
Complexities of the Centre and Median String

Problems?

François Nicolas and Eric Rivals

L.I.R.M.M., CNRS U.M.R. 5506
161 rue Ada, F-34392 Montpellier Cedex 5, France

{nicolas, rivals}@lirmm.fr

Abstract. Given a finite set of strings, the median string problem
consists in finding a string that minimizes the sum of the distances to
the strings in the set. Approximations of the median string are used
in a very broad range of applications where one needs a representative
string that summarizes common information to the strings of the set. It
is the case in Classification, in Speech and Pattern Recognition, and in
Computational Biology. In the latter, median string is related to the
key problem of Multiple Alignment. In the recent literature, one finds
a theorem stating the NP-completeness of the median string for un-
bounded alphabets. However, in the above mentioned areas, the alphabet
is often finite. Thus, it remains a crucial question whether the median
string problem is NP-complete for finite and even binary alphabets. In
this work, we provide an answer to this question and also give the com-
plexity of the related centre string problem. Moreover, we study the
parametrized complexity of both problems with respect to the number
of input strings.

1 Introduction

Given an alphabet Σ, a set W of strings over Σ, and the Levenshtein distance
between strings, the problem of finding a string over Σ that minimizes the sum of
distances to the strings of W is called the median string problem. Alternative
terminologies include the generalized median string problem [1], the star
alignment problem [13] and also the Steiner string problem [7].

The median string problem is of major significance in several areas of re-
search: Pattern Recognition, Speech Recognition and Computational Biology.
Its importance is reflected by the wide use of a polynomial time approximation,
the set median string ([9, 18, 17, 7, 6, 8]). In this restricted version of the prob-
lem, the solution string must be taken in the input set W (it is also termed the
“center string” in [7, p. 349]). One class of applications, encountered in all three
areas, looks for a string (or a language) that models the input set of strings.

? Published in LNCS Vol. 2676, p. 315 - 327, Springer Verlag, ISSN: 0302-9743, Com-
binatorial Pattern Matching: 14th Annual Symposium, CPM 2003, Morelia, Michoa-
can, Mexico, June 25-27, 2003.



In other words, this string summarizes the information shared by strings of W .
Depending on the application, it then serves as an index for W (in databases
and data mining), as a pattern that is searched for in longer texts (in computa-
tional biology [7, 19]) or used for classification purposes (in speech recognition
[9], classification [7] and computational biology [7, 19]).

In [1], it is shown that centre string and median string are NP-hard
for alphabets of size at least 4 and for unbounded alphabets, respectively. In
[21], it is shown that median string is NP-hard for alphabet of size 7 and a
particular weighted edit distance. In many practical situations, the alphabet is
of fixed constant size. In computational biology, the DNA and protein alphabets
are respectively of size 4 and 20. However, other alphabet sizes are also used.
Indeed, for some applications, one needs to encode the DNA or protein sequences
on a binary alphabet that expresses only a binary property of the molecule, e.g.,
hydrophoby. For instance, it is the case in some protocols to identify similar DNA
sequences [22]. The important practical question is whether centre string and
median string are NP-hard for finite and even binary alphabets. In the above-
mentioned article, these questions remain open [1, p. 48]. These conjectures are
solved in this paper. Additionnally, an interesting issue concerns the existence
of fast exact algorithms when the number of input strings is fixed. We provide
an answer to this issue for both centre string and median string.

1.1 Definitions

We denote by IN the set of non negative integers and by IN∗ the set of positive
integers. For all n ∈ IN∗, we denote by IN∗

n the set {1, 2, . . . , n} and for every
finite set X we denote by #X the cardinality of X .

Words. An alphabet is a non empty set of letters. In the sequel, Σ always
denotes an alphabet. A word over Σ is a finite sequence of elements of Σ. The
set of all words over Σ is denoted by Σ?. A language over Σ is any subset of Σ?.
The empty sequence, denoted by ε, is called the empty word. For a word w, |w|
denotes the length of w. For all a ∈ Σ, |w|a denotes the number of occurences
of the letter a in w. For all i ∈ IN∗

|w|, w[i] denotes the i-th letter of w. Given two
words x and y, we denote by xy the concatenation of x and y. For all n ∈ IN, we
denote by xn the n-th power of x that is, the concatenation of n copies of x (note
that x0 = ε). For all L ⊆ Σ? and for all w ∈ Σ?, we denote Lw := {xw : x ∈ L}.

Edit Distance. Let x, y be words over Σ. The edit distance between x and y is
the smallest number of single letter deletions, insertions and substitutions needed
to transform x into y. It is also called Levenshtein distance [11] and denoted
by Lev(x, y). For exemple, we have, for all n ∈ IN∗, Lev ((01)

n
, (10)

n
) = 2.

Wagner & Fisher’s algorithm [23] compute the edit distance Lev(x, y) in
polynomial time O (|x| |y|).



Radius, Centre String and Median String.

Definition 1. For all languages W over Σ, we denote:

R(W ) := inf
γ∈Σ?

(

sup
w∈W

Lev(γ, w)

)

S(W ) := inf
µ∈Σ?

(
∑

w∈W

Lev(µ, w)

)

and we call R(W ) the radius of W .
A centre of W is a word γ over Σ such that supw∈W Lev(γ, w) = R(W ).
A median of W is a word µ over Σ such that

∑

w∈W Lev(µ, w) = S(W ).

Our goal is to prove the intractability of the following two problems.

Definition 2. The centre string (resp. median string) problem is the de-
cision problem: given a non empty finite language W over Σ and K ∈ IN, is
R(W ) ≤ K (resp. S(W ) ≤ K)?

1.2 Related works

Related problems Computational biology exhibits numerous problems related
to median string. In the more studied ones, the computationally less demand-
ing Hamming distance replaces the edit distance. One often uses a closest rep-
resentative of a set of constant length strings that share a biological function.
Its computation is known to be NP-hard and is called the consensus string
problem (see [19], [13] and references therein). The consensus patterns and
its variants, like the closest substring problem, aim at finding common sub-
strings of a given length in a set of strings, and a model for them. Li et al.
[13, 14, 12] exhibit PTAS for all of these, while [5, 4] give exact polynomial time
algorithms for some special cases and studied their parameterized complexities.
When the Levenshtein distance is used, finding common substrings is termed
pattern discovery or motif extraction (see [16, 19]).

Another interesting problem is the distinguishing string selection prob-
lem. Given two sets, one of “positive” and the other of “negative” example
strings, one has to find a string that is close to the positive, and far from the
negative strings (see [10, 5, 2]).

median string is also important because of its relation with the Multiple
Alignment problems. Indeed, once given a median string, one can compute an ap-
proximate multiple alignment from the pairwise alignments between the median
and any string in the input set [7]. Thus, an algorithm for the set median string
is used by several authors as an approximation of the median string. First,
Gusfield [6] provides an approximation algorithm for the sum-of-pairs multi-
ple alignment problem. In this problem, one wishes to minimise the sum of all
pairwise alignment costs, hence the name Sum-of-Pairs. Second, Jiang et al. [8]
also give an approximation for the Tree Multiple Alignment problem. Given



a tree and sequences associated with its leaves, one has to find sequences for the
internal nodes, such that the sum of distances between adjacent strings/nodes
over all edges is minimal. They show that associating the set median string
to each internal node provides a good approximation scheme. This result was
further improved in [24].

Known results. centre string and median string are polynomial in some
trivial setup, e.g., with two sequences. Hence, we can deduce from Wagner
& Fischer’s algorithm a dynamic programming algorithm that computes for
every non empty, finite language W over Σ a median and a centre of W in
O
(∏

w∈W |w|
)

time. Thus, for all fixed n ∈ IN∗, the restrictions of centre
string and median string to the instances such that #W = n are polynomial.

In [13], a theorem states that the star c-alignment problem is NP-hard
but no proof is given. The star c-alignment problem consists in the median
string problem where the number of gaps between any two sequences is con-
strained to be at most c. Nevertheless, it would not imply that median string
is NP-hard in its general setup. 1

In [1], it is shown that if Σ is unbounded (resp. #Σ is at least 4) then me-
dian string (resp. centre string) is NP-complete. Above, we argue already
that especially the NP-completeness of median string for finite alphabet is an
important conjecture. In this work, we demonstrate that both problems are NP-
complete even if Σ is binary. Both proofs consist in reducing a well known NP-
complete problem, longest common subsequence (lcs), to centre string
and median string.

Note that the main difficulty of the NP-completess proof of median string
is that in the instances (W, K), W is a set and not a family. Hence we
do not allow repetitions of words in W , e.g., S({ε, ε, 01011000, 10, 10}) =
S({ε, 01011000, 10}). Otherwise, a little modification of the proof in [1] shows
the NP-completeness of median string problem for families of words.

We also demonstrate that both centre string and median string are
hard in the sense of parametrized complexity with respect to the number of
strings. These are important results from a practical point of view since they
imply that the existence of an exact polynomial time algorithm is unprobable
even if the number of strings is fixed.

Organisation of the paper. We conclude this section with some definitions
about parameterized complexity and some known results about the lcs problem.
In Section 2, we prove that centre string is NP-complete and W [1]-hard. In
Section 3 we prove that median string is NP-complete and W [1]-hard. We
conlude the paper in Section 4 with some open problems.

1 The authors mention on p. 172 that median string is NP-hard but without any
reference nor proof.



1.3 Parameterized complexity

We give a short introduction to parameterized complexity and the W [1]-class
(see [3] for a definition of the whole W -hierarchy).

Let L, L′ ⊆ {0, 1}
?
× IN be two parameterized binary languages.

We say that L is fixed parameter tractable if there exists an algorithm that
decides for all (x, k) ∈ {0, 1}? × IN wether (x, k) ∈ L in time f(k) |x|c where
f : IN → IN is an arbitrary fonction and c an integer constant. We denote FPT
the set of all fixed parameter tractable parameterized languages.

We says that L reduces to L’ by a standard parameterized (many to one)
reduction if there are functions f , m : IN → IN, M : {0, 1}

?
× IN → {0, 1}

?
and

a constant c ∈ IN such that for all (x, k) ∈ {0, 1}
?
× IN : M(x, k) is computable

in time f(k) |x|
c

and (M(x, k), m(k)) ∈ L′ iff (x, k) ∈ L.
We say that a parameterized language L belongs to W[1] if there exists a

standard parameterized reduction from the k-Step Halting problem2 to L. A
language L is W [1]-hard if there exists a standard parameterized reduction from
L to the k-Step Halting problem.

The k-Step Halting problem is the parameterized analog of the Turing
Machine Acceptance problem, which is the basic generic NP-complete prob-
lem. The conjecture FPT 6= W [1] is to parameterized complexity what P 6= NP
is to classical computational complexity. Hence, from a practival point of view,
W [1]-hardness gives a concrete indication that a paramerized problem is fixed
parameter untracktable.

1.4 The Longest Common Subsequence Problem.

Let w be a word. A subword of w is any word obtained from w by deleting
between 0 and |w| letters. We denote by Sub(w) the set of all subwords of w.
For every language L, we denote by CSub(L) the set of all the words which are
common subwords of all the words in L and by lcs(L) the length of the longest
words in CSub(L). Formally, we have:

CSub(L) =
⋂

x∈L

Sub(x) and lcs(L) = max
s∈CSub(L)

|s| .

For example, for all n ∈ IN, we have, CSub ({0n
1

n, 1n
0

n}) =
⋃n

i=0

{
0

i, 1i
}

and
therefore lcs ({0n

1
n, 1n

0
n}) = n.

Definition 3 (Longest Common Subsequence problem (lcs)).
Given a non empty finite language L over Σ and k ∈ IN, is lcs(L) ≥ k?

The intractability of lcs was studied firstly by Maier [15], and later by
Pietrzak [20] who slightly improved Maier’s results in terms of parameterized
complexity :

Theorem 1 (Maier). If #Σ is at least 2, then lcs is NP-complete.

Theorem 2 (Pietrzak). If #Σ is at least 2, then lcs problem parameterized
in #L is W [1]-hard.

2 also known as Short Turing Machine Acceptance problem



2 NP-completeness of centre string

In order to reduce lcs to centre string we introduce, like in [1], the follow-
ing intermediate problem, lcs0, which consists in the restriction of lcs to the
instances in which strings have length 2k, i.e., such that L ⊆ Σ2k.

Before stating our theorems, we need the following lemma. In substance, it
says that if one concatenates a letter a to all words in a language L then the lcs
of L increases by one. Indeed, by doing this, one “adds” an a to any maximal
common subword of L (one changes CSub(L) into CSub(L)∪CSub(L)a). Thus,
the lcs increases by one. The formal proof is left to the reader.

Lemma 1. For every language L and for every letter a, we have lcs(La) =
lcs(L) + 1.

It is shown in [1] that if #Σ is at least 4 then lcs0 is NP-complete (note
that the proved result is stronger than the one stated in their proposition). We
improve this result.

Theorem 3. The lcs0 problem is NP-hard even if Σ is binary. Moreover, the
lcs0 problem parameterized in #L is W [1]-hard.

Proof. Suppose that Σ is the binary alphabet {0, 1}. By Theorem 2, it is suf-
ficient to reduce lcs (parameterized in #L) to lcs0 (parameterized in #L).
Let (L, k) be an instance of lcs, L being a non empty finite language and k a

positive integer. We construct
(

L̃, k̃
)

such that it is an instance of lcs0. Let

n := maxx∈L |x| , N := 2k + n, k̃ := k + n,

L′ :=
⋃

x∈L

{
x0N−|x|, x1N−|x|

}
and L̃ := L′

0
n.

We have L′ ⊆ {0, 1}
N

. Therefore, L̃ is a subset of {0, 1}
2k̃

and
(

L̃, k̃
)

is an

instance of lcs0. The transformation of an instance (L, k) of lcs into the instance
(

L̃, k̃
)

of lcs0 is polynomial and parameter preserving (#L̃ = #L′ = 2#L). It

remains to prove that

lcs(L) ≥ k ⇐⇒ lcs
(

L̃
)

≥ k̃. (1)

Note that for all words u, v, w, Sub(wu) ∩ Sub(wv) = Sub(w) if and only if
u and v do not share any letter. We have

CSub(L′) =
⋂

x∈L

Sub
(

x0N−|x|
)

∩ Sub
(

x1N−|x|
)

︸ ︷︷ ︸

Sub(x)

= CSub(L)

and therefore lcs(L) = lcs(L′) (the polynomial transformation of (L, k) into
(L′, k) shows that the restriction of lcs to the instances such that all words in
L share the same length is NP-complete).



On the other end, Lemma 1 assures that lcs
(

L̃
)

= lcs(L′)+n and therefore:

lcs
(

L̃
)

= lcs(L) + n

which implies (1). Moreover, as our reduction preserves the parameter #L, the
W [1]-hardness of lcs0 follows from the W [1]-hardness of lcs. ut

Now, we have to link the edit distance and the notion of subword to complete
the reduction of lcs0 to centre string.

Lemma 2. For all x, y ∈ Σ? we have:

1. Lev(x, y) ≥ |x| − |y|,
2. Lev(x, y) = |x| − |y| if and only if y is a subword of x.

Proof. Let x, y ∈ Σ? and w.l.o.g. assume x is longer than y. The first statement
says that the edit distance is larger than or equal to the length difference of x and
y. Clearly, any transformation of x into y has to delete |x| − |y| supernumerary
symbols. The second statement says that the equality holds iff y is a subword
of x. Again, once the transformation has deleted the |x| − |y| supernumerary
symbols, if the resulting subword is y, it means that y is a subword of x, and
conversely. ut

Theorem 4. The centre string problem is NP-complete even if Σ is binary.
Moreover, centre string problem parameterized in #W is W [1]-hard.

Proof. The proof is the same as in [1]. It consists in reducing lcs0 to cen-
tre string: we transform an instance (L, k) of lcs0 in the instance (W, K) :=
(L ∪ {ε}, k) of centre string. The transformation is clearly polynomial and
parameter preserving (#W ∈ {#L, #L + 1}) and to check the equivalence
lcs(L) ≥ k ⇐⇒ R(W ) ≤ K, we only need the properties of Lev stated in
Lemma 2.

Suppose that Σ is binary. Since in this case lcs0 is NP-complete according to
Theorem 3, our reduction shows that centre string (parameterized in #W )
is W [1]-hard too. ut

3 NP-completeness of median string

In order to reduce lcs to median string, we need to link edit distance and
subwords by a tighter inequality than the one provided by Lemma 2. Let x,
y ∈ Σ? and w.l.o.g. assume |x| ≥ |y|. The lemma shows that any transformation
of x into y contains at least as much operations as the difference between the
lengths of x and of its longest common subwords with y. An explanation is
as follows. Consider the positions of x that do not belong to a fixed maximal
common subword of x and y. All these are either supernumerary and have to be
deleted, or differ from the corresponding position in y and need to be substituted.



Lemma 3. For all x, y ∈ Σ?, we have

Lev(x, y) ≥ max{|x| , |y|} − lcs({x, y})

Proof. Let ((x1, y1), (x2, y2), . . . , (xn, yn)) be an alignment of x and y with cost
Lev(x, y). Remember that x[i] and not xi denotes the ith symbol of x. We have:

– for all i ∈ IN∗
n, we have (xi, yi) ∈ ((Σ ∪ {ε}) × Σ) ∪ (Σ × (Σ ∪ {ε})), i.e., in

other words a symbol in the alignment can be a single letter or the empty
word,

– x = x1x2 . . . xn,
– y = y1y2 . . . yn,
– denoting by J the set of all i ∈ IN∗

n such that xi 6= yi, we have Lev(x, y) =
#J .

As any alignment symbol can be the empty word, we have n ≥ |x1x2 . . . xn| = |x|
and n ≥ |y1y2 . . . yn| = |y|, and thus:

n ≥ max{|x| , |y|} .

On the other hand, denote k := # (IN∗
n \ J) = n − Lev(x, y) and let i1, i2,

. . . , ik be indexes such that: IN∗
n \J = {i1, i2, . . . , ik} and i1 < i2 < · · · < ik. For

all j ∈ IN∗
k, i /∈ J means that xj = yj and therefore xi1xi2 . . . xik

= yi1yi2 . . . yik

is a subword of x and of y. From that we deduce:

lcs({x, y}) ≥ k = n − Lev(x, y) ≥ max{|x| , |y|} − Lev(x, y) .

The inequality stated in our lemma follows. ut

The inequality stated in Lemma 3 involved only two words. In order to gen-
eralize it to many words (Lemma 5), we need the following lemma.

Lemma 4. For all µ ∈ Σ? and for all X, Y ⊆ Σ?, we have

lcs ({µ} ∪ X ∪ Y ) ≥ lcs ({µ} ∪ X) + lcs ({µ} ∪ Y ) − |µ| (2)

Proof. Let p := lcs ({µ} ∪ X) and q := lcs ({µ} ∪ Y ). By hypothesis for {µ}∪X ,
there exist indexes i1, i2, . . . , ip satisfying 1 ≤ i1 < i2 < · · · < ip ≤ |µ| such
that u := µ[i1]µ[i2] . . . µ[ip] ∈ CSub({µ} ∪ X). Similarly, for {µ} ∪ Y , there
exist indexes j1, j2, . . . jq satisfying 1 ≤ j1 < j2 < · · · < jq ≤ |µ| such that
v := µ[j1]µ[j2] . . . µ[jq ] ∈ CSub({µ} ∪ Y ).

Setting I := {i1, i2, . . . , ip} and J := {j1, j2, . . . , jq}, we see that u and v
share a common subword of length #(I ∩ J). It is also a common subword of all
words in {µ} ∪ X ∪ Y . From which we deduce

lcs({µ} ∪ X ∪ Y ) ≥ #(I ∩ J) (3)

On the other hand, since I and J are subsets of IN∗
|µ|, we have #(I ∪ J) ≤ |µ|

and therefore
#(I ∩ J) = p + q − #(I ∪ J) ≥ p + q − |µ| (4)

Combining (3) and (4) gives (2) and concludes the proof. ut



Lemma 5. For all µ ∈ Σ? and for all finite languages X over Σ, we have:
∑

x∈X

Lev(µ, x) + (#X − 1) |µ| ≥
∑

x∈X

|x| − lcs({µ} ∪ X)

Proof. We proceed by induction on #X . Assume #X = 0; the inequality holds
since both members are equal to − |µ|. When #X = 1, the statement follows
from Lemma 3.

Now suppose that #X ≥ 1. Let x0 ∈ X and let X ′ := X \ {x0}. We have

Lev(µ, x0) ≥ |x0| − lcs({µ, x0}) , (5)
∑

x′∈X′

Lev(µ, x′) + (#X ′ − 1) |µ| ≥
∑

x′∈X′

|x′| − lcs ({µ} ∪ X ′) , (6)

lcs({µ} ∪ X) ≥ lcs ({µ} ∪ X ′) + lcs({µ, x0}) − |µ| . (7)

The inequalities (5) and (6) result respectively from Lemma 3 and from the
induction hypothesis. Lemma 4 applied with (X, Y ) := (X ′, {x0}) yields (7).
Adding (5), (6) and the trivial inequality |µ| ≥ |µ| we obtain

∑

x∈X

Lev(µ, x) + (#X ′) |µ| ≥
∑

x∈X

|x| − lcs ({µ} ∪ X ′) − lcs({µ, x0}) + |µ|

≥
∑

x∈X

|x| − lcs({µ} ∪ X)

where the last inequality deduces from (7). Since #X ′ = #X −1, this concludes
the proof. ut

We can now prove the main theorem of this section.

Theorem 5. The median string problem is NP-complete even if Σ is binary.
Moreover, the median string problem parameterized in #W is W [1]-hard.

Proof. Since the edit distance can be computed in polynomial time, it is easy to
check that median string is NP. Now, suppose Σ is the binary alphabet {0, 1}.
The schema of the proof is the following: we reduce lcs to median stringin
order to apply Theorem 2 and conclude. The W [1]-hardness of median string
parameterized in #W is deduced from the one of lcs parameterized in #L since
our reduction is parameter preserving.

Let (L, k) be an instance of lcs, L being a non empty finite language over
{0, 1} and k a positive integer. We transform (L, k) into the instance (W, K) of
median string, as described below. Let

n := #L , C :=
∑

x∈L |x| , N := max
{

C + n(n−1)
2 − k, n − 1

}

,

K := C + (n − 1)N − k − n(n−1)
2 , W := L0N ∪

{
0

i : i ∈ IN∗
n−1

}
.

This transformation is polynomial and parameter preserving since #W =
2(#L) − 1. Hence, it remains to prove

lcs(L) ≥ k ⇐⇒ S(W ) ≤ K.



(⇒) Suppose that lcs(L) ≥ k. We want to prove that S(W ) ≤ K. By hypothesis,
it exists s ∈ CSub(L) such that |s| = k. Let µ := s0N .

For all i ∈ IN∗
n−1, we have i ≤ n − 1 ≤ N ≤ |µ|

0
, so 0

i is a subword of µ.
Hence, by Lemma 2, we have

Lev(µ, 0i) = |µ| −
∣
∣0

i
∣
∣ = k + N − i

Moreover, for all x ∈ L, µ is a subword of x0N ; again Lemma 2 applies and we
obtain

Lev(µ, x0N ) =
∣
∣x0N

∣
∣− |µ| = |x| − k.

Using these equalities, we compute the sum

∑

w∈W

Lev(µ, w) =
∑

x∈L

Lev(µ, x0N ) +

n−1∑

i=1

Lev(µ, 0i)

=
∑

x∈L

(|x| − k) +

n−1∑

i=1

(k + N − i)

= C − nk + (n − 1)k + (n − 1)N −
n(n − 1)

2
= K

and we obtain S(W ) ≤ K.

(⇐) Conversely, assume S(W ) ≤ K. We will show that lcs(L) ≥ k. By hypoth-
esis, it exists µ ∈ {0, 1}? such that

∑

w∈W Lev(µ, w) ≤ K. First, we prove that
|µ|

0
≥ n − 1. For this, we note that for all words u, v, Lev(u, v) is greater or

equal to |v|
0
− |u|

0
. Hence, for all x′ ∈ L0N , we have

N − |µ|
0
≤ |x′|

0
− |µ|

0
≤ Lev(µ, x′)

so by summing over x′ ∈ L0N , we get

nN − n |µ|
0
≤

∑

x′∈L0N

Lev(µ, x′) ≤ K

and:
n |µ|

0
≥ nN − K ≥ n(n − 1)

which is equivalent to |µ|
0
≥ n − 1. This implies that for all i ∈ IN∗

n−1, 0
i is a

subword of µ, and so Lev(µ, 0i) = |µ| − i. Thus,

n−1∑

i=1

Lev(µ, 0i) =

n−1∑

i=1

|µ| −

n−1∑

i=1

i = (n − 1) |µ| −
n(n − 1)

2
.

We can now write
∑

w∈W

Lev(µ, w) =
∑

x′∈L0N

Lev(µ, x′) + (n − 1) |µ| −
n(n − 1)

2

≥
∑

x′∈L0N

|x′| − lcs
(
{µ} ∪ L0N

)
−

n(n − 1)

2
(8)



where the application of Lemma 3 with X := L0N yields the last inequality.
On the other hand, we have:

∑

x′∈L0N

|x′| =
∑

x∈L

∣
∣x0N

∣
∣ =

∑

x∈L

(|x| + N) = C + nN (9)

and by Lemma 1

lcs({µ} ∪ L0N) ≤ lcs(L0N ) = lcs(L) + N . (10)

By hypothesis, K ≥ S(W ) ≥
∑

w∈W Lev(µ, w); combining this with (8), (9)
and (10) yields

K ≥
∑

w∈W Lev(µ, w) ≥ (C + nN) − (lcs(L) + N) − n(n−1)
2

⇒ lcs(L) ≥ C + (n − 1)N − n(n−1)
2 − K = k .

This concludes the proof. ut

4 Open problems

Possible improvements of our results We prove in this paper that centre
string and median string are NP-complete, according to the “non weighted”
edit distance. Of course, in general for any distance function, the problem re-
mains NP-complete since the edit distance is a particular case. Now, for a fixed
alphabet-weighted edit distance the problem may not be NP-complete. To prove
the NP-completeness in such setup is not trivial since, since, if Σ = {0, 1} and if
the scores of insertions/deletions of 0 and of 1 are not equal then our reductions
do not hold.

Approximation Although centre string and median string are NP-
complete, there exist approximation algorithms with bounded errors [7] and
heuristic algorithms [9], [18]. For example, given a finite language W over Σ, set
center (resp. set median) of W can be found in polynomial time and is an ap-
proximate centre (resp. median) of W with performance ratio 2 (resp. 2− 2

#W
).

Note that we call set center of W any word that minimizes the maximum of the
distances to strings in the set W and belongs to W . An open question subsists:
do these problems admit Polynomial Time Approximation Schemes?

Acknowledgment

The authors thank Colin De La Higuera for reading a preliminary version of this
work and Jens Gramm for introducing us to parameterized complexity. This is
supported by the CNRS STIC Specific Action “Algorithmes et Séquences”, by
the ACI Jeunes Chercheurs “Combinatoire des mots multidimensionnels, pavages
et numération” and by the Math STIC project 2001 “Mots : de la combinatoire
la dynamique symbolique”.



References

1. C. de la Higuera and F. Casacuberta. Topology of strings: Median string is NP-
complete. Theoretical Computer Science, 230:39–48, 2000.

2. X. Deng, G. Li, Z. Li, B. Ma, and L. Wang. A ptas for distinguishing (sub)string
selection. In ICALP, pages 740–751, 2002.

3. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

4. Michael R. Fellows, Jens Gramm, and Rolf Niedermeier. On the parameterized
intractability of CLOSEST SUBSTRING and related problems. In Symposium on
Theoretical Aspects of Computer Science, pages 262–273, 2002.

5. Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Exact solutions for CLOS-
EST STRING and related problems. In ISAAC, volume 2223 of LCNS, pages
441–453, 2001.

6. Dan Gusfield. Efficient methods for multiple sequence alignment with guaranteed
error bounds. Bull. Math. Biol., 55:141–154, 1993.

7. Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, 1997.

8. Tao Jiang, Eugene L. Lawler, and Lusheng Wang. Approximation algorithms for
tree alignment with a given phylogeny. Algorithmica, 16(3):302–315, 1996.

9. T. Kohonen. Median strings. Pattern Recognition Letters, 3:309–313, 1985.

10. J. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection
problems. In SODA: ACM-SIAM Symposium on Discrete Algorithms, 1999.

11. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
Reverseals. Cybernetics and Control Theory, 10(8):707–710, 1966.

12. M. Li, B. Ma, and L. Wang. On the closest string and substing problems. Journal
of the ACM, 49(2):157–171, 2002.

13. Ming Li, Bin Ma, and Lusheng Wang. Finding similar regions in many strings.
In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
(STOC’99), pages 473–482, 1999.

14. Bin Ma. A polynomial time approximation scheme for the closest substring prob-
lem. In CPM, volume 1848 of LNCS, pages 99–107, 2000.

15. D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the Association for Computing Machinery, 25:322–336, 1978.

16. L. Marsan and M. F. Sagot. Algorithms for extracting structured motifs using a
suffix tree with an application to promoter and regulatory site consensus identifi-
cation. J Comput Biol, 7(3-4):345–62, 2000.

17. C. D. Martinez, A. Juan, and F. Casacuberta. Improving classification using me-
dian string and nn rules. In Spanish Symp. on Pattern Recognition and Image
Analysis, pages 391–395, 2001.

18. C. D. Martinez-Hinarejos, A. Juan, and F. Casacuberta. Use of median string for
classification. In 15th International Conference on Pattern Recognition, volume 2,
pages 907–910, september 2000.

19. Pavel Pevzner. Computational Molecular Biology. MIT Press, 2000.

20. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems. Journal of
Computer and System Sciences, 2003. to appear.

21. J. S. Sim and K. Park. The consensus string problem for a metric is NP-complete.
In R. Raman and J. Simpson, editors, Proceedings of the 10th Australasian Work-
shop On Combinatorial Algorithms, pages 107–113, Perth, WA, Australia, 1999.



22. David J. States and Pankaj Agarwal. Compact encoding strategies for DNA se-
quence similarity search. In Proceedings of the Fourth International Conference on
Intelligent Systems for Molecular Biology, pages 211–217. AAAI Press, 1996.

23. Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.

24. L. Wang and D. Gusfield. Improved approximation algorithms for tree alignment.
J. Algorithms, 25(2):255–273, 1997.


