
BIOINFORMATICS Vol. 20 no. 16 2004, pages 2812–2820
doi:10.1093/bioinformatics/bth335

STAR: an algorithm to Search for Tandem
Approximate Repeats

Olivier Delgrange† and Eric Rivals∗

Université de Mons Hainaut, Service d’Informatique Générale, Avenue du champ de
Mars, 6, Mons, 7000, Belgique and LIRMM, CNRS UMR 5506, 161, rue Ada,
Montpellier Cedex 5, 34392, France

Received on October 10, 2003; revised and accepted on May 13, 2004

Advance Access publication September 4, 2004

ABSTRACT
Motivation: Tandem repeats consist in approximate and adja-
cent repetitions of a DNA motif. Such repeats account for
large portions of eukaryotic genomes and have also been
found in other life kingdoms. Owing to their polymorphism,
tandem repeats have proven useful in genome cartography,
forensic and population studies, etc. Nevertheless, they are
not systematically detected nor annotated in genome projects.
Partially because of this lack of data, their evolution is still
poorly understood.
Results: In this work, we design an exact algorithm to loc-
ate approximate tandem repeats (ATR) of a motif in a DNA
sequence. Given a motif and a DNA sequence, our method
named STAR, identifies all segments of the sequence that cor-
respond to significant approximate tandem repetitions of the
motif. In our model, an Exact Tandem Repeat (ETR) comes
from the tandem duplication of the motif and an ATR derives
from an ETR by a series of point mutations. An ATR can then
be encoded as a number of duplications of the motif together
with a list of mutations. Consequently, any sequence that is
not an ATR cannot be encoded efficiently by this description,
while a true ATR can. Our method uses the minimum descrip-
tion length criterion to identify which sequence segments are
ATR. Our optimization procedure guarantees that STAR finds
a combination of ATR that minimizes this criterion.
Availability: for use at http://atgc.lirmm.fr/star
Contact: rivals@lirmm.fr
Supplementary information: an appendix is available at
http://atgc.lirmm.fr/star under ‘Paper and contacts’.

INTRODUCTION
Approximate tandem repeats (ATRs) consist in approximate
and adjacent repetitions of a DNA motif. ATR are wide-
spread in eukaryotic genomes and thus important from an
evolutionary view-point. Surprisingly, ATR are not annotated
consistently in database entries of sequence repositories.

∗To whom correspondence should be addressed.
†
Present address: Université de Lille, LIFL UMR CNRS 8022, 59655

Villeneuve d’Ascq, France

Actually, systematic detection of significant ATR in a way
that is independent on the motif or on the sequence length is
beyond the scope of present methods. Nevertheless, locating
ATR represents a relevant issue as polymorphic ATR play an
important role in population genetics, forensic medicine, and
also in the development of diseases such as cancer, epilepsy
and others (Buard and Jeffreys, 1997).

In biology, tandem repeats are classified according to the
length of the repeated motif into micro- (below 6 bp), mini-
satellites (from 7 to 100 bp) and satellites (above). Computer
scientists distinguish between tandem repeats, which contain
two copies of the motif, and multiple repeats, with more than
two copies.

Related works
Some methods allow to identify in the sequence windows with
unusual words composition (Hancock and Armstrong (1994);
Claverie and States (1993); Wootton and Federhen (1993).
The sequence of such windows may depart from an ATR.
Well known in biology is the RepeatMasker program (see
http://repeatmasker.genome.washington.edu), which given a
set of repeat sequences (not necessarily tandem repeats) loc-
ally aligns the input sequence with any repeat from the set. It
is used to mask repeats in a sequence before further analyses.
Its ability to find tandem repeats depends on the repeat set. It
is not a method devoted to search for ATR.

Among the algorithms that aim at precisely locating tandem
repeats, one can identify three classes. In the field of computer
science, several fast algorithms deal with searching only two
duplications or exact tandem repeats (among others see Main
and Lorentz, 1984; Kolpakov and Kucherov, 1999; Stoye and
Gusfield, 2002). These may be used as filters to point out pos-
sible duplicated motifs, but are not appropriate for practical
issues in biology. Other methods search for ATR where the
copies of the motif may differ from each other only by substi-
tutions (Kolpakov and Kucherov, 2001; Landauet al., 2001).
A similar approach (Coward and Drabløs, 1998) discovers
periodicities in a sequence without finding the boundaries
of the ATR. It performs alignment without indels. These
algorithms have good complexities and short computation

2812 Bioinformatics vol. 20 issue 16 © Oxford University Press 2004; all rights reserved.

http://atgc.lirmm.fr/star
http://atgc.lirmm.fr/star
http://repeatmasker.genome.washington.edu

STAR

time in practice, but will miss ATR having undergone any
insertion or deletion.

Among the algorithms that locate ATR and authorize sub-
stitutions and indels are the works of Rivalset al. (1997),
Sagot and Myers (1998) and Benson (1999). The method in
Rivalset al. (1997) is limited to small motifs and allows only
indels between two occurrences of the motif inside an ATR.
Sagot and Myers’s method first filters out non-repetitive parts
of the sequence using statistical properties. On the remaining
segments, it enumerates all ATR that fulfill criteria fixed by
parameters: minimal number of repeats, range of motif size,
maximal number of differences between the repeats and a
motif. This is a combinatorially exhaustive approach that iden-
tifies several possible motifs and alignments for each ATR,
and whose complexity depends exponentially on some para-
meters. The software Tandem Repeat Finder (Benson, 1999)
first searches for significant exact repetitions in the sequence.
It then uses these repetitions as anchors and checks if the
alignment of the region with an ETR scores above a user-
defined threshold. The numbers of ATR reported varies with
the threshold and for a given threshold the level of approx-
imation allowed depends on the motif length. So, choosing a
threshold for systematic annotation remains an open question.

In this work, we design a new algorithm that detects all sig-
nificant ATR of a given motif, where significance is assessed
using the Minimum Description Length (MDL) criterion.
MDL provides an absolute measure of the significance of
an ATR independently of the motif. It evaluates how many
mutations are allowed in an ATR when compared to an ETR
of the best possible length. Our algorithm, STAR, needs no
threshold value and optimally locates ATR of any input motif
with respect to (w.r.t.) the MDL criterion.

ALGORITHM
Given a sequences of lengthn, and a motifm of lengthp,
our algorithm, STAR, locates all significant ATR ofm in s.
It uses the MDL criterion to distinguish between significant
ATR segments and ‘random’ ones. The MDL criterion is a
formal version of the Occam’s Razor principle, which dates
back to the 14th century: ‘One should not increase, beyond
what is necessary, the number of entities required to explain
anything’. In other words, if there are several hypothetical
causes for a phenomenon, the simplest or shortest one is more
probably the real one. Following the MDL criterion, lossless
data compression was used to analyze genetic sequences in
Milosavljevic̀ and Jurka (1993); Grumbach and Tahi (1993)
and Rivalset al. (1996, 1997). The mathematical foundations
of this approach lies in Kolmogorov Complexity Theory (Li
and Vitanyi, 1997).

A DNA sequences is the description of a DNA molecule.
Now consider a lossless compressor that outputss′ from s. s′,
the compressed version ofs, is another complete description
of s; indeed,s can be exactly recovered froms′. If s′ is shorter
thans, if the method effectively achieved compression (which

is never guaranteed for any sequence), thens′ is a better
‘description’ thans according to the MDL criterion. In fact, a
compression method tries to reduce the size of a sequence by
exploiting a propertyP. It re-encodess relatively toP and this
may compresss or not. The more relevant the property, the
better the compression. Here, the propertyP of interest is ‘s
contains segments that are significant ATR ofm’. Kolmogorov
Complexity Theory shows thats can only be compressed by
such a compressor if it fulfillsP (at least on some segments).
On the opposite, ifs is not compressed, then it does not satisfy
P (cf. non-randomness tests in Li and Vitanyi, 1997, Ch. 5,
p. 377). Therefore, the compression gain, which measures the
size reduction betweens and s′, is an objective and global
evaluation of the relevance of the propertyP for s. Indeed,
it is a significance measure since the probability of observing
a compression gain ofd-bits is less than 2−d (Milosavljevic̀
and Jurka, 1993).

In this set up, the efficiency of the compression method is
of primary importance. The emphasis of our study lies on the
compression optimization. Usually, a compression method
makes a blind exploitation of the property everywhere in the
sequence. If some segments are really shortened this way,
others are in fact lengthened because they do not fulfillP. For
the latter, call themP incompressible, the original segment
sequence would be a shorter, better description. Replacing the
encoded version of this segment ins′ by this original descrip-
tion would improve the global compression gain. For this, the
coding scheme must be adapted to allow switching between
the two codes and additional information must be included.
We design such a coding scheme and an optimization pro-
cedure that allow STAR to find the decomposition ofs into
ATR andP incompressible segments that is optimal w.r.t. the
compression gain. It precisely locates all segments which sat-
isfy our propertyP. Moreover, it does not need an arbitrary
threshold to do so. However, an initial compression method
is required to efficiently exploitP everywhere.

STAR operates in three steps. First, STAR aligns the
sequences with a perfect repeat (ETR) of the motifm and
obtains an optimal list of mutations that convert this repeat
into s and the optimal length for the ETR. This is done by
Wraparound Dynamic Programming (WDP) (Fischettiet al.,
1993) which computes the optimal alignments betweens and
any factor ofm∞ in O(np) time (m∞ denotes the right infinite
repetition ofm). From the mutation list, STAR evaluates in a
second step the compression gain as ifs was a single ATR of
m. For a true ATR, one expects that the mutation list is short
and that it is more economical to encode the motif, the length
of the ETR, and the list of mutations. But often, only some seg-
ments ofs are true ATR. In this step, called CompWDP, STAR
computes the curve of the compression gain overs. This curve
is defined at positions just before or just after mutations (which
are known from the list). For a true ATR segment ofs, it is
possible to compute its local compression gain by substracting
the compression gain at its begin and end positions. A little

2813

O.Delgrange and E.Rivals

thinking shows that such a segment does not start or end by a
mutation ensuring that the curve is defined at these positions.
By the theory, a true ATR segment has a positive compression
gain, i.e. the curve increases between its endpoints. For seg-
ments that are not ATR, coding them (nearly) ‘literaly’1 takes
less bits. To maximize the global compression gain overs, it
is thus appropriate to switch between literal encoding for non-
ATR segments and the above-mentioned compression scheme
for ATR segments. The third step, TurboOptLift, achieves
this maximization by decomposings into ATR and non-ATR
segments optimally w.r.t. the global compression gain.

The remaining of this section starts with some prelimin-
aries on compression, and presents the two last steps of the
algorithm CompWDP, and TurboOptLift. For the first step
WDP, we refer the reader to Fischettiet al. (1993).We finish
by the analysis of the time complexity.

Preliminaries
Some concepts about sequences, compression, codes andATR
are formally presented here.

A word is a finite sequence of letters of an alphabet; it is also
called a sequence. For a words, |s| denotes its length andsi ,
with 0< i ≤ |s| denotes itsi-th letter. Afactor of s is made of
consecutive letters ofs: for 0< i ≤ j ≤ |s|, si...j denotes the
factor si . . . sj . The empty word has length 0 and is a factor
of every word. The factors1...i (resp.s|s|−i+1...|s|) is theprefix
(suffix) of length i ofs. Then-th power of s, notedsn, is the
words, concatenatedn−1 times with itself. In this paper, we
consider the nucleic alphabetN = {a, c,g, t} and the binary
alphabetB = {0, 1}. A DNA sequence as a word overN .

A code enables us to write items overB. It must be
injective to allow a unique deciphering. Let Nuc be the code
that maps each nucleotide (∈ N) to a 2-bit code as fol-
lows: (a, 00), (c, 01), (g, 10), (t , 11). Nuc extends to DNA
sequences: e.g. the sequences := aggcta is coded as
Nuc(s) := 00 10 10 01 11 00.

Given an input sequences, a compression methodC com-
putes the compressed sequences′ such that the entire sequence
s can be reconstructed froms′. Whatever is the input alpha-
bet, the output alphabet isB. The compression of a sequence
is effective if it reduces its length. To be able to compare
the length of the compressed sequence with the length of
the original sequence, the latter must be virtually rewritten
with Nuc overB before comparison. Therefore, the compres-
sion of a nucleic sequences, using methodC is effective
if |s′| < |Nuc(s)| = 2|s|. The natural way to rewrite a nuc-
leic sequence overB is to use Nuc because, without any
assumption about the nucleic frequencies, it uses the same and
minimal number of bits for each nucleotide. The compression
gain is the number of bits saved by the compression and is
given by 2|s| − s′ for a nucleic sequences.

1i.e. coding their length, and the segment as a sequence (see next Section).

A code is self-delimiting (SD) if no codeword is a prefix of
another codeword. It allows codewords written one after the
other in a file to be decoded unambiguously. A compressed
sequence is a series of codewords of a SD code. Nuc is SD
because all codewords have identical length. It is not true for
the usual variable-length binary representation of integers:
every codeword (e.g. 10≡ 2) is a prefix of other codewords
(e.g. 1000≡ 8).

We denoteFL(x, l) the fixed length encoding of integer
x < 2l using l-bits (each codeword has enough leading 0s
to reach lengthl). For bounded integers, fixed-length bin-
ary representation is a SD code for a given codeword length.
Encoding unbounded integers requires variable-length SD
codes (Apostolico and Fraenkel, 1987; Li and Vitanyi, 1997).
We use the Fibonacci code (Apostolico and Fraenkel, 1987)
that represents integers using the Fibonacci numbers as a basis
(see Appendix). With Fibo the code length grows logarithmic-
ally with the integer, i.e.|Fibo(x)| ∈ θ(logx). Moreover, this
code satisfies the ICL property needed by our optimization
algorithm (see Optimization algorithm Section).

Formally, an ETRe of a wordm, is a factor of a power of
m, i.e. e := u · mi · v with i ≥ 0, u (respectivelyv) a suffix
(respectively a prefix) ofm. An ATR of m is defined as an
ETR ofm which has undergone a small number of mutations.
For example,t att act_cgt a is an ATR ofact.

Compression step (CompWDP)
CompWDP computes the curve of the partial compression
gain yield by the ATR compression scheme over the sequence,
i.e. for some positioni in s, the compression gain overs1...i .
This value is denotedCm(i). CompWDP takes as input the out-
put of the WDP, which is the length of the optimal ETR and the
list of mutations that transform this ETR intos. After describ-
ing the coding scheme, we explain howCm(i) is computed
for all valid positionsi.

The ATR coding scheme encodes an ATR of motifm by
first writting m in a self delimited format, and then coding the
alignment. This scheme is suited for coding true ATR whose
alignment to an ETR contains mainly identities and can be
efficiently encoded by the list of mutations. More precisely, it
suffices to write the positions that need to be mutated and the
corresponding mutation that allows to recovers from the ETR
of m. As the ETR may start at any position inm, the phase
of m at the beginning of the alignment needs to be encoded.
The coding scheme starts with a preamble followed by the
encoding of the list. The preamble includes:

• Fibo(p−1): the motif length (p) minus one sincep > 0,

• Nuc(m): the motifm in natural encoding,

• FL(k, �log2 p): the starting phasek in m of the align-
ment; we know that 0≤ k < p.

The alignment is coded as a succession of jumps over segments
of identities followed by a mutation. A jump is a position off-
set coded as an integer. For a given current position, we know

2814

STAR

Fig. 1. Output of WDP (a) and CompWDP (b) with motif ttc.

which character is at this position in the ETR. It can be shown
that there are at most seven possible mutations (three inser-
tions, three substitutions, one deletion) as we know which
character is mutated. So, each mutation can be encoded on a
fixed 3-bit codes (since 23 = 8) with one code being unused.
Let us denote byq the total number of mutations in the align-
ment. The list isl1, t1, l2, t2, . . . , lq , tq , lq+1. For 1≤ j ≤ q, lj
is the jump from the previous mutation position (lj may equal
0), tj is the mutation to apply at the current position after the
jump. lq+1 is the length of the last segment of identities to
reach the end ofs (it may also equal 0). Eachlj is encoded
with Fibo andtj is coded with the associated 3-bit code. To
code the list, one reads the alignment and successively outputs
the code for eachlj andtj until the end. See Figure 1 for an
example of the compression step.

For any 1≤ j ≤ q, let us maptj to the last position in
s produced by the alignement up totj , say ij , and maplj
to i′j wherei′j := ij if tj is a deletion and toi′j := ij − 1
otherwise. A prefix of the complete code (preamble+list) up
to and including the code oflj encodess1...i ′

j
, and the prefix

up to and including the code oftj codes fors1...ij . The indices
ij and i′j are called separating positions. LetKm(i) denote
the code length for the prefixs1...i of s, thenKm(i) is defined
only if i is a separating position, since one cannot interpret an
uncomplete prefix of the code. The partial compression gain
up to a separating positioni is the difference between the size
of the natural encoding ofs1...i andKm(i), i.e. |Nuc(s1...i)| −
Km(i). So we haveCm(i) := 2i−Km(i) by definition of Nuc.

Now, the size in bits of the preamble can be computed in
constant time for givenm, p andk. Km(i), as well asCm(i),
can be caculated for all separating positionsi by a single pass
through the alignment inO(n) time, since the alignement is
at most 2n long. Therefore, the complexity of CompWDP is
O(n). Moreover, for two separating positions 1≤ i < j ≤ n,
the local compression gain of the segmentsi+1...j is given by
Cm(i) − Cm(j). Figure 2 shows the partial compression gain
on a 1000 bp DNA sequence.

Optimization algorithm (TurboOptLift)
The compression gain curve yielded by the ATR scheme and
computed in CompWDP contains increasing and decreasing

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 200 400 600 800 1000

P
ar

tia
l g

ai
n

Position
x y

Fig. 2. Compression curveCTTC applied to segment [63700–64699]
of Saccharomyces Cerevisiae chromosome XI.

segments. The former are ATR, while the latter areP
incompressible segments. This is illustrated on Figure 2. As
mentioned above, using a more complex coding scheme that
allows to alternate between the ATR scheme for increasing
segments and the natural scheme for decreasing segments
should improve the compression gain. In this section, we first
describe the scheme we designed for this purpose and derive
the formula for the global compression gain. Then we explain
TurboOptLift whose goal is to choose optimal number and
end positions of increasing segments such that the global gain
is maximized.

The general coding scheme The general coding scheme is
like the ATR scheme, except that it enables interrupting this
scheme by a rupture flag each time one wishes to switch to the
natural scheme. The natural scheme is adapted to be SD so that
when one reads the compressed sequence, one knows where it
ends and where the ATR scheme starts again. Moreover, one
has to encode the motif phase of the alignment when the ATR
scheme resumes.

The rupture flag, denotedaR, is the 3-bit code that does not
correspond to any mutation in the ATR scheme (see page 4),
which is a requisite. The natural scheme encodes the sequence
segment with Nuc preceded by its length encoded with the
Fibo code. The motif phasef is encoded as previously. There-
fore, if for some 1≤ i < j ≤ n we need to encodesi+1...j

in natural encoding, we write[aRFL(f , �log2 p)Fibo(j − i)

Nuc(si+1...j)] in the compressed sequence.
As the length of Nuc(si+1...j), i.e. 2(j − i), is also counted

in the original description ofs, the compression gain for such
a segment is 2(j − i) − |aRFL(f , �log2 p)Fibo(j − i)| −
2(j − i) = −(3 + �log2 p	 + |Fibo(j − i)|). In this expres-
sion, all terms are constant w.r.t. the segment length(j − i),
except the term|Fibo(j − i)|. The gain is negative: in fact,
it is a compression loss. Looking at the compression gain

2815

O.Delgrange and E.Rivals

Rx

Ry

mC

Crossing point

yx c

Fig. 3. Two potential rupture curves that cross themselves.

-50

0

50

100

150

200

250

300

0 200 400 600 800 1000

P
ar

tia
l g

ai
n

Position

Fig. 4. Compression curve of Figure 2 after the application of two
ruptures.

curve, this replaces a decreasing segment ofCm by a piece of
the curve shown Figure 3. The replacement curve, which we
call rupture, starts with a negative constant (vertical) drop,
and continues as a discrete logarithmic curve. This curve
depends only on the segment length, but not on its sequence.
Therefore, the form of the rupture curve is always the same
whichever segment we choose to replace. Changing from the
ATR scheme to the natural scheme is termed ‘applying a rup-
ture’, and will usually lift up the segment[j ,n] of the original
curveCm as shown Figure 4. A rupture, which starts necessar-
ily at a separating position, increases the partial compression
gain byCm(i)−Cm(j)−3−�log2 p	− |Fibo(j − i)|. Let us
denote byR(l), the negative contribution of a rupture of length
l to the compression gain:R(l) := −(3+�log2 p	+Fibo(l)|).
The optimization problem and TURBOOPTLIFT Given the
general coding scheme as described above, we can form-
ally state the optimization problem solved by TurboOptLift.
Assume one wants to applyk non-overlapping ruptures in
the coding and that the decomposition ofs is given by the
positions and lengths of the corresponding segments. Let
(bh,dh) for 1 ≤ h ≤ k be their list, wherebh is the
beginning position ins of the h-th rupture minus one and
dh its length. The global compression gain overs is given by:
Cm(n)+�k

i=1[Cm(bi)−Cm(bi +di)+R(di)], which follows
from the partial compression gain formula written above. The

goal of the third step is to find the optimal decomposition of
s that maximizes the global gain.

We show that if the rupture curve satisfies a given property,
finding the optimal decomposition is feasible inO(n log n)

time. The problem is complex since a brute force approach
would examine an exponential number of potential decom-
positions. We first exhibit the crucial properties of the rupture
curves, before explaining the algorithm and proving its valid-
ity. We first need a notation. Letx be a separating position and
Rx denote the potential rupture starting inx. For all i ≥ x,
G(i) is the global compression gain obtained after optimiza-
tion up to i and Rx(i) := G(x) + R(i − x) is the value,
at positioni, of the current compression curve improved by
ruptureRx over [x, i].

Rupture curves In fact, we show that fast optimization is
possible whenever the rupture length is encoded by a code
satisfying the Increasing Concave and Limited (ICL) property
(see Appendix). It shapes the rupture curve like a discrete,
stair-like, logarithmic curve with a step height of one and
increasing step’s width for successive steps (Fig. 3).

As there is a constant cost for beginning a rupture, an
optimal decomposition will never contain two adjacent rup-
tures, otherwise it would be better to continue the first until
the end of the second. Letx < y be the starting points of
two ruptures. ComparingG(x) andG(y) determines if the
curves cross or not, and after which point one dominates (i.e.
is above) the other. IfG(x) > G(y) (Fig. 3),Rx crossesRy

at the smallestc ≥ y for which Rx(c) > Ry(c), and at the
right ofc, Rx always dominatesRy . If G(x) ≤ G(y) thenRy

never crosses, and dominatesRx : Ry(i) ≥ Rx(i),∀i ≥ y.

The algorithm The input of TurboOptLift is the curve
Cm. TurboOptLift scansCm with the current positioni going
from position 1 untiln and at each iteration optimizes the
compression gain up to positioni. For this, it maintains the
cumulative increase of the compression gain up to the cur-
rent position, denote itI (i). The improvement is due to the
optimal ruptures applied between positions 1 andi. The sum
of Cm(i) andI (i) givesG(i). TurboOptLift computes the
value ofG(i) for all i and outputsG(n) as the optimal global
compression gain. AsI (i) is used only in one iteration, it is
stored in a single variableI rather than in an array.

TurboOptLift maintains the list of potential ruptures,
denotedLi ; it contains all rupturesRk, with k < i, that
could improve the curve at stepi or later. This list is sor-
ted by decreasing values ofRk(i) and by increasing rupture
length. This is a total order on the ruptures, which, we will see,
is crucial for the list maintenance.Rk(i) represents the sum
of the cumulated increase until positionk, plus the increase
obtained by applyingRk until the current position. Thus, the
best applicable rupture up toi is necessarily the first inLi .

TurboOptLift is outlined in Algorithm 1. Let us denote
by k1 the start position of the first rupture inLi . Lines 3–8
updateG(i) andLi . Line 4 checks whether a rupture needs

2816

STAR

Algorithm 1: TurboOptLift

1 I := 0.
2 for i := 1 ton do
3 if i is a separating position then
4 if Rk1(i) > Cm(i) + I then

//applyRk1 until i;
5 I := Rk1(i) − Cm(i); // updateI;

end
6 else

// I needs no update;
7 insert ruptureRi in front of Li ;

end
8 G(i) := Cm(i) + I ;

end
9 // purgeLi , and setLi+1 to Li ;

10 for each rupture Rk+1 of Li\{Rk1} in order do
11 if Rk+1 crosses Rk at pos. i + 1 then
12 removeRk;

end
end

end

to be applied untili. Owing to the ordering ofLi , this rupture
necessarily isRk1 . If Rk1 is applied, the cumulative increase
I is correctly updated (line 5). Moreover, the starting rupture
Ri is inserted only if it is not dominated byRk1, otherwise it
would not be useful. All this requiresO(1) time. Lines 9–12
purgeLi by removing ruptures that are dominated at position
i + 1 by the next rupture in the list. AsLi is sorted according
to the total order, this is done in one left-to-right pass over
Li . Only one test needs to be done for anyRk+1 since, if it
also dominatesRk−1, thenRk also dominatesRk−1 and the
latter was removed at the previous iteration. Thus, the inner
for loop is done inO(#Li) time, and as #Li = O(logn) (see
Appendix), the algorithm requiresO(n logn) time in total.

Note that ruptures are considered only at separating posi-
tions, butLi is updated at all positions. Moreover, ruptures are
applied only when they improveG(i) and the latter is updated
properly (line 8). The purge ofLi removes ruptures that are
dominated by another one inLi , which ensures that only use-
ful potential ruptures are inLi . Also, Ri is inserted inLi

only if it can be useful in further stages (see Appendix). This
sketches the correctness proof of TurboOptLift.

The output of the algorithm is the list of all segments not cor-
responding to ruptures, i.e. that are ATR ofm. In the example
of Figure 4 the increasing segment is easy to see. Of course,
on a larger scale such segments are invisible tiny peaks in
the compression curve. Now, we search for all ATR ofttc
in Saccharomyces cerevisiae chromosome XI (666 448 bp)
and the optimized compression curve is shown Figure 5. Four
ruptures are applied and three ATR are located (the three quasi-
vertical peaks of the curve). The first is the one found in the

-50

0

50

100

150

200

250

300

0 100000 200000 300000 400000 500000 600000 700000

P
ar

tia
l g

ai
n

Position

Fig. 5. Optimized curve ofC∗
TTC for S.cerevisiae chromosome XI.

1000-base long window of Figure 4, meaning that it is not only
significant in the small window, but also at the chromosome’s
scale.

Time analysis
The overall time complexity needed by STAR to find all ATR
of a given motif of lengthp, in a sequence of lengthn, is
O(np+n logn). Indeed, the time required by WDP isO(np),
the one of CompWDP is O(n), and the time complexity of
TurboOptLift is O(n logn). This enables STAR to analyze
large sequences. In practice, all ATR of a motif of 6 bp in a
sequence of a million bp can be found in a few seconds on
current computers.

RESULTS
Comparison with Tandem Repeat Finder
In this section, we want to assess STAR’s ability to find tan-
dem repeats of short motifs (<6 bp), i.e. microsatellites. As
a complete and biologically verified set of microsatellites is
unavailable, for a given genome one cannot distinguish the
true from the false ATR and evaluate the sensitivity and spe-
cificity of the method. We choose to compare STAR with
Tandem Repeat Finder (TRF Benson, 1999) on the nuclear
genome of the baker’s yeast, which comprises 16 chromo-
somes (Goffeauet al., 1996). TRF requires several parameters
the most influent of which being the alignment costs of
matches (M), substitutions (S), indels (D), and the align-
ment score threshold (T) for an ATR. On the TRF website, the
default values for these areM = 2,S = 7,D = 7 andT = 50
(The minimum recommended threshold isT = 30). We use
these costs as well as another set that penalizes more indels
than substitutionsM = 2, S = 6, D = 10, and threshold
values among 30, 36, 40, 50.

From the point of view of efficiency, TRF outperforms
STAR. To search for all ATR of a single motif on a chro-
mosome STAR needs as much time as TRF when it searches
for all ATR of all motifs of length less than 6 bp (on the order

2817

O.Delgrange and E.Rivals

a second). To detect all microsatellites, STAR is run with all
possible Lyndon motifs2 <6 bp (i.e. 964 motifs) and takes
about an hour.

As the two methods differ, TRF and STAR may not detect
an ATR exactly with the same begin and end positions in the
sequence. When computing the intersection of their results,
we distinguish between ATR of TRF that 1/exactly matches,
2/is strictly included in, 3/is overlapped over more than 80,
4/more than 50 or 5/< 50% of its length by an ATR of STAR.
The following table summarizes the average results over all
chromosomes for the costM = 2, S = 7, D = 7 and various
threshold values. In left to right order, the columns give: the
threshold value (Min Score), the number of ATR for TRF
and STAR (# TRF and# STAR), five percentages of ATR
found by TRF and STAR in different categories relatively to
TRF’s total (P1andP2 for categories 1/and 2/,C3, C4, C5
respectively for the cumulated percentage of all categories up
to 3, to 4 and to 5), and finally the percentage of ATR found
by TRF among STAR’s ATR.

STAR has no parameter (and does not depend on TRF
threshold value); it explains why the average number of ATR
it finds is constant (column# STAR). Indeed, decreasing the
threshold from 6 points from 36 to 30 results in an increase of
113% in the number of ATR found by TRF. Above the value
of 36, STAR finds more than 92% of TRF’s ATR (columns
C3, C4). This level increases to more than 98% when the
threshold raises toT = 40 or more. On the other hand, for all
values ofT , TRF detects at most 55% of STAR’s ATR.

Another remark is that more than 33% of ATR are exactly
the same in STAR and TRF output (columnP1) and more than
22% of TRF’s ATR (columnP2) are included in an ATR of
STAR, meaning that the latter are longer3. The same table for
the alignment costsM = 2, S = 6, D = 10 displays similar
results (see Appendix), showing that these seem independent
of the mutation penalties.

Min
score

Average
TRF # STAR

(TRF∩ STAR)/# TRF

P1 P2 C3 C4 C5 S

30 162 182 33.06 22.56 63.88 63.94 64.00 55.50
36 76 182 45.00 32.88 92.56 92.62 92.75 38.25
40 54 182 46.06 34.69 98.00 98.12 98.25 28.88
50 26 182 46.06 32.69 99.50 99.75 100.00 13.88

Microsatellites in the genome of Methanococcus
jannaschii
The genome sequence of the archeaMethanococcus
jannaschii is 1 664 970 bp long (Bultet al., 1996). Searching

2The set of Lyndon words exclude motifs that are rotation of another (e.g.
tac andcta while act remains in the set) or made of the repetition of a shorter
motif in that set (e.g.atatat whenat is in the set).
3Inclusion happens only twice the other way round.

for microsatellites in the complete sequence we found 41 tan-
dem repeats with lengths in the range [14, 161] bp with an
average of 43 bp. 39 repeats are imperfect and many alignment
exhibit insertions, deletions or both. Note that among these
repeats, many features segments of perfect repetition larger
than 12 bp. Four repeats may be classified as composite tan-
dem repeats where several different but related patterns seem
to have undergone tandem duplication. For the others, the
number of repeats for each pattern size in [1,6] are respectively
1,0,4,5,29 showing a majority of hexanucleotides. The two
most frequent patterns are nearly periodic:aaaaag||ctt t t t ,
aaaaat ||attt t t . Moreover, 18 microsatellites are located in
intergenic regions, 17 inside a gene, and 6 span over a gene
boundary.

DISCUSSION
The comparison with TRF shows that for a threshold above 36,
STAR is less efficient, but more sensitive than TRF. Indeed,
STAR finds more than 92% of TRF’s ATR, while TRF finds at
most 38% of STAR results. The large variation of the number
of TRF’s ATR shows how difficult it is to set the threshold.
The default value ofT = 50 suggests that below that it is
difficult to separate true ATR from spurious pseudo-repeats.
This is not the case with STAR since it uses the MDL criterion
and the compression gain to select only significant ATR.

Redundancy
For a given imperfect ATR one can find several putative motifs
whose exact repetition align well with the ATR (on some-
times slightly different regions). Each one is a possible view
or explanation of this ATR (see Landauet al., 2001 for a dis-
cussion on good definitions of ATR). This means it is difficult
to exactly find the boundaries of an ATR and the correct and
unique motif. Therefore, TRF, Sagot-Myers’s method, as well
as STAR, would give several views of the same ATR segment
of a sequence. On one hand, this is an advantage since the bio-
logist may decide which is the best explanation, on the other
hand it implies that the output will include some redundancy.
Especially, when we search for microsatellites using all pos-
sible Lyndon words as motifs (see Appendix), the same region
may be seen as several ATR of different motifs.

How does STAR handle this redundancy? For each tan-
dem repeat of a given motif, STAR computes the consensus
motif and checks if it equals the motif given as parameter.
This information is output and the user can discard the zones
whose consensus is not the motif given as parameter. This
is not sufficient to discard all redundancy. Some redundancy
remains for instance when the true motif is nearly periodic:
an ATR of motif atatgt is often seen as an ATR of motifat

and the consensus of the latter is thenat , since approximately
two-thirds of the motifs areat . The second major case is the
one of compound or composite microsatellites where several
motifs, not necessarily of the same size, have been duplic-
ated and form a single ATR region. An example is given in

2818

STAR

Fig. 6. Example of a composite microsatellite fromM.jannaschii. The region is seen as two successive ATR with motifaaag and one ATR
with motif aaaaag . The latter overlaps with both ATR ofaaag but ends 22 bp before them. We show the three alignments to the corresponding
ETR of motifsaaag andaaaaag.

Figure 6. This can be detected by looking for overlaps of ATR
of different motifs. These types of complex microsatellites
correspond to both Variable Length or Multi-Periodic Tan-
dem Repeats as defined in Hauth and Joseph (2002) which
presents an interesting attempt to handle redundancy. In con-
clusion, our solution is to let STAR output all possible ATR,
even if they are redundant. This allows the user to tune up his
procedure for curing redundancy.

Influence on the annotation and studies of
microsatellites
Among the microsatellites we detected, none are annotated in
the corresponding EMBL entry of the genome. This is gen-
erally the case for archeal and bacterial genomes, although
some microsatellites are known to be functionally active in
controlling gene expression. This is presumably due to the
difficulty of defining a standard and consistent way of annot-
ating such repeats. Which degree of imperfectness should be
allowed in a repeat? Should it depend on the pattern size?
Our method assesses the significance of approximate tan-
dem repeats using the same information criterion regardless
of the pattern length. Thus, it provides a consistent solu-
tion for microsatellites annotation. Moreover, the analysis of
M.jannaschii summarized above shows that even long tandem
repeats occur in such a genome. Their systematic annotation
with a guaranteed software like STAR may help investigat-
ing their roles in the genome structure. When located inside a
gene, it may help the functional annotation, while intergenic
repeats could point out sequences involved in gene regulation.

Several biological studies of microsatellites in whole
genomes use simple protocols to search for microsatellites
(Field and Wills, 1998; Cox and Mirkin, 1997; Nadiret al.,

1996; Kattiet al., 2001). Some collect data on exact tandem
repeats of short motifs (Field and Wills, 1998; Cox and Mir-
kin, 1997; Nadiret al., 1996). Others have designed specific
ad-hoc software to detect slightly mutated tandem repeats that
satisfies some arbitrary criterion (e.g. Kattiet al., 2001 search
for ATR with less than 1 substitution in 20 bp). On the basis
of these results, the authors consider evolutionary issues or
other biological questions.

For instance, the evolutionary origin of microsatellites in
eight genomes, among whichM.jannaschii, is investigated
in Field and Wills (1998). For all microsatellite patterns
(between 1 and 6 bp), the authors report the numbers of exact
tandem repeats by length. ForM.jannaschii, they do not find
any repeat larger than 10 bp except a stretch of 24-G. It is clear
that their unguaranteed software probably missed numerous
perfect repeats segments of size≥12 bp that are included
in imperfect longer repeats as shown in our results. This is
also the case forArehaeoglobus fulgidus (data not shown).
Moreover, looking only at perfect repeats rises other prob-
lems. First, a long imperfect repeat may be counted say twice
if it contains two perfect segments. Second, the core data of the
study is incomplete since, even in an archea likeM.jannaschii,
our result show that less than 5% of the microsatellites are per-
fect (2 out of 41 for length≥14 bp). The use of a program
allowing point mutations in the repeats, like STAR, should
improve future investigations of microsatellites structural and
evolutionary characteristics.

ACKNOWLEDGEMENTS
E.R. is supported by a Bioinformatics Inter-EPST project,
Montpellier Genopole, Genoplante, Specific Action #185
of CNRS-STIC, a regional BioSTIC project. O.D. and E.R.

2819

O.Delgrange and E.Rivals

thanks M. Dauchet for his helpful suggestions, and F. Lethiec
for the new web interface.

REFERENCES
Apostolico,A. and Fraenkel,A. (1987) Robust transmission of

unbounded strings using Fibonacci representations.IEEE Trans.
Inform. Theory, 33, 238–245.

Benson,G. (1999) Tandem Repeats Finder: a program to analyze
DNA sequences.Nucleic Acids Res., 27, 573–580.

Buard,J. and Jeffreys,A.J. (1997). Big, bad minisatellites.Nat.
Genet., 15, 327–328.

Bult,C.J., White,O., Olsen,G.J., Zhou,L., Fleischmann,R.D.,
Sutton,G.G., Blake,J.A., FitzGerald,L.M., Clayton,R.A.,
Gocayne,J.D.,et al. (1996) Complete genome sequence of the
methanogenic archaeon,Methanococcus jannaschii. Science,
273, 1058–1073.

Claverie,J.-M. and States,D.J. (1993) Information enhancement
methods for large scale sequence analysis.Comput. Chem., 17,
191–201.

Coward,E. and Drabløs,F. (1998) Detecting periodic patterns in
biological sequences.Bioinformatics, 14, 498–507.

Cox,R. and Mirkin,S.M. (1997) Characteristic enrichment of DNA
repeats in different genomes.Proc. Natl Acad. Sci., USA, 94,
5237–5242.

Field,D. and Wills,C. (1998) Abundant microsatellite polymorphism
in Saccharomyces cerevisiae, and the different distributions of
microsatellites in eight prokaryotes andS. cerevisiae, result from
strong mutation pressures and a variety of selective forces.Proc.
Natl Acad. Sci., USA, 95, 1647–1652.

Fischetti,V.A., Landau,G.M., Sellers,P.H. and Schmidt,J.P. (1993)
Identifying periodic occurrences of a template with applications
to protein structure.Inf. Proc. Lett., 45, 11–18.

Goffeau,A., Barrell,B.G., Bussey,H., Davis,R.W., Dujon,B.,
Feldmann,H., Galibert,F., Hoheisel,J.D., Jacq,C., Johnston,M.,
et al. (1996) Life with 6000 genes.Science, 274, 546, 563–567.

Grumbach,S. and Tahi,F. (1993) Compression of DNA sequences.
In Data Compression Conference. IEEE Computer Society Press,
pp. 340–350.

Hancock,J.M. and Armstrong,J.S. (1994). Simple34: an improved
and enhanced implementation for vax and sun computers of the
simple algorithm for analysis of clustered repetitive motifs in
nucleotide sequences.CABIOS, 10, 67–70.

Hauth,A. and Joseph,D.A. (2002) Beyond tandem repeats: complex
pattern structures and distant regions of similarity.Bioinformatics,
18, S31–S37.

Katti,M.V., Ranjekar,P.K. and Gupta,V.S. (2001) Differential dis-
tribution of simple sequence repeats in eukaryotic genome
sequences.Mol. Biol. Evol., 18, 1161–1167.

Kolpakov,R. and Kucherov,G. (1999) Finding maximal repetitions
in a word in linear time. In40th FOCS. IEEE Computer Society
Press, pp. 596–604.

Kolpakov,R. and Kucherov,G. (2001) Finding approximate repe-
titions under Hamming distance. InESA: Annual European
Symposium on Algorithms, Volume 2161 ofLecture Notes in
Computer Science. Springer, pp. 170–181.

Landau,G.M., Schmidt,J.P. and Sokol,D. (2001) An algorithm
for approximate tandem repeats.J. Comput. Biol., 8,
1–18.

Li,M. and Vitanyi,P.M. (1997)Introduction to Kolmogorov Complex-
ity and its Applications. Springer-Verlag.

Main,M. and Lorentz,R. (1984) Ano(n log(n)) algorithm for finding
all repetitions in a string.J. Algorithms, 5, 422–432.

Milosavljevic̀,A. and Jurka,J. (1993) Discovering simple DNA
sequences by the algorithmic significance method.CABIOS, 9,
407–411.

Nadir,E., Margalit,H., Gallily,T. and Ben-Sasson,S.A. (1996)
Microsatellite spreading in the human genome: evolutionary
mechanisms and structural implications.Proc. Natl Acad. Sci.,
USA, 93, 6470–6475.

Rivals,E., Dauchet,M., Delahaye,J.-P. and Delgrange,O. (1996)
Compression and genetic sequences analysis.Biochimie, 78,
315–322.

Rivals,E., Delgrange,O., Dauchet,M., Delgrange,J.-P.,
Delorme,M.-O., Hénaut,A. and Ollivier,E. (1997) Detec-
tion of significant patterns by compression algorithms: the case
of approximate tandem repeats in DNA sequences.CABIOS, 13,
131–136.

Sagot,M.F. and Myers,E.W. (1998) Identifying satellites and peri-
odic repetitions in biological sequences.J. Comput. Biol., 5,
539–553.

Stoye,J. and Gusfield,D. (2002) Simple and flexible detection of
contiguous repeats using a suffix tree.Theo. Comp. Sci., 27,
843–856.

Wootton,J. and Federhen,S. (1993) Statistics of local complexity in
amino acid sequences and sequence database.Comput. Chem., 17,
149–163.

2820

