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Abstract

The Suffix Tree, a crucial and versatile data structure for string analysis of large texts, is of-
ten used in pattern matching and in bioinformatics applications. The Affix Tree generalizes
the Suffix Tree in that it supports full tree functionalities in both search directions. The
bottleneck of Affix Trees is their space requirement for storing the data structure. Here,
we discuss existing representations and classify them into two categories: Synchronous
and Asynchronous. We design Compressed Affix Tree indexes in both categories and ex-
plored how to support all tree operations bidirectionally. This work compares alternative
approaches for compressing the Affix Tree, measuring their space and time trade-offs for
different operations. Moreover, to our knowledge, this is the first work that compares all
Compressed Affix Tree implementations offering a practical benchmark for this structure.

Introduction

Stringology offers many indexes for unidirectionally searching a pattern in a text, but
recently the need for bidirectional search tools arose for instance in genomics. An
example is the search of hairpin like structures that consist of a loop motif (a short
core sequence) and a tail (such that on each side of the loop motif is one half of
a palindromic string) [1]. In this search, when a candidate loop is found, one can
extend the search with each branch of the hairpin. The search of such motifs has
triggered the development of bidirectional indexes: first the Affix Tree [2, 3], then the
Affix Array [4], and more recently the Bidirectional Wavelet Tree [5]. In all these
approaches the procedure can switch the search direction at any time during the
search, which is needed when the whole pattern is not a single word given at start
time, but can shrink or extend in piecewise during the search. Also, recently Affix
Trees have been mentioned as a way to represent complex graphs encoding string
overlaps, for example, the Hierarchical Overlap Graph [6].

Here, we introduce a classification of bidirectional indexes based on how they
are traversed, Asynchronous and Synchronous. We propose new Compressed Affix
Tree indexes in both categories: the Asynchronous Compressed Affix Tree (ACAT)
and the Synchronous Compressed Affix Tree (SCAT), and explain their practical
implementations. Moreover, we exhibit both a reduced version of the index of [7],
and a sampled version of ACAT. To evaluate the potential of these approaches and
to compare them with different indexes for bidirectional search, we have implemented
the Affix Array [4] (given that the original was not available), and compared seven
indexing structures in practice. This yields the first large and practical overview of
bidirectional search indexes in term of memory usage, and of operation times. Last,
all the implementations designed for this article can be found at https://github.
com/rcanovas.
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Operation Description

Root() Root of the Suffix Tree.

Depth(v) String-depth of v.

Parent(v) Parent node of v.

SLink(v) Suffix-link of v; the node w s.th. w(w) = B if 7(v) = af for a € .
W Link(v, a) Weiner-link of v given a; the node w s.th. m(w) = af if 7(v) = 8.
Child(v, a) The node w s.th. the first letter on edge (v,w) is a € 3.
Children(v) The list of nodes w such that w is a child of v.

Degree(v) Number of children of v.

Table 1: Example of navigational operations over the nodes and leaves of a suffix
tree.

Basic Concepts

Let ¥ denote a finite alphabet of cardinality ¢ and T be a sequence of characters
from ¥. The length of T"is denoted |T'| and let n := |T'|. The characters of T" are
indexed from 1 to n, so that the i-th character of T"is T; or T'[i]. A substring of T is
denoted T; ; = T;T;41 ... Tj. A prefix of T is a substring of the form 7} ;, and a suffix
is a substring of the form 7;,,.

Suffix Tree Let P = {S! --- SV} be a set of N strings. A Trie [8,9] is a tree
where each edge is associated with an element of > and each node represents a distinct
prefix in the set P. This structure supports searching for a string in the set in time
proportional to the length of the sought string (independently of the set size).

The Suffix Trie of a text T is a Trie built over the set of all the suffixes of T
(assuming that 7' is terminated by a special element “$”). The Suffiz Tree (ST)
[10,11] of a text T is a Suffiz Trie where each unary path is converted into a single
edge. The leaf of the Suffix Tree indicates the text position where the corresponding
suffix starts. Table 1 lists some of the operations used to navigate over the nodes and
leaves of the Suffix Tree and introduces a notation for these.

Various Compressed Suffiz Tree (C'ST') [12-15] implementations offering different
space vs time trade-off are available.

Suffix Array A Suffix Array (SA) [16] is a permutation of the interval [1,n] such
that T'safin <z Tsapi+1),n for all1 <4 < n, where <, denotes lexicographically smaller
than. Several implementations of Compressed Suffiz Arrays have been designed [17,
18]. Each provides three main operations: 1/ given i extract the value of SA[i], 2/
given a position j in the text T, fetch its position in the Suffix Array (SA™![j]), and
3/ find in SA(T') the interval of the suffixes starting with a given pattern.

The Suffix Array and the Suffix Tree of a text are connected. When the children of
each node of ST(T") are ordered lexicographically by their string label, SA(T') contains
the positions of the Suffix Tree leaves visited in left-to-right order. Moreover, every
internal node v of the ST(T') can be represented as an interval [i, j] of SA(T') whose
suffixes share a prefix corresponding to node v.

Generally the Suffix Array is enhanced with the Longest Common Prefix (LCP)
array, which allows solving many string processing problems in optimal time and
space. Conceptually, the LC'P array defines the shape of the Suffix Tree and thus
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allows any traversal of ST(T') to be simulated using SA(T).

Burrows-Wheeler Transform (BWT) For a text T of length n, the
BWT (T"*) [19] is the last column of an n x n matrix, denoted My, whose rows
are the rotations (or cyclic shifts) of 7" sorted in lexicographic order. Equivalently,
the BWT collects the character preceding each suffix of 7" in the order of SA(T).
Hence the BWT can be identified with SA. Assuming that the last symbol of T is
lexicographically smaller than all the others and unique, it is possible to reverse the
transformation: T'[n — 1] is located at T*"![1], since the first element of My starts
with T'[n].

The LF', or Last-to-First mapping, function allows us to move from the character
T![i], in the last column of Mz to its position in the first column of Mrp. Thus, LF
allows us to navigate T backwards, T'[n — 2] = T**![LF(1)], and for any position ,
Tn — k] = T*'[LF*1(1)]. In general, T"*" is stored using a wavelet tree [18,20].
The 7% is mainly used for pattern search using a method called backward search
(making use of LF' and a sampling of the SA), which is implemented by the family
of indexes known as FM-indexes [18].

Affix Tree The Affiz Tree was introduced and tested by Stoye [3], then further
studied by Maa$l [2]. To support bidirectional applications, it combines the Suffix
Tree of T' (denoted ST') with the Suffix Tree of the reversed text of T' (denoted RT).
The Affix Tree distinguishes four kinds of nodes in a Suffix Tree: ezplicit nodes,
which have at least two children; tmplicit nodes, which belong to an edge between
two explicit nodes; explicit leaves, which cannot be extend any further in the tree;
and implicit leaves, which belong to the edge linking an explicit leaf to its parent.
In the Affix Tree, each internal node (explicit and implicit) of ST is associated to
a node in RT, and vice versa, by an affiz link. The construction of an Affix Tree
theoretically takes linear time and space, but in practice it “required large amount
of memory (approximately 45n bytes) and its complex data structure decreased the
algorithmic performance” [4].

A Classification of Bidirectional Indexes

A bidirectional index in general includes a data structure to search from left to right
in T, and another to search from right to left. We call them respectively the Forward
Structure (FoS) and the Backward Structure (BAS) and say that each is the com-
panion structure of the other. In this work we consider two classifications for storing
and maintaining the current state: Asynchronous and Synchronous.

In the Asynchronous mode, the index maintains a single current state (or current
node), say the current state for FOS, and when a switch of direction is needed, it
computes the corresponding state in BAS, before carrying on the search in the oppo-
site direction. To facilitate updating the current state, the index stores in an extra
table the corresponding node in BAS for each explicit node in FOS. A symmetrical
table is needed to switch from BAS to FOS. Notice that under this definition, it is
only possible to switch between the structures from a explicit node to an internal
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Figure 1: An Asynchronous state is always based on one side of the data structure
being necessary to support transitions between FOS and BAS. A Synchronous state
contains information about FOS and BAS keeping them always updated after each
operation.

node. In this mode an state is defined as a quadruplet (d, [, node, k), where d is the
direction of the data structure to which the (explicit) node with path length [ belong,
and k is the context length.

In the Synchronous mode, one maintains a pair of current states: one for FOS, one
for BAS. Hence, at each modification of the matched word, both states are updated.
These indexes store less information then Asynchronous indexes, but pay an extra
time at each extension of the search. The pair of states must always be synchronized.
In this case an state is defined by the triplet (nodegos, nodepas, [). Figure 1 shows an
example of states for both categories.

Asynchronous Approaches

The first attempt to reduce the space required by Affix Trees was the Affix Array
(AFA) proposed by Strothmann [4]. He replaced each Suffix Tree by a Suffix Array
plus an LCP array. In addition, he included two child tables [21] to ease locating
the children of any node/interval. Finally, the AFA also stores for each explicit node
(of FOS and BAS) the pointer to its corresponding node in the companion structure.
The arrays storing these pointers are called the Affiz Link arrays (ALink). The AFA
allows both fast access to the child of a node, and fast switching between FOS and
BAS. Also it supports the operation suffiz-children (prefiz-children), which returns
all possible nodes that are an extension of a node by one character to the right (left).

To compute the ALink arrays, Strothmann’s algorithm precomputes for FOS the
SLink (see Table 1) of all explicit nodes. Then, it traverses the explicit nodes in
depth-first preorder, checks whether the ALink value of the current node is already
stored, otherwise computes it. For a node v whose ALink value is unknown, it uses the
formula: ALink(v) := Childg,s(ALink(SLink(v)),c), where ¢ is the first character
on the string path of v. Computing the ALink array of BAS is symmetrical.

We notice that Strothmann’s algorithm for computing the ALink for a node v
can take many recursive calls (in the worse case, a number equal to the length of
the string path of v). Instead, we propose to visit the nodes in level order, such
that the computation of the ALink for a node v takes a number of recursive steps
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that is bounded by the length of the edge linking v to its parent. We experimentally
observed that Strothmann’s algorithm exhausted the available memory for a 50 MB
text. So, in this work we compute the ALink array using our proposed methodology.

Strothmann also proved that for every state (0, |s|,v,0), its reverse associated
state is given by (1, |v|, ALink(v),k = |v| — |s|). Note that when |s| < |v| (i.e., s is
an implicit node), the path of s is a prefix of the path of v. Thus, the path of the
reverse of s is a suffix of the path of ALink(v) starting at position k (see Figure 1).

While the AFA improves on the Affix Tree regarding space, it still requires a huge
amount of memory and supports only operations that can be solved using the C'hild
operation. Since Strothmann’s approach, several compressed representations of the
Suffix Tree [12-15] have been reported. We propose to upgrade the AFA by keeping
the ALink arrays but representing FOS and BAS using C'ST's. This approach, denote
as ACAT (Asynchronous Compressed Affix Tree) uses less memory than AFA and
supports all tree operations.

Moreover, given the ALink formula, it is clear that we don’t need to store all
the ALink values (provided that FOS and BAS support SLink). According a user
defined parameter z, indicating the maximum distance to a sample node in number
of suffix links, we store whether or not the ALink value of a node is sampled. To
check if we need to sample the ALink value of a node, we just need to examine
that none of the nodes traversed by doing the operation SLink z times is already
sampled. Otherwise the node is not sampled. We name this approach the ACATS
(Asynchronous Compressed Affix Tree Sampled). It reduces the space used by the
Affix Link arrays, at the cost of longer time for switching between the structures. In
the worse case, for each switch at a unsampled node, ACATS would take additional
z SLink and C'hild operations to get the ALink value of that node.

The lightest scenario for ACATS is when we do not store the ALink arrays at
all. Then, each time we want to compute the corresponding state in the companion
structure, we compute it starting from the root. Albrecht and Heun [22] studied how
to optimally obtain the ALink in this case using binary search. A faster approach
was presented by Gog et al.[7]. As the procedure is symmetrical for a node BAS or
of FOS, we explain it for the latter. They noted that if an internal explicit node v is
represented as a SA interval [[, 7], then all the text positions SA(k) (with | < k <)
where the string path of the current node occurs are known. This also implies that
it is possible to compute all the positions where the reverse string path occurs in the
reverse of T" as w, = n— (SA(k) + Depth(v)). With this on mind, Gog et al.proposed
first to compute the array A[i] := SA5lq(n — SA(i)) for 1 < i < n, which converts an
entry of the SA of FOS into the matching entry in the SA of BAS. Then to find the
reverse representation of v, it is enough to have an structure to compute the minimum
and another to compute maximum values of A[k] for [ < k < r, which points to the
leafs in BAS associated with these values, and to return their lower common ancestor.
We refer to this approach as ACATN (ACAT Non-sampled). For more details of
how the array A is stored and queried, we refer the reader to [7].

Finally we notice that the space used by ACATN could be further reduced. When
we switch from one structure to another, it is enough to know only one extremity of
the SA interval in the reverse structure, given that the lengths of both intervals are
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equal [4,5]. This simple fact implies that one of two structures is superfluous (say that
for compute the maximum), and that it reduces the number of operations performed
during a switch. We denote this reduced approach as RACATN (Reduced ACATN).

Synchronous Approaches

The Synchronous scheme aims at getting rid of Affix Link arrays by keeping FoS
and BAS continuously synchronized. This necessarily increases the search time. For
example, if in FOS one extends the current string path by one symbol to the right,
then one also needs to extend the string path in BAS by the same symbol to the left.

To improve over the AFA in terms of space and still support bidirectional search,
two groups have proposed in parallel to use an Affix Array like structure based on the
BWT [5,23]. This approach is called the Bidirectional BWT (BIDW'T for short).
The underlying idea is to store FOS and BAS using data structures that support
backward search based on a wavelet tree (FM-Indexes). Then backward and forward
extensions of a search are both possible. Indeed, to extend a current node to the right
with character ¢, one performs a backward search of ¢ from the current state in BAS.
For more details, we refer the reader to [5].

While the BIDW'T requires much less space than the Affix Array and offers fast
search extension by one character, it does not support any tree operation which allow
to shrink the current pattern. Moreover, the BIDW'T only offers search extension for
a single character. This means that performing an operation like suffiz-children, one
needs to explore the possible extensions for all letters of the alphabet. A similar issue
occurs for the C'hild operation, whenever the child path is longer than one symbol.

We propose to upgrade the BIDWT by storing FOS and BAS as C'ST instead of
FM-Indexes. We call this approach the Synchronous Compressed Affix Tree (SCAT).
The SCAT can support all tree operations within each structure, but the issue of
maintaining both structures synchronized remains. Fortunately, we noticed that each
tree operation has an equivalent operation in the reverse tree. That is, Parent-Slink
and C'hild-W Link, and all other operations can be solved using these four operations.
Let us give the algorithms for computing Parent as an illustration.

Let (nodegos, nodeg,s, ) be the current state. To compute the Parent in FOS, we
return (Parent(nodeyos), SLinkP(nodeg,s),l — p), where p is the length of the edge
between the nodero,g and its parent.

Results

In order to compare the approaches presented in this work, we used four different in-
put files obtained from the pizzachilli text collection': DNA, PROTEINS, XML, and
ENGLISH. The alphabet of size of the text tested are 16, 27, 97, and 239 respectively,
and we use the 50 Megabytes version of each of them (given the high memory require-
ment used by AFA). The pizzachilli web-page provides a detailed descriptions of the
input files. All experiments were performed on a computer with Intel(R) Xeon(R)
CPU E5-2623 v3 up to 3.00 GHz, The operating system was Ubuntu 14.04.01, version

http://pizzachili.dcc.uchile.cl/texts.html
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Figure 2: Construction time versus storage space.

3.19.0-59-generic-generic Linux kernel. Finally all the approaches described here were
implemented in C++11, using version 4.8.4 of the g+-+ compiler.

Each implementation uses one specific type of data structure to represent FOS
and BAS (but the same for both). We compared the following methodologies: AFA
(which we implemented following Strothmann’s description [4], since we did not find
an available implementation); BIDWT (a wrap implementation using the sdsl library
[20], which includes the bidirectional backward and forward search presented in [5]);
ACAT; ACATS (using as sample parameter z = 1); ACATN (based on the work
of Gog et al. [7]); RACATN (our reduced version of ACATN); and SCAT.

In this work all the approaches that used a C'ST were implemented using the sct3
version from the sdsl library [13], which offers a good space/time trade-off in practice.
Even if other C'ST implementations could offer different trade-offs, or reduce the
number of operations to run, we assume that the sct3 implementation gives a fair
methodology to compare all studied approaches.

For space limitations, we show the results of each experiment only over the DNA
and ENGLISH texts, which are the ones with smallest and largest alphabet. Also in
all figures of this section, the horizontal and vertical axes are in logarithmic scale.

Figure 2 shows the space used by each structure (measured in bytes per character
of the original text) vs its construction time (in seconds). We observe that our
AFA implementation takes over 20 bpc, which is consistent with the figures in [4].
In comparison the ACAT takes 10 bpc (less than half the AFA), which makes it
scalable enough to index a Human genome (whose length is ~ 3 Gb). Clearly, the
Asynchronous indexes takes longer time and more space than Synchronous indexes,
but most of their construction time is spent for computing the Affix Link arrays
(which use ~ 6.5 bpc when is completely stored) or some equivalent (the array A for
ACATN and RACATN). The SCAT structure uses almost twice the space of the
BIDWT, auguring well of their scalability. This comparatively higher memory usage
is the price to pay for supporting all tree operations, and improving the versatility.

We tested three different operations (chosen to be supported by all indexes):
Forward-Backward search, suffiz-children and prefiz-children. Among the opera-
tions that are supported by full Affix Trees (i.e., not by AFA nor BIDWT), we only
show experiments results for SLink due to space limitations (Note that the perfor-
mace of tree operations can change depending on the C'ST structure used). For the
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Figure 3: Forward-Backward search time vs space usage.

Forward-Backward search, we took samples of 1000 random sequences of length
100 from the text and searched them performing forward and backward searches al-
ternatively (thereby switching the direction after each symbol), and repeating the
experiment with 1000 samples. For the operations suffiz-children, prefix-children,
and SLink we performed each on random samples of 10000 internal nodes. In all
experiments, we report the average time taken to perform one operation.

Figure 3 shows the space used by the indexes (in bpc) versus the time (in mi-
croseconds) obtained for Forward-Backward search. The only competitive solutions
against BIDW'T, are the AFA and SCAT approaches. While AFA offers a faster
performance but required huge amounts of space, SCAT, which is almost 10 times
slower, supports all tree operations. Note that the solutions containing a represen-
tation of the C'ST could instead incorporate a FM-index (like the one used by the
BIiDWT). In this case, it would be possible to re-implement the operation Forward-
Backward search to obtain the same performance than BIDW T

Given that the performance for suffiz-children and prefix-children are similar, we
only show the result for suffiz-children in Figure 4. As for the Forward-Backward
search, AFA approach displayed the best time performance, since almost all required
information by these queries is explicitly stored. We also notice that with BIDW'T
the query time for these two operations depends on the alphabet size of the input
text, while SCAT depends on the C'ST structure chosen. The differences in time for
the these operations between the Asynchronous approaches are due to the way that
each index switches between FOS and BAS. So comparatively, a direct computation
of Children is an advantage only with larger alphabets, when checking all possible
symbols becomes expensive for the BIDW'T.

Figure 5 shows the average time to perform the SLink operation (which is not
supported by BIDWT and ArA). While the Asynchronous approaches needs only
one operation to return the SLink, SCAT always had to perform two operations,
which explains the longer average times obtained with SCAT than with the other
methodologies. We found this behavior repeated when tested other tree operations.

Summarizing, while BIDWT uses less space and offers faster backward/forward
search of extension of one character, it doesn’t supports all the tree operations and
is sensitive to the alphabet size when computing operations related with child. The
AFA approach offers generally fastest operation times, but requires too much space,
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and also miss some tree operations. When full affix tree operations are required,
SCAT uses less space, while being competitive with the Asynchronous approaches.
We prove that RACATN improve both in space and time over ACATN. We show
that ACATS with a sample parameter of 1 (z := 1) uses &~ 70% of the space of
ACAT, while offering similar time performances. Moreover, although increasing z
would reduce the space of ACATS, SCAT gives a lower bound for space and achieves
almost equivalent running times (compared to ACATS with z = 1).

Conclusions

We investigated the design of compressed versions of Affix Trees proposing sev-
eral new structures and introduced a way to classify these approaches (Synchronous
orAsynchronous), offering a first benchmark of Affix Tree compressed data structures.

As future work, it will be interesting to see how the structures presented in this
paper can be used for pattern search with errors, where it is necessary to be able to
extend and shrink the pattern during the search. Also, new approaches for bidirec-
tional search will keep emerging (for example [24]), being of great interest to explore
how these new solutions would compare with the ones presented in this work.
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