiodsϕn(aba) for n ≥ 0.

We now want to state a great difference between quasiperiodic infinite words
and quasiperiodic finite words. We have already recalled that any quasiperiodic
finite word has a unique superprimitive quasiperiod. We show that the Fibonacci
word has an infinite number of superprimitive quasiperiods.
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Proposition 6.6. The set of quasiperiods of Fare the words(qn)n≥0 defined (for
n ≥ 0) by:

q2n = f2n+1

n∏
i=0

f2(n−i)

q2n+1 = f2n+2

n∏
i=0

f2(n−i)+1

Before proving this proposition let us give the first superprimitive quasiperi-
ods: q0 = f1 f0 = aba, q1 = f2 f1 = abaab, q2 = f3 f2 f0 = abaababaa, q3 =

f4 f3 f1 = abaababaabaabab.

Proof of Proposition 6.6. First we note that all the wordsqn are quasiperiods
of F. Indeedq0 = aba ∈ Q0 and forn ≥ 0, q2n+1 = ϕ(q2n) ∈ Q2n+1 andq2n+2 =

ϕ(q2n+1)a ∈ Q2n+2. Observe that the sequence (qn)n≥0 is a sequence of length
increasing words.

We now want to prove thatqn does not coverqm for anyn < m. For this note
that if n is odd andm is even,qn ends withb andqm ends witha. Soqn does not
coverqm. Casen even andmodd is similar. Assume nown = 2p andm= 2q. The

word q2n ends withab
n∏

i=0

f2(n−i) whereas the wordq2m ends with
n+1∏
i=0

f2(n+1−i) and

so withba
n∏

i=0

f2(n−i). Once againq2n cannot coverq2m. Casen andm both odd is

similar.
To end the proof of Proposition 6.6, we need to see thatF does not have a

quasiperiodx that coversqn for an integern ≥ 0 with |x| < |qn|. This can be stated
showing by induction that the set of superprimitive quasiperiods ofF that belong
to Qn is {qi | 0 ≤ i ≤ n}. This is a consequence of Lemma 6.2.

7 About set of quasiperiods

In this section, we consider the third and four questions in [10]. The third one is
an open question: “What about the set of quasiperiods of an infinite word?”.

As seen in previous section, there exists at least one word (the Fibonacci word)
which has an infinite number of quasiperiods. It is easy to construct other such
examples. Indeed taking two infinite wordsu andv over {a,b} having the same
quasiperiodz starting with the lettera, considering the morphismf defined by
f (a) = u, f (b) = v, the fixed pointf ω(a) has the quasiperiodsf n(z) for anyn ≥ 0.
Indeed for any wordw having a quasiperiodx, f (w) has f (x) as quasiperiod.
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We now want to show that there are a lot of intermediate cases between infinite
words having no quasiperiod [10] and infinite words having an infinite number of
superprimitive quasiperiods (as the Fibonacci word).

Lemma 7.1. Let w= abaaba(bba)ω. For n ≥ 0, the wordϕn+1(w) has
⋃n

i=0 Qi as
set of quasiperiods and q0, . . . ,qn as superprimitive quasiperiods.

We let the reader prove this result using lemmas of the previous section.

In [10], Marcus defines “the quasiperiodicity of orderp that where the inter-
section of two different occurrences of a superprimitive quasiperiod is never larger
thanp, but sometimes it is equal top”. He provides examples of words for each
positive order. He asks: “Does there exist a quasiperiodic infinite word which is
of no orderp (p = 1,2,3, . . .)? The Fibonacci word provides a positive answer.

Lemma 7.2. The Fibonacci word has no order.

Proof. The covering sequences of prefixes ofF associated with the quasiperiod
q0 = abastarts withε,aba,abaab. In particular the second and third occurrences
of abaoverlap and the overlap has length 1= | f0|. We have seen in the proof of
Proposition 6.6 thatq2n = ϕ(q2n−1) andq2n+1 = ϕ(q2n)a. Thus by induction on
n ≥ 0, one can see thatqn has two occurrences overlapping with an overlap of
length at least| fn|. So the Fibonacci word has no order. �

8 Conclusion

The two last questions of [10] concerns infinite words such that all their factors
are also quasiperiodic. These questions should certainly be precised or trans-
formed since any prefix of length 1 of a non-empty word is not quasiperiodic.
One possible way to transform Question 6 (Does there exist a non-quasiperiodic
infinite word such that all its factors are quasiperiodic?) is to search for a non-
quasiperiodic infinite word having an infinity of quasiperiodic prefixes. We pro-
vide such an example.

Let (un)n≥0, (vn)n≥0 be the sequences of words defined byu0 = aa, and forn ≥
0, vn = unb, un+1 = v2

n. Sou0 = aa, v0 = aab, u1 = aabaab, v1 = aabaabb, u2 =

aabaabbaabaabb, v2 = aabaabbaabaabbb. Of course, since eachun is a square
it is a quasiperiodic word. By induction one can see that for anyn ≥ 0, the word
bn+1 occurs only once invn as a suffix. Sovn is superprimitive. Consequently the
word limn→∞ un = limn→∞ vn is a non-quasiperiodic infinite word having infinitely
many quasiperiodic prefixes.

Acknowledgments. The authors thank Francis Wlazinski for fruitful discussions.
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