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Summary ~ A novel approach to genetic sequence analysis is presented. This approach, based on compression of algorithms, has been 
launched simultaneously by Grumbach and Tahi, Milosavijevic and Rivals. To reduce the description of an object, a compression algorithm 
replaces some regularities in the description by special codes. Thus a compression algorithm can be applied to a sequence in order to study 
the presence of those regularities all over the sequence. This paper explains this ability, gives examples of compression algorithms already 
developed and mentions their applications. Finally, the theoretical foundations of the approach are presented in an overview of the algorithmic 
theory of information. 
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Introduction 

Nowadays, any computer system user makes use of data 
compression programs to reduce the size of his data files; 
this saves him storage on a disk or transmission time over 
a network. He does not care about how the compression 
program works, as long as it provides him com~ression per- 
formance,  speed and relk, bility. In this frar~,ework, data 
compression is seen as a black box. 

We propose a new use of data compression methods as a 
tool to analyze genetic sequences. In this completely differ- 
ent framework, we do not look at a compression algorithm 
as a black box. On the contrary, it is important to know how 
a compression program manages to reduce a file size. This 
approach  has been s imul taneously  initiated by several 
authors II-31. 

How can a compression program reduce the size of a 
file? 

Although your favorite compression commands replaces a 
data file by a compressed file, the original data are not lost! 
Hopefully, the decompression program associated with the 
compression command is able to ~ erform the reverse oper- 
ation and to recover the original file. In fact, a compression 
program takes as input a description of an object, which 
may be a text, an image, a genetic sequence, etc. This de- 
scription is usually stored in a file. The compression algo- 
rithm computes a new description of this object and tries to 
make it shorter. To achieve this reduction it suppresses some 
regularities from the original description and replaces them 
by a code (a code is a sequence of characters which must 

be hlterpreted in a special way). In fact, the code is a syn- 
thetic view of a regularity: a kind of explanation (for the 
meaning of ~explanation' see below). 

For instance, direct repeats in DNA are a type of regu- 
larity, a given repeated segment in a DNA sequence is a 
regularity (or a regular segment) in the sequence. It can be 
replaced by a code that indicates where is the previous oc- 
currence of the segment. It 'explains'  that the origin of the 
segment is a duplication of another segme~J| and gives pre- 
cisely the position and length of the first occurrence. 

Therefore, given a compression algorithm zmd knowing the 
type of regularities it encodes, one may study the presence of 
those regularities in a genetic sequence by applying the algo- 
rithm to it. To "study the presence of those regularities in a se- 
quence' means to locate regular segments and to understand why 
they are regular by looking at their code. Moreovel; the compari- 
son of the respective sizes of the encoded and original descrip- 
tions yields the compression rate, which gives us a global 
quantitative measure of the regularities. The preceding para- 
graph summarizes the core principle of our work. We propose a 
new use of compression algorithms, not for saving disk storage 
or transmission time, but for sequence analysis purposes. Our 
research work is to conceive specific compression algorithms 
able to encode biologically relevant types of i'egulaz'ities. 

The first section details more dceply the ability of com- 
pression to analyze genetic sequences. The second section 
presents two compression algorithms we designed and their 
applications to genetic analysis. The article eads with a brief 
description of the theoretical foundations of our approach. 

Before ,  we must  give some precisions about  corn- 
pression. There are two different classes of compression 
methods: the compression is either fussy or lossless. If the 
decompression process recovers the exact original descrip- 
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tion from the encoded description, then the compression is 
lossless. It is usually the case for text compression, because 
loosing a character in the text may change its meaning. On 
the contrary, image compression is often iossy because the 
meaning of an image is not affected if the decompression 
looses some bytes. 

Most of the times, we apply our algorithms to DNA se- 
quences. Our methods may also be applied to other types of 
sequences (proteins, RNA), provided those are texts over a 
given alphabet. Therefore, we only considered lossless text 
compression methods. This point is crucial because the en- 
coded version of a sequence must enclose all the informa- 
tion contained in the original sequence. 

The size reduction of the description is measured in bits, 
which stands for binary digit, a '0 '  or a '1 ', and is the unit 
of information content. As DNA is built with four (= 22) 
possible bases, each of them might be encoded over two (the 
exponent) bits, thus the length in bits of the original DNA 
sequence equals twice its length in bases. Any encoded ver- 
sion of a sequence is produced in a binary format. This 
allows to compare the length of both descriptions, and im- 
plies the following formula for the compression rate: 

compression rate = 1 - original size - encoded size 
original size 

What is compressible? 

This section illustrates what a compressible DNA se- 
quence can be. 

Examples of compressible and inconq~ressible sequences 

In a compressible sequence, some parts of the sequence 
must be regular enough to be described (we also say en- 
coded) shortly. Hereafter, some examples of segments are 
shown. For each of them, we give the type of regularity 
which is encoded, the corresponding code for the segment, 
its meaning and if the segment is compressible or not. You 
can also imagine that the output code is the answer of an 
observer which is prompted for a description of the seg- 
ment. We denote the segments so, s~, s2 ..... s7. We also use 
'compressor' instead of compression algorithm. 

so = ACGCC.CACCATCGGCAGCTCC 
GCC'F  CCCGGGCACGCCT 

Type of regularity: a .,ta:is:ica! regu!~r:.ty: a statistical bias 
in nucleotide usage 
Segment code: '01; 10;00; 1100100100110001101110101 
0001101001110010001111110001010100 11001000111' 
Meaning of the code: the three first 'words' separated by a 
semicolon give in binary the most common characters: '01' 
for C, ' 10' for G, and '00' for A. According to this, a code 
is built for each nucleotide and so (the last word: 11001) is 

encoded using these codes. An A is replaced by ' 110', a C 
by '0 ' ,  a G by ' 10', and a T by ' 111' 

Here so reveals a statistical regularity: at 50% of the po- 
sitions a C occurs, at 25% a G occurs and the rest of the 
positions are equally shared between A and T. The encoding 
allocates short codes to characters that often occur (in this 
case, codes are given by a Huffman coding tree [41, and all 
the text is encoded character by character. 

Statistical compression views the sequence as if it has 
been produced by a random process that chooses each 
character with respect to a probability law. In the com- 
pression algorithm, the law is calculated acct, rding to the 
model. In this example, the model looks at the base fre- 
quency of occurrences (it could have been the frequency 
of dinucleotides, trinucleotides, etc) over the whole se- 
quence. Here, the original version of the sequence costs 
80 bits (40 * 2 bits), whereas the encoded version takes 
76 bits: a 5% compression rate. In fact, the more realistic 
the model, the more compressed the sequence. But given 
a model, i~ i~ known that the compression is limited by 
the entropy of the probability law [5]. Moreover, there 
exists an optimal encoding method that reaches the en- 
tropy: the arithmetic encoding [6]. 

Statistical regularities are at the origin of the Shannon's 
Mathematical Theory of Communication, also called The- 
ory of Information [5]. A new theory of information has 
been formulated in 1969 by Kolmogorov, Chaitin and So- 
lomonoff and is centered around the concept of Kolmogo- 
rov complexity [71. 

Statistical regularities are well studied in genetic sequences: 
an example is the nucleotidic composition of isochores [8]. 
The entropy has also been used to measure the 'statistical' 
complexity of sequences ([9-11] see also [12] for a review). 
But we cannot learn much about the sequences when com- 
pression came from statistical regularities, because real se- 
quences do not arise fro~a random processes. The main 
disadvantage is that statistical models do not care about the 
order of the bases in the sequence. Nevertheless, they can be 
used to assert significant biases in a sequence. 

Our work is mainly concerned with another type of syn- 
tactic regularities, which we call algebraic regularities. Al- 
gebraic regularities differ from statistical regularities. They 
are defined by properties on the order of the bases in the 
sequence (repeats, genetic palindromes, etc), thus they are 
local regularities, whereas statistical regularities are spread 
all over the sequence. The models considered in this sort of 
compression are algorithmiL, instead of random processes. 
Therefore, algebraic compression algorithms are able to 
point out regular segments of the sequence and to suggest 
an algorithmic process to produce this segment. 

An important remark: to propose a generation process for 
a segment is a kind of explanation, a kind of understanding. 
This is the kind of explanation compression methods are 
able to bring. Not more, not less (they cannot propose bio- 
chemical explanations). We use 'understanding' and 'exvla- 
nation" with this meaning. But note that if biologically 



relevant models are used in the compression algorithms, 
their results would have biological implications. This is the 
goal of our research: compression algorithms built on biol- 
ogically relevant models. 

The following examples and the rest of the paper are 
about compression of algebraic regularities. 

s~=CCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCC 

Type of regularity: runs of nucleotides, Segment code: 
'R,40,C'. Meaning of the code: 'repeat 40 times C.' 

For the sake of legibility, here we write codes in a read- 
able format instead of in binary. This code contains one 
instruction 'repeat' which requires two parameters: '40',  the 
number of repeats, and 'C' ,  the repeated nuc|eotide. The 
encoded version of s~ takes 17 bits, instead of SO bits For 
the original version: sl is extremely compressible (more 
than 78% of compression). 

s2 = ACGACGACGACGACGACGACGA 
CGACGACGACGACGACG 

Type of regularity: runs of polynuc!eotide of any size. 
Segment code: 'R, 13,ACG' Meaning of the code: 'repeat 20 
times the motif ACG'. 

Like sl, s2 is very compressible (21 bits versus 80 bits). 
However, note that this compressor is more clever than the 
previous one: it is able to encode much more types of regu- 
larity: runs of polynucleotides of any size. 

ss=CGCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCGCCCC 

Type of regularity: runs of nucleotides with mutations. 
Segment code: 'R,40,C, (2,G), (36,G)' 
Meaning of the code: 'repeat 40 times C and apply the mu- 
tations: substitute a G in position 2, substitute a G in posi- 
tion 36'. 

s3 seems to be equal to sl, but it contains a G instead of 
a C in 2nd and 36th positions. We found that s3 is com- 
pressible, but less so than sl. Moreover, it requires a more 
sophisticated algorithm to be compressed. The code con- 
tains an unlimited list of mutations. The more the sequence 
contains mutations, the less it would be compressed. The 
following question comes to mind naturally: 'until which 
number of mutations is the sequence compressible?'. The 
size of the code, and then the exact answer to our question, 
depends on the size of the sequence, on the number of mu- 
tations, and on all mutation's positions. Because the algo- 
rithm effectively performs the encoding and outputs the 
compression rate, it helps the biologist to distinguish be- 
tween runs of nucleotides later altered by mutations, and 
random segments. 

s4 = AGCGGCTATTGCTCTACGTGTGAC 
CGTAGTTCCACGACAC 
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Type of regularity:'? 
Segment  code: 'P, A G C G G C T A T T G C T C T A C G T G T -  
GACCGTAGTTCCACGACAC' 
Meaning of the code: 'print  AGCGGCTATTGCTC- 
T A C G T G T G A C C G T A G T T C C A C G A C A C '  

We can say that a priori, whatever the type of regularity, 
the algorithm cannot find any succinct description of s4. It 
concludes it is random. The only c~;de it can output includes 
s4 itself. For the algorithm, s4 is incompressible: the length 
of its code is (slightly) longer than the length of s4 itself (it 
includes the code of 'print'). 

s5 = TGCTCCTGCTGCTCTGCT 
GCTGCTGCTGCTAGCTGC 

s6 = T C T G C T A C T G C T G G T C T G T -  
GAGCTGCGTGCTGGTGC 

Type of regularity: runs of polynucleotides of any length, 
with mutations. 
Segment code: ss: 'R,12,TGC, (s,5,C), (d,9,), (i,17,A)'; s6: 
'R,12,TGC, (d,2), (s,5,A), (s,7,G), (d,3), (i,4,A), (i,5,G), 
(s,6,G)'. 
Meaning of the code: ss: "repeat 12 times the trinucleotide 
TGC and apply the following mutations: substitute by a C 
in 5th position, delete the 9th base on the left, insert an A 
after 17 bases on the left'; s6: 'repeat 12 times the trinucle- 
otide TGC and delete the base in 2nd position, substitute by 
an A the nucleotide which is 5 bases on the left, substitute 
by a G the nucleotide which is 7 bases on the left. 

The same compressor is used for s5 and so. Would you 
bet on the compressibility of those sequences'? With a more 
complex type of regularity, it becomes more tricky to distin- 
guish between regular and incompressible segments. Here, s5 
is more regular than st, since it has a shorter mutations list lbr 
the same length. In fact, s5 is compressible (42 ~its versus 72 
bits), but less than s2 which does not inclu:le mutations. '~a is 
not compressible because its encoding costs more bits than its 
original description (77 bits versus 72 bits). 

s7 = A G T A C A T A T A G T C G C A T A C G C T  
GCAATAGTCGCATACATG 

Type of regularity: exact direct repeats. 
Segment code: ' 1, (26,8,12), AGTACATATAGTCGCA- 
TACGCTGCAATG'. 
Meaning of the code: '1 repeat, at 26th position insert the 
12 bases long subword beginning at 8th position, the rest of 
the sequence follows'. 

Here the regularity is a more difficult to see: a 12 bp 
subword is duplicated at 8th and 26th positions. The code 
must indicate the number of repeated segments. The only 
one is described by the triplet of integers. Then the code 
includes the rest of the sT, in which the algorithm has not 
found other repeated subwords that he could shortly en- 
code. s7 is compressible because the repeated subword is 
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long enough (76 bits versus 80 bits, nearly 5% of com- 
pression rate). 

What does the encoded version mean ? 

All the descriptions of the preceding segments could have 
been inferred by a human observer using the Occam's Razor 
principle: the shortest descriptions are the more probable. 
A description should enable a reader to recompute the orig- 
inal sequence. 

It is important to keep in mind that, in lossless com- 
pression, the decompression algorithm is able to build up 
the original sequence from its encoded version. This implies 
that the coded version is a sequence of instructions that 
guides the decompression process to compute the original 
sequence. In fact, the encoded version is a program to com- 
pute the original sequence. 

Compression relatively to a model = understanding 

The compression algorithm, which is fixed and independent 
from the input sequence, tries to compute a compressed ver- 
sion of the sequence. We saw from the examples that it may 
reach this goal (in the case of so, s,, s2, s3, ss, s7) or fail ($4, $6). 
The compression algorithm leans upon a model of a regular 
sequence and includes a synthetic code to describe a regular 
segment that fits the model. During an execution with an input 
sequence, it looks for regular segments and computes the en- 
coding of the sequence. This code gives the specific data that 
allow to ;~:cove:" t!'e sequence relatively to the model. 

For instance in the case of s.,, the code refers to the model 
of a tandem repeat, and includes all the data required to 
build the tandem repeat: the duplicated polynucleotide and 
the number of occurrences. 

If the sequence fits the model, the resulting code is shor- 
ter than the original sequence and compression is achieved. 
If not, the compression algorithm would output a code 
longer than the sequence (see examples of S4 and ss). 

For biological experiments, the model is originated by a 
biochemical hypothesis or property. The correct conception 
of the model from the hypothesis requires an in-depth co- 
operation between biologists and computer scientists; by 
the way, it often demands to refine the biochemical hypo- 
thesis. 

The compression algorithm analyses how a sequence 
conforms to the model. The compression rate evaluates, in 
terms of information content, how much the knowledge of 
the model allows to reduce the sequence description. In fact, 
it gives a quantitative and comparable measure of the va- 
lidity of the hypothesis on a sequence. In this context, com- 
pression is a tool to test properties on genetic sequences. 
Thus, compression implies understanding. 

Examples of compression algorithms 

This section gives an overview of two compression algo- 
rithms we already designed. It points out that these are auto- 
matic tools able to perform experiments for biological 
studies. The first algorithm encodes distant (repeats that are 
not side-to-side in the sequence) direct repeats in DNA se- 
uuences and is called Cfact. The following subsection ex- 
plains how Cfact can objectively and automatically detect 
significant direct repeats and measure the 'repetitiveness' of 
a sequence. 

The second algorithm looks for approximate tandem re- 
peats (ATR) and has been used to study the repartition of 
such regular segments in yeast chromosomes. 

C fact 

Direct repeats are known to appear in non-coding regions 
of the genome, where selection does not prevent duplica- 
tion mechanisms to operate. However, some non-genic 
regions have been proved to be highly conserved [13]. 
Moreover, some gene sequences also contain direct re- 
peats: the genome may use duplication as a way to gener- 
ate a new gene sequence from other genes (eg the 
sequence of the gene for human growth hormone, see p 
661 in [14]). One can argue that sequences only contain 
mutated repeats, but mutated repeats must include exact 
repeats. A tool to study the presence of repeats, which are 
signs of sequence alterations, may help in locating non- 
genic conserved regions and in understanding the struc- 
ture of some genes II5].  To find repeats in a text, 
numerous pattern matching algorithms exis~ (see 116]), 
but our algorithm not only detects repeats, but selects 
some of them according to their cornpressibility. Tile use 
of this criterion is also an advantage over classical algo- 
rithms that compress repeats in a text [ 17, 181. 

Our algorithm Cjact allows: 
- To locate repeated segments in a sequence. 
- T o  measure their quantitative importance by the com- 
pression rate. 
- To assert a significative presence of repeats if the sequence 
has been compressed. 

Our research began by the test of classical, and widely 
used text compression algorithms (for more details on 
those see [61) over DNA sequences. The conclusion was 
that compression algorithms designed for natural texts do 
not manage to compress DNA (especially those who code 
direct repeats [151). The main reason is that repeats in 
natural texts are quite small and often occurred not far 
from each other. Therefore, Cfact takes into account 
genetic repeats that might be very long and with occur- 
rences far away from each other. 

As seen for the sequence s7 the encoding of a repeat is a 
triple of integer that points to an earlier occurrence of the 
repeated segment. A genetic sequence contains numerous 
repeats most of which are short: subwords of one, two, 



three ..... bases long are all repeated in a long sequence. But it 
is not worth replacing a short subword by a code. Moreover 
two long repeats may overlap and cannot be both entirely en- 
coded. Cfact must choose in the set of all repeated segments 
in the sequence, a 'maximal' subset of repeats which can be 
encoded shortly. As there is no realistic algorithm to compute 
an optimal solution, the heuristic we implemented considers 
all repeats in decreasing length order and a repeat is selected 
only if it can be encoded shortly. This strategy implies a guar- 
antee of compression: Cfact compresses any sequence which 
contains at least one Jong repeat. In the sufficient condition, 
the length of the repeat varies mainly like log (n), where n is 
the leogth of the sequence. 

Applications of Cfact 

Let us look at some possible uses for Cfact. First, Cfact can 
be performed on each sequence at its entrance in a database 
for annotating the repeat features of the sequence. Second, 
Cfact is able to test the repetitiveness of any sequence. In 
this context, the compression guarantee is crucial. We per- 
formed experiments with Cfact on a large set of sequences 
(complete results are reported in [15]). The compression 
rate value ranges between 0% for SCPEKGA (S cerevisiae 
sequence for ORFs homologous to calcineurin B subunit, 
38477 bp, accession number in Genbank: X74151) and 
more than 31% for HUMGHCSA (the sequence of human 
growth hormone and chorionic somatomammotropin genes; 
66495 bp, accession number in Genbank: J03071). Cfact 
can list the repeated segments and their positions for 
HUMGHCSA. But for SCPEKGA, we can assert that, if 
Cfact fails to compress, it implies there is no significantly 
long repeat ill SCPEKGA. Therefore,  using the cc, m- 
pression rate values, one may classify any set seque~,ces 
upon the repetitiveness criterion. 

Compression of approximate tandem repeats 

We designed an algorithm to campress sequences that con- 
tain approximate tandem repeats (ATR) of any short motif 
among mono-, di- or trinucleotides (see [19]). 

The algorithm leans upon a model of DNA sequence 
evolution. The model makes the following hypothesis: a 
possible process for sequence evolution is the generation of 
tandem repeats by amplification of a single motif. The tan- 
dem repeat can later be altered by punctual mutations like 
substitutions, insertions and deletions. Experiments were 
performed to test how often this evolutionary process, ie 
ATR generation, occurred in yeast chromosomes. 

For those experiments, the chromosomes were cut up 
into 500 bp long adjacent windows. Our algorithm is able 
to detect ATR of any motif. When applied on a single win- 
dow, it chooses a motif, u, and then locates and encodes all 
ATRs of that motif. Such zones made of an ATR of u, are 
described by a binary code, in which the evolutionary model 
appears as a possible creation process for those zones. In 
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fact, a code for a zone means: 'a~ position i in the se- 
quence, tile rod|if u has been replicated n times, after- 
wards the corresponding segment has been modifie~ by 
the following mutations (lhe list of punctual mutations 
is then given) ' .  If the text is effectively cornpr':~sed 
then this creation process is a better explanation of the 
ATR appearance than a random generation process. In 
other words, those ATR zones are not random. 

The algorithm was used to study lhe repartition of ATR 
in yeast chromosomes. ATR became a matter of interest 
since their amplification was discovered to cause some 
human diseases [20]. Several hypothetical mechanisms 
were proposed for this amplification, upon which the am- 
plification by the blocking of DNA polymerase move- 
m e n t  [20] .  The l a t t e r  m e c h a n i s m  r e q u i r e s  the 
trinucleotidic motif to pair with itself in a Watson-Crick 
form over two bases out of three. The experiments show 
that ATRs appear in the same proportion over each of the 
four tested chromosomes (in each chromosomes, around 
9% of the windows contain significant ATRs), and even 
in coding regions. Moreover, in a majority of cases, when 
the motif is a triplet, it does not fulfill the self-pairing 
condit ion mentioned above. Thus, the corresponding 
mechanism has probably not been used for ATR gener- 
ation in those yeast chromosomes. More details on those 
results are available in [15]. 

Theoretical  foundations of analysis by compression: 
the a~gorithmic theory of information 

In this section, we give an overview of the theoretical under- 
lying of our approach without technical details. 

Random = inconqn'essible 

One knows from probability that any sufficiently long ran- 
dom sequence may contain repeated segments. Call such 
repeats, random repeats. What could be a random repeat in 
a DNA sequence? A random repeated segment in a DNA 
sequence is a segment that seems to be the result of a mole- 
cular duplication, but in fact it is not. It appears just because 
the alphabet contains only four bases, and since, if the se- 
quence is sufficiently long, repeats must appear. 

Take a random sequence which includes repeats and 
call n its length. Is such a random sequence compressible 
by our algorithm Cfact? In other words, is Cfact unable 
to distinguish between a random repeat and a DNA seg- 
ment duplicated by a molecular process? On average, the 
random sequence would probably not be compressed by 
Cfact (with a low probability, indeed). Of course, a se- 
quence produced by coin tossing can contain a very long 
repeat and be compressible by Cfact, but on average it 
would not be the case. The sketch of the proof is the 
following. It is known that on average, the length of the 
longest repeat in a random sequence is around log(n). 
Any code that may replace such a repeat must include the 
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positien of the segment's first occurrence. This position can 
be anywhere in the sequence and thus varies like n. There- 
fore the encoding of this segment takes more than log(n). 

This means that the encoding of a random repeat in a 
DNA sequence cannot generate compression. What has 
been proven for direct repeats in a sequence, can be dem- 
onstrated for any type of regularity, ie the result is valid for 
compression algorithms in general and not only for Cfact. 
Therefore, it follows that compression algorithms only de- 
tect and encode truly regular segments, ie non-random regu- 
larities. It also follows that: compressible sequences contain 
significant regularities. 

For instance, a sequence of length J7 has less than one 
chance in thousand to be compressible to more than 10 bits! 
In fact, one cannot compress very much by chance: the se- 
quence must enclose significant regularities for that. 

This intuitive result has been formally proven thanks to 
a deep concept: the Kolmogorov complexity. For a detailed 
presentation see [7]; about the link between randomness and 
incompressibility also see [21 ]. 

The Kolmogorov complexity 

The concept of Kolmogorov complexity is the core of the 
Algorithmic Theory of Intbrmation (AIT). The AIT encom- 
passes the theoretical justifications of the analysis by com- 
pression algorithms. 

As seen earlier, the coded version of a sequence output 
by a compression algorithm can be seen as a program that 
generates the sequence (see above). In the AIT, any pro- 
gram that outputs a sequence is seen as a description or a 
cause of this sequence. It gives an explanation for the se- 
quence. Hereafter, we use the word 'object' for a DNA 
sequence that we want to analyze. The words 'program', 
'cause' or 'description' have the same meaning in the AIT: 
they are binary sequences that encode the object. For the 
rest of section, 'sequence' must be understood as a binary 
sequence, unless specified otherwise. 

The Kolmogorov complexity of an object is the shor- 
test program that outputs the object. A fundamental point 
makes the notion of shortest program worth considering: 
the Kolmogorov complexity is a robust measure. It means 
that the value measured by the Kolmogorov complexity 
does not depend too much on the environment, ie neither 
on the computer nor on the programming language. In 
fact, between two computers and languages, the Kolmo- 
gorov complexity of an object does not vary more than a 
fixed constant which is independent of the object (the 
constant is the size of the program that makes one ma- 
chine simulate the other). 

In fact, the set of possible calculations on a computer 
equals the one you can perform on a formal model of com- 
puter. This model, called a universal Turing Machine, ex- 
ecutes a finite program located at the beginning of an 
infinite 'program' tape. The 'program' tape is written with 
an infinite sequence of '0 '  and ' 1 '. A universal Turing ma- 

chine only includes a 'program' tape and an 'output' tape, 
and no 'data' tape: it requires the data to be written inside 
the program (there exist others Turing machine models, 
with more tapes, but they are equivalent, ie they all reach 
the same power of computation). Turing machines are 
widely used because they allow to prove formally some 
properties of algorithms. 

Shortest descriptions are the more probable 

Another important notion in the AIT is the 'a priori' dis- 
tribution law over programs which is called the Solo- 
monoff-Levin distribution. It considers that shortest 
programs or descriptions are the more probable. In fact, it 
formalizes the Occam's Razor principle which asserts that 
shortest explanations are the more probable. A priori, with- 
out specific information, it seems reasonable to consider 
that all infinite entries for the 'program' tape of a universal 
Turing machine are equiprobable. Therefore, the uniform 
distribution over infinite sequences is assumed. As an infi- 
nite sequence can be a map to a real number in [0,1 ], this 
distribution is the same as the uniform distribution over 
[0,1] (paragraphs in smaller characters give more technical 
precisions and may be skipped). 

A Turing machine executes the program tape from the 
beginning, until it finds an instruction that terminates the 
program. In other words, it performs a finite program at the 
beginning of the infinite taI~e. Let pl and p2 be finite pro- 
grams respectively of length nl and n2 with n. < n2. It is a 
combinatorial matter to see that there are more infinite se- 
quences that contain 17, at their beginning, than infinite 
sequences that contain p2. Both set of infinite sequences 
correspond to a different subrange of [0, !], respectively of 
width ~ and ~ .  

The'mapping of infinite sequences onto [0,1] is central 
in this demonstration. Half of all infinite sequences have a 
'0 '  as their first character. A quarter of them begin by '01 ', 
etc. A finite sequence or program can be mapped to the set 
of infinite sequences that begin with it, and by the way to 
the corresponding subrange of [0,1] (for instance, [0,0.5] 
for '0' ,  [0.5,0.751 for '10',  [0,0.25] for '01'). 

If the probability of a program is defined as proportional 
to the width of the corresponding subrange of [0,1 ], then 
shortest descriptions are the more probable. 

Pratical compression approximates Kolmogorov 
complexity. 

To : ummarize, we can say that looking for the Kolmogorov 
complexity of an object is to find its more probable cause, ie 
the shortest programs that output the object. Notice that for a 
given object s, the following program is always possible: 

print s 

and is slightly longer than s. 
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A given compression algorithm tries to compute a short 
program, not the shortest one, by removing some regu- 
larities of a given type. It calculates an upper bound of the 
Kolmogorov complexity. To compute the shortest program 
would require to remove all possible types of regularity, ie 
to inspect all the possible programs. 

What can we say i f  a practical compressor fails  to 
compress a DNA sequence? 

Two hypotheses are possible: 
i) The Kolmogorov complexity of the DNA sequence 

equals its length, ie the sequence really is incompressible. 
In fact, it is random and even the most clever compressor 
would fail on it. 

ii) The DNA sequence does not contain any regularities 
like those searched for by the algorithm, this is the reason 
why it failed. But the DNA sequence may include regular 
segments of other types. 

In fact, the exact Kolmogorov complexity has been 
proved to be uncomputable in general. This impossibility 
advocates the use of practical compression algorithms 
that compute only short programs and not the shortest 
one. Nevertheless, we have seen that, when an algorithm 
manages to compress an object, it has picked up some 
true regularities in the object. This is because it has found 
a program which is undoubtedly shorter than the object 
itself. 

Conclusion 

This paper describes a novel approach for genetic sequence 
analysis. This methodology finds its basis in the Algo- 
r i thmic Information Theory, which asserts tha! com- 
pression allows to understand (ie to find an algorithmic 
cause of this structure the structure of an object). The core 
principle may be stated as follows: to compress a genetic 
sequence, a compression algorithm is forced to detect regu- 
larities in the sequence and to encode them relatively to a 
general model of regular segments. The model does reflect 
the molecu la r  b iochemis t ' s  point  of view about  the 
property that originates the regularities. The sequence can 
be encoded shortly, ie compressed, only if it conforms to 
the model. Therefore: i) compression is a way to test if the 
sequence satisfies the property; ii) the encoding gives a 
synthetic explanation of how the sequence conforms to the 
mcdel; whereas iii) the compression rzte quantitatively 
measures the corresponding quantity of information saved 
by viewing the sequence through the model. 

The methodology of compression has the following ad- 
vantages: 
- T h e  selection of regularities is done according to the crite- 
rion of information content, a nearly absolute cri,erion 
which objectiveness is explained by the robustness of Kol- 
raogorov complexity. 

- Compression allows to classify sequences according to 
the compression rate of an algorithm, which has beer~ drawn 
up to test a biologically relevant hypothesis. 
- It also provides an objective :explanation' of a regularity, 
which is sometimes hidden for a human observer. 

The main part of the research is to conceive com- 
pression algorithms to detect sophisticated biochemical 
regularities. We manage to implement algorithms for di- 
rect repeats, genetic palindromes, or tandem repeats, but 
more complex regularities can be considered for which 
new algorithms are to be designed in collaboration with 
biologists. Once programmed, such compression algo- 
rithms may help biologists in automatic sequence anno- 
tation, in performing classification upon various criteria 
and in t e s fng  the validity of evolutionary models for 
genetic sequences. 
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