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Abstract

Given a finite set of strings, the B&IAN STRING problem consists in finding a string that mini-
mizes the sum of the edit distances to the strings in the set. Approximations of the median string are
used in a very broad range of applications where one needs a representative string that summarizes
common information to the strings of the set. It is the case in classification, in speech and pattern
recognition, and in computational biology. In the lattelEIMAN STRING is related to the key prob-
lem of multiple alignment. In the recent literature, one finds a theorem stating the NP-completeness
of the MEDIAN STRING for unbounded alphabets. However, in the above mentioned areas, the al-
phabet is often finite. Thus, it remains a crucial question whether tbeIMi STRING problem is
NP-complete for bounded and even binary alphabets. In this work, we provide an answer to this ques-
tion and also give the complexity of the related NIrER STRING problem. Moreover, we study the
parameterized complexity of both problems with respect to the number of input strings. In addition,
we provide an algorithm to compute an optimal center under a weighted edit distance in polynomial
time when the number of input strings is fixed.

0 2004 Elsevier B.V. All rights reserved.

Keywords:Concensus string; Multiple alignment; Tree alignment; NP-complete; Parameterized complexity;
LCS

* Corresponding author.
E-mail addressesicolas@lirmm.fr(F. Nicolas) rivals@lirmm.fr(E. Rivals).

1570-8667/$ — see front mattét 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2004.08.015


http://www.elsevier.com/locate/jda
mailto:nicolas@lirmm.fr
mailto:rivals@lirmm.fr

F. Nicolas, E. Rivals / Journal of Discrete Algorithms 3 (2005) 390-415 391

1. Introduction

Given an alphabel’, a setW of strings overX', and an edit distance between strings,
the problem of finding a string oveX' that minimizes the sum of edit distances to the
strings of W is called the MEDIAN STRING problem. Alternative terminologies include
the GENERALIZED MEDIAN STRING problem[2], the STAR ALIGNMENT problem[12],
the CONSENSUSALIGNMENT problem[13] and also the SEINER STRING problem|[8].

The MEDIAN STRING problem is of major significance in several areas of research: pat-
tern recognition, speech recognition and computational biology. Its importance is reflected
by the wide use of a polynomial time approximation, the set median §#ii,19,20]In
this restricted version of the problem, the solution string must be taken in the inpiit set
(it is also termed the “center string” [8, p. 349). One class of applications, encountered
in all three areas, looks for a string (or a language) that models the input set of strings. In
other words, this string summarizes the information shared by the strings Bfepend-
ing on the application, it then serves as an indexWoir(in databases and data mining),
as a pattern that is searched for in longer texts (in computational bi¢g%]) or used
for classification purposes (in speech recognifi®i, classificatiorj8] and computational
biology [8,22]).

In computational biology, computing a median string of agets equivalent to solv-
ing a MULTIPLE ALIGNMENT problem, which is one of the most important and difficult
problems in this areg8]. In practice, MULTIPLE ALIGNMENT may be easier when the
evolutionary relationships of the species bearing the sequence are known. The input of the
so called REE ALIGNMENT problem is then a set of stringg and a tree whose leaves
are labeled by the strings & . The objective is to find strings for the internal nodes, such
that the sum of edit distances between adjacent strings/nodes over all edges is minimal.
A special case of tree of theoretical importance isdtas tree there the computed inter-
nal string is a median strin@,24]. As already mentioned, the median string can serve as
consensus of the strings I, especially if the strings occupy homogeneously the metric
space around the median. Unfortunately, in practical applications, the strifigse not
a uniform sample of the evolutionary diversity: some evolutionary families of strings in
are more represented than others. In such cases, minimizing the sum of the edit distances
results in a biased alignment and consensus [(Hefor a discussion about this matter).
Minimizing the maximum edit distance, i.e., computing a center string, produces solutions
that reflect more faithfully the variations Iif. For this purpose, Ravi and Kececioglu intro-
duced in 1995 a variant of theREE ALIGNMENT problem with this objective. It is called
the BOTTLENECK TREE ALIGNMENT. When the input tree is a star, thedBTLENECK
TREEALIGNMENT problem is equivalent to theENTER STRING problem.

In [2], it is shown that ENTER STRING and MEDIAN STRING are NP-hard for al-
phabets of size at least 4 and for unbounded alphabets, respectively. In many practical
situations, the alphabet is of fixed constant size. In computational biology, the DNA and
protein alphabets are respectively of size 4 and 20. However, other alphabet sizes are also
used. Indeed, for some applications, one needs to encode the DNA or protein sequences on
a binary alphabet that expresses only a binary property of the molecule, e.g., hydrophoby
for proteins or purine-pyrimidine composition for nucleic acids. For instance, it is the case
in some protocols to identify similar DNA sequend2g]. The important practical ques-
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tion is whether €NTER STRING and MEDIAN STRING are NP-hard for finite and even
binary alphabets. In the above-mentioned article, these questions remaif2ppe#r8]

These conjectures are solved in this paper. Additionally, an interesting issue concerns the
existence of fast exact algorithms when the number of input strings is fixed. We provide an
answer to this issue for bothE®ITER STRING and MEDIAN STRING.

1.1. Definitions

We denote byN the set of non-negative integers andi¥§¥/the set of positive integers.
For allm, n € N, we denote bym, n] the set{k € N: m < k < n}. For every finite seX
we denote by ¥ the cardinality ofX.

1.1.1. Strings

An alphabetis a non-empty set détters In the sequelX always denotes an alphabet.
A string over X is a finite sequence of elements bf. The set of all strings oveE is
denoted byX*. A languageover X' is any subset o£*. The empty sequence, denoted by
¢, is called theempty stringGiven two stringsc andy, we denote by y theconcatenation
of x andy. For all L € ¥* and for allw € X¥*, we denotelxw: x € L} by Lw. For all
n € N, we denote by" thenth powerof x, i.e., the concatenation afcopies ofx (note that
x0 = ¢). For a stringw, |w| denotes the length ab. For a languagé. € *, |L| denotes
Y ver lxI. Foralli € [1, [w]], w[i] denotes théth letter ofw: w = w[1]w[2]... w[|w]].
Foralla € X, |w|, :=#{i €[1, |w|]: w[i] = a} denotes the number otcurrencef the
lettera in w.

1.1.2. Edit distance
Definition 1 (Metric). Let E be a set and be a mapping fronE x E ontoR. We say that
d is ametricover E iff for any x, y, z € E, d fulfills the following conditions

— d(x,y) > 0 (positivity),

— d(x,y)=0if and only ifx = y (separation),

- d(x,y)=d(y.x) (symmetry),

—d(x,z) <d(x,y)+d(y, 2) (triangular inequality).

The edit operationsare single letter deletions, insertions and substitutions.s Lis¢
an integer valued metric oveX U {¢}: § can be viewed as a cost function over the edit
operations (genalty matriy. Hence, for allz, b € X, the substitution frona into b costs
8(a, b), the deletion of am costss(a, £) and the insertion of & costss (¢, b). The cost of
a sequence of edit operations is the sum of the costs of its terms.

The §-weighted edit distancbetween two strings and y is the cost of the cheapest
sequence of edit operations needed to transforimto y. It is also the cost the cheapest
alignment ofx andy. Let us denote byl : ¥* x ¥* — N the §-weighted edit distance:
sinces is ametricdg is also a metric and for all, b € X U{¢}, we havelg (a, b) = 8(a, b).

Wagner and Fisher’s algorithf28] computes the weighted edit distangég(x, y) in
polynomial time @Q|x||y|). It proceeds by dynamic programming and can be easily de-
duced fromTheorem A.lbelow.
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If § is such that:
1 ifa#b,
0 otherwise

(that is if each edit operation has unitary cost) thendveeighted edit distance is called
Levenshtein distander sometimesinweighted edit distang@nd is denoted by, .

Va,be X Ufe) 8(a,b)={

1.1.3. Radius, center string and median string
Definition 2. Let dg a weighted edit distance. For all languadgésver X', we denote:

R(W) := y'eng*(ffﬁd’f(y’ w)),

S(W) := Mg*( > de(u. w))
weW
and we callR (W) theradiusof W (underdg). A centerof W (underdg) is a stringy over
X such that sup,y de (y, w) = R(W). A medianof W (underdg) is a stringu over ¥
suchthaty, v de(u, w) =S(W).

If W is infinite then the radius o andS(W) are infinite. We study only the finite
case. Let us consider the cag@ # 2. Letx, y € X*.

— Under any weighted edit distandg, S({x, y}) = de(x, y). Any string on an optimal
alignment path betweenandy is a median ofx, y}, includingx andy themselves.

— Under Levenshtein distanc®,({x, y}) = [dr(x, y)/2]. Any stringy on an optimal
alignment path betweenandy such thati; (y, x) ordy (v, y) equals[dy (x, y)/2] is
a center ofx, y}. In this case, a center is always a median. Given an optimal alignment
betweenr andy, a center can be computed in linear time.

Example 1. Let ¥ := {0, 1} andW := {0V, 1"} whereN denotes an even integer. Under
Levenshtein distance,

— S(W) =dz (0N, 1V) = N and the medians d¥ are the stringg € {0, 1}* such that
llo + [l1 = N and,

— R(W) = N/2 and the centers d¥ are the stringy € {0, 1}* such thaty|o = |y|1 =
NJ2.

Example 2. Let ¥ :={0,1} and W := {(01)", (10)V} where N denotes a positive in-
teger. Under Levenshtein distance, both strit@s)¥ 10 and1(01)V 1 are centers and
medians oW (S(W) =d.((01)V, (10)Y) =2 andR(W) = 1).
Example 3. Let

Y :=lap,a1,...,as,b,c} and W:= {aobN, alcN, ach, .. .,ach}

wheres € N\ {0, 1}, N denotes an even positive integer, andas, ..., a,, b andc are
distinct letters. Under Levenshtein distance,
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— a;cV is amedian oW foralli € [0, 0] (S(W) =N + ), and
— bN/2¢N/2is a center oW foralli € [0, 0] (R(W)=N/2+1).

In this example, no word is both a center and a media# of
Our goal is to prove the intractability of the two following problems.

Definition 3. The CENTER STRING (resp. MEDIAN STRING) problem is the decision
problem: “given a non-empty finite languagjé over X andK € N, is R(W) < K (resp.
S(W)< K)?”

1.2. Related works

1.2.1. Related problems

Computational biology exhibits hnumerous problems related EDMN STRING and
CENTER STRING. In the more studied ones, the computationally less demanding Ham-
ming distance replaces the edit distance. One often uses a closest representative of a set of
constant length strings that share a biological function. For instance, under the Hamming
distance MEDIAN STRING is polynomial, while @NTER STRING is known to be NP-hard
[11] and is called COSESTSTRING.

The GONSENSUSPATTERN problem (also called the @VSENSUSSTRING problem
in [22]) and its variants, like the KOSEST SUBSTRING problem, aim at finding common
substrings of a given length in a set of strings, and a model for them. Li Et2al.4,16]
exhibit PTAS for all of these, whilgb,6] give exact polynomial time algorithms for some
special cases and study their parameterized complexities. Another interesting problem is
the DISTINGUISHING SUBSTRING SELECTION problem. Given two sets, one of “positive”
and the other of “negative” example strings, one has to find a string that is close to the
positive, and far from the negative strings ($&8®,11).

When the edit distance is used, finding common substrings is termed pattern discovery
or motif extraction (se§l8,22)).

MEDIAN STRING is also important because of its relation with taltiple Alignment
problems. Indeed, once given a median string, one can compute an approximate multiple
alignment from the pairwise alignments between the median and any string in the input set
[8]. Thus, an algorithm for the set median string is used by several authors as an approxi-
mation of theMultiple Alignmentproblem. First, Gusfiel@i7] provides an approximation
algorithm for the $M-0OF-PAIRS MULTIPLE ALIGNMENT problem. In this problem, one
wishes to minimize the sum of all pairwise alignment costs, hence the name Sum-of-Pairs.
Second, Jiang et &9] also give an approximation for theREE ALIGNMENT problem.

They show that associating the set median string to each internal node provides a good
approximation scheme. This result is further improvefPi.

An approximation algorithm for BTTLENECK TREE ALIGNMENT is given in[24].

1.2.2. Known results
MEDIAN STRING is polynomial for two strings (any of the input string is a median).
Moreover, a dynamic programming algorithm computes for every non-empty, finite lan-
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guageW over X a median oW in O(#W)2*W [,y lw| + #W)#X)*W+1) time [25].
Thus, if the number of input strings is fixed,BIAN STRING is polynomial. In[24], an
exact dynamic programming algorithm is sketched fTBLENECK TREE ALIGNMENT
under Levenshtein distance.

In [13], it is shown that the GNSENSUSc-ALIGNMENT problem is NP-hard for al-
phabet size 4. The @NSENSUSc-ALIGNMENT problem consists in the EDIAN STRING
problem where the number of gaps between any two strings is constrained to be at most
Nevertheless, it would not imply that &I1AN STRING is NP-hard in its general setup.

1.2.3. Our contribution

In [2], it is shown that ifY is unbounded (resp.2t is at least 4) then MDIAN STRING
(resp. ENTER STRING) is NP-complete. Ir{26], it is shown that MEDIAN STRING is
NP-hard for alphabet of size 7 and under a conveniently weighted edit distance. Above,
we argue already that the NP-completeness @bMN STRING for finite alphabet is an
important conjecture. In this work, we demonstrate that both problems are NP-complete
under Levenshtein distance evendifis binary. Both proofs consist in reducing a well-
known NP-complete problem,dNGEST COMMON SUBSEQUENCE(LCS), to CENTER
STRING and MEDIAN STRING.

We also demonstrate that botleE CTER STRING and MEDIAN STRING are hard in the
sense of parameterized complexity with respect to the number of input strings. These are
important results from a practical point of view since they rule out the existence of an
exact algorithm solving one of our problems in timé f@#W)|W|¢) where f:N — N
is anarbitrary function andc is a constant. Unlike COSEST STRING that is FPT with
respect to the number of input stringsEICrER STRING is W[1]-hard for this parameter.

Moreover, we extend the intractability results foEICTER STRING for a large class of
weighted edit distances satisfying natural assumptions.

1.2.4. Organization of the paper

We conclude this section with some definitions about parameterized complexity and
some known results about the LCS problem. In SeQ@jome prove that under Levenshtein
distance, GNTER STRING and MEDIAN STRING over binary alphabets are NP-complete
and W 1]-hard with respect to the number of input strings. In SecBave generalize the
results for &ENTER STRING obtained in Sectio: we prove that undesnyweighted edit
distance satisfying@roperty 1 CENTER STRING over binary alphabets is NP-complete and
WI[1]-hard with respect to the number of input stringsAjmpendix A we show that EN-
TER STRING is polynomial if the number of input strings and the weighted edit distance
are fixed. Note that in the same case, the counterpart EwiMN STRING has been known
for a long time[25]. We conclude the paper in Sectidnwith some open problems.

1.3. Parameterized complexity

We give a short introduction to parameterized complexity and th#]\dlass (se¢4]
for a definition of the whole W-hierarchy).
Let L, L’ € {0, 1}* x N be two parameterized binary languages.
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We say thatL is fixed parameter tractablé there exists an algorithm that, for all
(x,k) € {0,1}* x N, decides whethe(x, k) € L in time f(k)|x| where f:N — N is
an arbitrary function and an integer constant. We denote by FPT the set of all fixed
parameter tractable parameterized languages.

We says thal reduces toL’ by a standard parameterizedhany to ongreductionif
there are functiong, m :N — N, M : {0, 1}* x N — {0, 1}* and a constant € N such that
forall (x, k) € {0, 1}* x N: M (x, k) is computable in timef (k) |x|¢ and(M (x, k), m(k)) €
L'iff (x,k)eL.

We say that a parameterized langudgdelongs to W1] if there exists a standard
parameterized reduction fromto thek-STEPHALTING problem! A languagel is W[1]-
hardif there exists a standard parameterized reduction frorh4&ieeP HALTING problem
to L.

Thek-STEP HALTING problem is the parameterized analog of theRTNG MACHINE
AcCCEPTANCEproblem, which is the basic generic NP-complete problem. The conjecture
FPT=£ WI1] is to parameterized complexity whatA#NP is to classical computational
complexity. Hence, from a practical point of view,[f§-hardness gives a concrete indica-
tion that a parameterized problem is fixed parameter intractable.

1.4. The longest common subsequence problem

Let w be a string. Asubsequencef w is any string obtained fromy by deleting be-
tween 0 andw| letters. We denote by Sub) the set of all subsequenceswof For every
non-empty languagé, we denote by CSuld.) the set of all the strings which are com-
mon subsequences of all the stringd.inand by Ic$L) the length of the longest strings in
CSul(L). Formally, we have:

CSulL) = S and IcgL)= ma .

ut(L) ﬂL ub(x) §L)=__max s
For example, for alk € N, we have, CSul§0"1", 1"0"}) = [J!_,{0’, 1} and therefore
lcs({0"17, 170"}) = n.

Definition 4 (Longest Common Subsequence prob{e@S). Given a non-empty finite
languagel. over X andk € N, is lcg(L) > k?

The intractability of LCS was studied firstly by Maier and later by Pietrzak, who im-
proves Maier’s results in terms of parameterized complexity:

Theorem 1. SupposeY is a binary alphabet.
TheLCS problem isNP-completd17].
TheLCS problem, parameterized #L, is W[1]-hard [23].

1 Also known as SORT TURING MACHINE ACCEPTANCEproblem.
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2. Hardnessof CENTER STRING and MEDIAN STRING over binary alphabets
under Levenshtein distance

In this section, we demonstrate the NP-completeness dagthdrdness with respect to
the number of input strings of ENTER STRING and MEDIAN STRING under Levenshtein
distance. These results already appedRi. We start with the less technical of the two
proofs, the one concerninge®TER STRING (Theorem 3. Similar ideas are used for 4
DIAN STRING (Theorem 4. As a by-product, we also show the hardness of a restriction
LCS to instances in which all input strings share the same length.

2.1. Hardness ofCENTER STRING under Levenshtein distance

In order to reduce LCS to ENTER STRING we introduce, like in2], the following
intermediate problem, LCSO0, which consists in the restriction of LCS to the instances in
which input strings have lengttk2

Before stating our theorems, we need the following lemmas. In substance, the first
lemma says that if one concatenates a lait¢o all strings in a languagé, then the
Ics of L increases by one. Indeed, by doing this, one “addsd am any maximal com-
mon subsequence @f (one changes CSgb) into CSuliL) U CSul(L)a). Thus, the Ics
increases by one. The formal proof is left to the reader.

Lemma 1. For every languagé. and for every letter, we havdcs(La) =lcs(L) + 1.

The following lemma shows that given a languageand two different letters of,
one can design another langualgeby associating to each stringof L two strings such
that their only common subsequence isThis is made by concatenatingtdwo suffixes
sharing no common letters. It follows that the Icgo&nd of L” have equal length although
the strings ofL’ are arbitrarily longer than the ones bf This lemma is novel compared
to the proof in[2] and allows us to exhibit a reduction of LCSO0 to LCS that remains valid
in the case of binary alphabets, and preserves the parameter.

Lemma 2. Let L be a language over’, a, b € X such thata # b, and (m,)xcr and
(nx)xer two lists of positive integers each associated with a string.dfet us define the
languageL’ by L' :=J,c; {xa™x, xb"*}. Then, the longest common subsequencds of
and of L’ share the same length, i.écs(L) = Ics(L’).

Proof. For all stringsu, v, w € X*, Subl{wu) N Sublwv) = Sub(w) if and only if u andv
do not share any letter. We have

CSul(L) = (7] Subixa™) N Sub(xb™) = CSuk(L)
xeL Sub(x)
and therefore lqgd.) =Ics(L’). O

It is shown in[2] that if #X is at least 4 then LCSO is NP-complete. (The result they
prove is stronger than the one state{@nProposition 1)) We improve this result.
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Theorem 2. TheLCSOproblem isNP-hard even ifY is binary. Moreover, th& CS0prob-
lem parameterized i#L is W[1]-hard.

Proof. Suppose thak is the binary alphabdD, 1}. By Theorem 1it is sufficient to re-

duce LCS (parameterized i #to LCSO (parameterized in#4. Let (L, k) be an instance

of LCS, L being a non-empty finite language ahd positive integer. We construet, k)

such that it is an instance of LCSO0. In our construction, we introduce an intermediate lan-
guageL’ whose strings all have intermediate length L’ is constructed fromL as in
Lemma 2with appropriaten,’s andn,’s in order to obtain strings of the same length

With n set as the length of the longest stringinthe final languagé is made by concate-
nating0” to all strings inL’. This forces the Ics of to be larger than or equal io We set

k := k 4+ n such that if(L, k) has a solution of length, (L, k) has a solution of length.

Let

ni=maxix|, N:=2k+n, L= JxoN T x1V-),
xelL vel

L:=L'0" and k:=k-+n.

We haveL’ C {0, 1}V. Therefore,L is a subset 0f0, 1}% and (L, k) is an instance of
LCSO0. The transformation of the instan@e, k) of LCS into the instancéL, k) of LCSO
is polynomial and parameter preserving (sinde=##L’ = 2#L). It remains to prove that

les(L) >k < les(L) >k. (1)

First,Lemma 2applied toL andL’ yields IcgL) =Ics(L’). As a corollary, the polyno-
mial reduction of(L, k) to (L, k) shows that the restriction of LCS to the instances such
that all strings inL share the same length is NP-complete and Miard with respect
to #L'.

On the other end,emma limplies that Ic$L) = Ics(L’) + n and therefore: lad.) =
Ics(L) + n which implies(1). O

Now, we have to relate the Levenshtein distance and the notion of subsequence to com-
plete the reduction of LCSO toENTER STRING.

Lemma 3. For all x, y € X* we have

(1) dr(x,y) = Ix| —Iyl,
(i) dp(x,y)=|x|—|y|ifand onlyify is a subsequence of

Proof. Letx,y € X* and w.l.0.g. assume is longer thany. The first statement says that
the edit distance is larger than or equal to the length differenceasfd y. Clearly, any
transformation ofx into y has to deletdx| — |y| supernumerary symbols. The second
statement says that the equality holdgifs a subsequence of Again, once the transfor-
mation has deleted the| — |y| supernumerary symbols, if the resulting subsequengg is
it means thay is a subsequence of and conversely. O
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Theorem 3. The CENTER STRING problem under Levenshtein distanceNB-complete
even ifY is binary. MoreoverCENTER STRING under Levenshtein distance, parameter-
ized in#W, is W[1]-hard.

Proof. The proof is the same as |8]. It consists in reducing LCSO toEBTER STRING:

we transform an instancéel, k) of LCSO into the instancéW, K) := (L U {&}, k) of
CENTER STRING. The transformation is polynomial and parameter preserving (since
#W € {#L,#L + 1}). The equivalence

les(L)y 2k < RW)<LK,

follows from the properties of; stated inLemma 3

(=) First, assume Igd.) > k. We show thatR(W) < K. By hypothesis, it exists €
CSul(L) such thats| = k. Statement (ii) oLemma 3mplies that for allk € L: dy (x, s) =
|x|—|s|=2k—k =k.Asd(e,s) =|s| =k = K, foranyx € W, it follows thatd; (x, s) =
K and thusR(W) <k =K.

(<) Now, assume thaR (W) < K. We show Ic§L) >k, i.e., it exists an in CSul{L)
such that|s| > k. By hypothesis, it exists € {0, 1}* such that for anyw € W we have
dr(w,s) < K =k. As ¢ belongs toW, we know by hypothesis that| = dy (e, s) < k. By
definition of the radius, for any € L:

k>dp(x,s)
> |x| —|s| by statement (i) okemma 3
=2k —|s| because €L
>2k —k since|s| <k
=k.
It follows that the previous inequalities are in fact equalities. Thus, by statement (ii) of

Lemma 3d(x,s) = |x| — |s| implies thats is a subsequence of Moreover, 2 — |s| =k
and thereforés| = k, which completes the proof.O

2.2. Hardness oMEDIAN STRING under Levenshtein distance

In order to reduce LCS to EDIAN STRING, we need to link Levenshtein distance and
subsequences by a tighter inequality than the one providdcebyma 3 Let x, y € X*
and w.l.0.g. assumie| > |y|. Lemma 4shows that any transformation efinto y contains
at least as much operations as the difference between the lengthanaf of its longest
common subsequences wigh An explanation is as follows. Consider the positionseof
that do not belong to a fixed maximal common subsequencanfly. All these are either
supernumerary and have to be deleted, or differ from the corresponding positicanth
need to be substituted.

Lemmad4. For all x, y € X*, we have

dp(x,y) =max{|x|, |yl} —les({x, y}).
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Proof. Let ((x1, y1), (x2, y2), ..., (xu, y»)) be an alignment of andy with optimal cost
dr (x,y). For a definition of an alignment, we refer the readefi8jo Remember that([i]
and notx; denotes théth symbol ofx. We have

— (x;, ) € (X U{e}) x X)U (X x (X U{e})) foralli €[1,n] (a symbol in the align-
ment is a single letter or the empty string),
— X =X1X2...Xp,

—Y=Y1y2...Yn,
— dp(x,y) =#J where/J is the set of all € [1, n] such thatx; # y;.

Denotek := #([1,n] \ J). Let iy, io, ..., i be indexes such thafl, n]\ J = {i1,
io,...,ix} andi1 <ip < --- < iy. Foralli € [1,n], i ¢ J means thak; = y; and there-
fore x; xi, ... xi, = yi,yi, - - - ¥i, 1S @ subsequence ofand ofy. From that we deduce:

|CS({X»)’})>k=n—dL(x,)’)- (2)

On the other hand, as any alignment symbol can be the empty string, we have

n=lxixz... x| = x| and n>=|yiwy2... .yl =1yl

and thus:
n > max{|x|, |yl}. Q)

Combining Egs(2) and (3) we obtain the inequality stated in our lemmaz

The inequality stated ihemma 4involves only two strings. In order to generalize it
to many stringsl(emma §, we need the following lemma. For any two finite s&tsB,
we have #A4 U B) = #A + #B — #(A U B). Lemma 5states an analogous result for the
length of the longest common subsequence. Indeed, the Ics of the unfpn ©fX and
{u} NY is larger than or equal to the Ics of each minus the Ics of their intersection, which
contains{u}.

Lemmab. Forall u € X* and forall X, Y C X*, we have
les({fulUX UY) =les({u} U X)+les({n} UY) —|ul. (4)

Proof. Let p :=lcs({u} U X) and g := lcs({u} U Y). By hypothesis for{u} U X,
there exist indexesy, i, ...,i, satisfying 1< i; < i < --- < i, < |u| such that
u = plinluliz]. .. uli,] € CSull{u} U X). Similarly, for {1} U Y, there exist indexes
J1s J2s -, Jg satistying 1< j1 < jo < -+ < jg < |pl suchthab := ul[jaluljal. .. uljgl €
Csul{u}uy).

Setting! := {i1,i2,...,ip} andJ := {j1, jo, ..., j;}, we see that andv share a com-
mon subsequence of lengtli/# J). It is also a common subsequence of all strings in
{u} U X UY. From which we deduce

les(fulUXUY)=#INJ). (5)
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On the other hand, since and J are subsets ofl, |1|], we have # U J) < || and
therefore

HINJS)=p+q—#IUJ)=p+q—|ul (6)
Combining(5) and(6) gives(4) and concludes the proof.0

Lemma 6generalizetemma 4to the case of a language.

Lemma 6. For all « € ¥* and for all finite language¥X over X', we have

D di(u,x) + #X = Dlul > 1X| —les({u} U X)

xeX

where|X| denotesy _ _y |x].
Proof. We proceed by induction on¥ Assume #& = 0; the inequality holds since both
members are equal to|u|. When # = 1, the statement follows fronremma 4

Now suppose that¥ > 1. Letxg € X and letX’ := X \ {xo}. We have

dp (1, x0) = |xo| — les({u, xo}), (7)
Y diu,x) + #X' = Dlul > 1X'| - les({n) U X'), 8
x'eX’

les({u} U X) > les({n} U X') + les({u, xo}) — |l 9)

Inequalities(7) and(8) result respectively frochemma 4and from the induction hypoth-
esis.Lemma 5applied with(X, Y) := (X’, {xo}) yields(9). Adding (7), (8) and the trivial
inequality|u| > || we obtain

D o diu, x) + #X)|pl > X' + [xol —les({u} U X') —les({w, xo}) + ||

xeX

> 1X'| + |xol — les({u} U X)),

where the last inequality deduces fr@#). Since #’ = #X — 1 and|X’| + |xg| = | X|, this
concludes the proof. O

We can now prove the main theorem of this section. Our proof is inspired from the one
of [2]. However, our reduction differs: instead of adding new symbols to the alphabet, we
construct a language by concatenating a blodd’'eto every word and adding new words
that are comparatively small powers@s.

Theorem 4. The MEDIAN STRING problem under Levenshtein distanceNlB-complete
even ifX is binary. MoreoverMEDIAN STRING under Levenshtein distance, parameter-
ized in#W, is W[1]-hard.

Proof. SupposeX is the binary alphabd0, 1}. The schema of the proof is the following:
we reduce LCS (parameterized ih }t0o MEDIAN STRING (parameterized inW) in order
to applyTheorem land conclude.
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Let (L, k) be an instance of LCY, being a non-empty finite language o\ér, 1} and
k a positive integer. We transford, k) into the instancéW, K) of MEDIAN STRING, as
described below. Let

nn-—1
n:=#L, N :=max |L|+T —

K1=|L|+(n—l)N—k—n(n2 ) wi=L0M U0’ ie[La—11).

k,n—l},

This transformation is polynomial and parameter preserving silce2(#L) — 1. Hence,
it remains to prove

les(L) >k < S(W)<K.

(=) Suppose that I¢g.) > k. We want to prove thaf(W) < K. By hypothesis, it
existss € CSulfL) such thats| = k. Let yu := sOV.

The idea of the proof is to chooge as a potential median and computes the sum of
the Levenshtein distances to all stringsWn First, we observe that the strin@$ are
subsequences pfand thafu is a subsequence of each stri@)¥ . In such a casé,emma 3
gives us a formula to compute the Levenshtein distance betwee any string iV

Foralli e [1,n — 1], we havei <n — 1< N < |ulo, SO0 is a subsequence of.
Hence, byLemma 3 we have

dp(n,0") =|pu| =10 =k+ N —i.
Moreover, for allx € L, i1 is a subsequence 80" ; againLemma 3applies and we obtain
dp (e, xO") = [xON| — || = x| - k.

Using these equalities, we compute the sum of the Levenshtein distances batween
and strings oW

n—1 net
Do diluw) =) di(u x0Y) + Y dp (.0 =} (x| — k) + Y (k+ N —i)
weW xel vt e L
=|L|—”k+(n—1)k+(n—1)N_”(”_2‘1)=K

and we obtairS(W) < K.

(<) Conversely, assum&W) < K. We show that Icd.) > k. By hypothesis, it exists
w € {0, 1}* such that) ", . dr(n, w) < K. First, we prove thatu|o > n — 1. For this,
we note that for all strings, v, dy (u, v) is greater or equal tw|o — |u|o. Hence, for all
x’ € LOV, we have

N —|ulo < Ix'lo — lnlo < dp(u, x")

so by summing ovet’ € LOV, we get

nN —nlulo< Y di(u,x) <K

x'eLON
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and

nlulo =2 nN — K

—nN — <|L| F(—1N—k— ”(”2_ 1))

nn—1
—|L|+k+ >
nn—1 nn—1)
>(|L|+ > —k>—|L|+k+ >
=nn—-1

which yieldspo > n — 1. This implies that for all € [1,n — 1], 0! is a subsequence of,
and sady (i, 0') = || —i. Thus,

n—1

deu,m—Dm Di= 0D -2,

We can now write

nn—1)
D dilwwy= Y di(u,x)+ (=Dl — ——
wew x'eLON
N N nn—1
> |L0"| —les({u} U LOY) — > (10)
where the application dfemma 6with X := LO" yields the last inequality.
On the other hand, we have:
ILON| = "1x0V|=> (Ix|+ N) =|L| +nN (11)
xeL xelL

and byLemma 1

les({u} U LOY) <les(LOY) =les(L) + N. (12)

By hypothesisk > S(W) > >, .y dr (1, w); combining this with(10), (11) and(12)
yields
nn—1)

2

K> "di(u.w)>(L|+nN)— (lcs(L) + N) —

weW

and thus

leS(L) > |L| + (n — DN — ”(”2_ =)

- K=k

This concludes the proof.O
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3. Hardnessof CENTER STRING under aweighted edit distance

Letdg be afixed integer valued edit distance that is a metric and satisfies the following
property:

Property 1.
VYa,beX a#b = dg(a,e)<dg(a,b)+dp(b,e).

Property Imeans that deleting a letter in a string casttictly less than changing this
letter into another letter and deleting that letter. It tightens slightly the triangle inequal-
ity and is a natural property for an edit distance. In this section, we prove #at &R
STRING underdg is intractable. Our proof relies on a reduction of a weighted counterpart
of LCSO0 to GENTER STRING. After introducing the concept of weight, Sectidri proves
that the weighted counterparts of LCSO and LCS are intractable. S&faeneralizes
Lemma 3to the weighted case and proves the main result.

3.1. TheWEIGHTED COMMON SUBSEQUENCEproblem
Let us first define aveight
Definition 5. A weightover X* is a mapping.: X* — N such that:

— forallae ¥, A(a) > 0and
— forallx, y € *, A(xy) = A(x) + A(y).

A weight is a morphism over the free monoid (for details on the free monoifil&ge
Hence,(¢) = 0 andx is defined by its restriction ta:

vYwe Z* A(w)=A(w[l]) + A(wl2]) + - + A(w[|wl]])

The weight ovez* that maps each element bfto 1, maps each string &* to its length.
We can now introduce the weighted counterparts to LCS and LCSO.

Definition 6. Let A be a weight ove™.

The A-WEIGHTED COMMON SUBSEQUENCEproblem (denoted by-WCS) is: given
a non-empty, finite language over ¥ andk € N, does there exist € CSulfL) with
A(s) =k?

The A-WCSO0 problem is the restriction aFWCS to the instanced., k) such that for
all x e L, A(x) = 2.

We now show the intractability of-WCSO0 for any fixed weight over X* (Theorem 5.
To prove this theorem requirkemma 8 Lemma 8considers a class of morphisms over the
free monoid that “amplify” the letters of a string, i.e., that replace each letbgra power
of a. Let L be a language angél such a morphism. The result stated means that for each
that is a common subsequence to the imagé,afne can find a common subsequemnce
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of L such that is a subsequence ¢f(s). This holds since it is possible to amplify some

letters inz to obtain a common subsequencef@f.) that has a preimage by.
AlthoughLemma 8is used inTheorem &n the finite case, it is also valid in the case of

infinite languages, which is proved thanks to the following property of compactness.

Lemma 7 (Compactness)Let X be a non-empty language over, i.e., X € X* and
X #£0. It existsY, a finite and non-empty subsetXf such thatCSul{X) = CSultY).

Proof. Choose a string in X. The set of the subsequences:pSuliu), is finite and so is
its subsetS defined byS := Sul(u) \ CSul(X). By definition of S, for eachs € S one can
find a stringx; € X such that is not a subsequence gf. SettingY := {u} U {x,: s € S},
we have that’ is a non-empty and finite subset ¥f It remains to prove that CSki) =
CSuliy). First, Y € X implies CSulgX) € CSuliY). Now, lets € CSulfY) and assume
thats ¢ CSul(X). Asu € Y, s is a subsequence of By hypothesiss belongs taS and is
thus, not a subsequencexgf which contradicts € CSulyY). Thus, we have € CSuli{X)
and CSully) C CSulX). O

Lemma 8. Let f: X¥* — X* be a mapping satisfying (a) € {a}* for eacha € ¥ and
fxy) = f(x)f(y) foranyx, y € X*. Then, for any non-empty languageover > and
for anytr € CSulq f (L)), it existss € CSulL) such that is a subsequence g¢f(s).

Proof. If ¢ € L thene € f(L) and CSulbf (L)) = {e} andt = ¢. In this case, setting:= ¢
we get thats € CSul{L) andz is a subsequence gf(s). Now, let us consider the case
where all strings inL are non-empty. Moreover, dyemma 7 we can assume thdt is
finite and proceed by induction ovék|. As L := {¢} is the only non-empty language
satisfying|L| = 0 and this case is now excluded, we can further assumeithat0. Two
alternatives arise:

1. All strings in L end by the same letter, saye X. It existsL’ C X* such that. = L'a.
Itfollows that|L'| < |L|andf (L) = f(L') f (a). Leta be the longest suffix afthat is
a subsequence ¢f(a) andr’ be a string inX* such that = +'«. By construction’ €
CSul{f(L")); so the induction hypothesis applies: it exist& CSul{L’) satisfying
t' € Sul(f(s")). Settings := s’a, we obtain that € CSul(L) andr € Sul(f(s)), what
we wanted to show.

2. At least two strings end with distinct letterise., it existsa, b € ¥ andu, v e X*
such thata # b and {ua, vb} C L. So, eithera or b is not a suffix oft. As a and
b play symmetrical roles, assunaeis not a suffix oft. Sincet is a subsequence of
fma) = f(u) f(a),itis also a subsequence pfu), as f (a) contains only:’s. Setting
L' := (L \ {ua)) U {u}, we getr € CSuli f(L")) and also|L’| < |L| (more precisely,
|L'|=|L|—1ifu ¢ L and|L'| = |L|— |ua| otherwise). Thus, the induction hypothesis
applies: it exists € CSul{L’) such that € Subk( f (s)). Since by construction aof’,
we have CSull.’) € CSul(L), we gets € CSul{L), what we needed to show.CI

Theorem 5. Let A be a weight ove’*. Then the.-WCSO0problem isNP-hard even if>
is binary. Moreoverp-WCSQ parameterized i#L, is W[1]-hard.



406 F. Nicolas, E. Rivals / Journal of Discrete Algorithms 3 (2005) 390-415

Proof. By Theorem 2it is sufficient to reduce LCSO (parameterized ib)#o A-WCS0
(parameterized in #). Suppose thaf is the binary alphabef0, 1}. Let (L, k) be an
instance of LCSOL being a non-empty finite language ovEBrandk a positive integer.
We constructL, k) such that it is an instance afWCSO0. Let

(L, k) == (f(L), MO)A(D)K),

where the mapping : {0, 1}* — {0, 1}* is given by: £ (0) = 0*®), £(1) = 1*©® and for
all x, y € {0,1}, f(xy) = f(x)f(y). The mappingf replaces each by a number of
0's equal to the weight of &4, and symmetrically each by a number ofL’s equal to the
weight of a0. The idea behind this rewriting is to obtain stringér) whose weight do not
depends on their composition @is and1’s (which is the case in general), but solely on
their length. Indeed, we have 1 (0)) = A(f (1)) = A(0)A(1) and thus,

Vx € (0,1} A(f(x)) = A(O0)A(D)Ix]. (13)

Therefore, ifx € L, theni(f(x)) = A(0)A(1)(2k) = 2k. Hence,(L, k) is an instance of
A-WCSO0.

The restriction of the morphisnyi to {0, 1} is injective andf ({0, 1}) = {0*®), 1*©)}
is a code (sefl5, Chapter 6for a definition) over{0, 1}. Hence,f is injective[15] and
so, #. = #L. This proves that the reduction of an instaliEek) of LCSO into the instance
(L, k) of --WCSO0 is parameter preserving. Since it is polynomlal it remains to prove that
lcs(L) > k if and only if there exist§ € CSul{L) such that.(§) =

Suppose lod.) > k. Then, there exists € CSul{L) such thaﬂs| k.Lets:= f(s): s
belongs to CSuld.) andA(5) =k (by Eq. (13)).

Conversely, suppose there exi$ts CSuliL) such thati(5) = k. By Lemma 8§ there
existss € CSulfL) such thaf is a subsequence ¢f(s). Thus, we have:

k=23 <A(f($) =AO)AD)]s

(the last equality coming from E@13)) and from which we deduce| > A(OE k. We
can now write IcéL) > |s| > k, which completes the proof.0

Let A be any fixed weight oveE™*. SinceA-WCSO is a restriction of-WCS, an imme-
diate corollary ofTheorem 5s thatA-WCS (respA-WCS parameterized inf#) is NP-hard
(resp. W1]-hard) even if¥ is binary.

3.2. Hardness o ENTER STRING under any weighted edit distance
Property 1generalized emma 3to the case of a weighted edit distance.

Lemma 9. For everyx, y € ¥*, we have

() de(x,y) > de(x,e) —de(y, e),
(ii) if y is a subsequence ofthendg (x, y) =dg(x,¢) —dg(y, ¢), and
(iii) if dg satisfiesPropertyl and if dg(x, y) = dg(x, &) — dg(y, ¢), theny is a subse-
guence of.
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Proof. Statement (i) is an immediate corollary of the triangle inequality(x, ¢) <
dp(x,y) +de(y, €).

Let us prove statement (ii). Assunyes a subsequence of One can transform into
y by deleting|x| — |y| letters ofx. More precisely, for each € X one needs to delete
|x|a — |yla Occurrences o, which costq|x|, — |yl.)dE (a, €). The total editing cost for
all letters is

Y (Ixla = 1¥la)de(a, &)=Y |xladp(a. &) = Y [¥lade(a, )

acX acX acX
=dg(x,e) —dg(y, ).

It follows thatdg (x, y) <dg(x,&) —dg(y,e). Asdg(x,e) —dp(y,e) <dg(x,y) is also
true, we obtain the equality of statement (ii).

Let us now prove statement (iii). Assume tRabperty 1is satisfied and thatg (x, y) =
dp(x,e) —dg(y, ). Let ((x1, y1), (x2, ¥2), ..., (xn, y»)) be an alignment betweenand
y of optimal costy "/, dg(xi, yi) =dE(x, y).

To prove thaty is a subsequence of it suffices to show that for anye [1, n] we have
vi € {e,x;i}. ASx1x2...x, = x, Wwe get

D de(xi &) =dg(x, &) =dp(x,6) —dp(y, &) + de(y, &) =dp(x, y) +dp(y,€)
i=1

=Y dpCxi,y)+ Y _de(yi.e) =Y _(de(xi, yi) +de (i, €)),

i=1 i=1 i=1

where the fourth equality follows from the alignment’s optimality and from the fact that
y1y2...yn = y. As for any position € [1, n], the triangle inequality

dp(xi, &) <dg(x;, yi) +de(yi, &)
is satisfied, we obtain:
de(xi, &) =dg(x;, yi) +de(yi, &).
By Property 1this is true only ify; ¢ X or if y; = x;. Thus, we have); € {¢, x;}, which

proves the last statement of this lemma

The following lemma introduces a special weight: the morphism that maps a string to
its distance te.

Lemma 10. The mapping
>* >N
w — dg(w, &)

is a weight overz™*.
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Proof. To transformw into ¢, we have to delete each letterinand thus:
dep(w, €) =dE(w[1], s) +dE(w[2], 5) + - +dE(w[|w|], s). O

The proof of the intractability of ENTER STRING is based on the reduction of WCS0
weighted by the above mentioned weight taNT ER STRING. We choose this weight for
WCSO0 because it is related to the distadgeaused in GENTER STRING.

Theorem 6. Supposelr is an integer valued edit distance that is a metric satisfyngp-
erty 1. Then, theCENTER STRING problem under is NP-complete even it is binary.
Moreover,CENTER STRING underdg parameterized itW is W[1]-hard.

Proof. Suppose thaf is the binary alphabef0, 1}. Let A := dg(., ¢) the weight over
X* as defined inLemma 10 We reducer-WCSO0 to (ENTER STRING: we transform an
instance(L, k) of A-WCSO0 in the instancéW, K) := (L U {¢}, k) of CENTER STRING.
The transformation is clearly polynomial and parameter preservilgd##L, #L + 1}).
Hence, it remains to check th&{(W) is at mostK if and only if there exists € CSulqL)
such that.(s) =«.

(Only if part) First, assume that there existss CSuliL) such thati(s) = k. We
show thatR(W) < K. Statement (ii) ol.emma 9implies that for allx € L: dg(x, s) =
dp(x,e) —dp(s, &) = AMx) — A(s) =2k —k = k. As dg(e,s) = A(s) = k = K, for any
x € W it follows thatdg (x,s) = K and thusR(W) < k=K.

(If part) Now, assume thaR (W) < K. We show that it exists anin CSulqL) such
thati(s) = k.

By hypothesis, it exists € {0, 1}* such that for anyw € W we havedg (w, s) < K =k.
As ¢ belongs toW, we know by hypothesis thalz (¢, s) < k. By definition of the radius,
foranyx € L:

k>dg(x,s)
>dg(x,e) —dg(s,e) by statement (i) obemma 9
=2k —dg(s,e) becausea € L
>2k—k sincedg(e,s) <k
=k.
It follows that the previous inequalities are in fact equalities. Thus, by statement (iii) of

Lemma 9dg(x,s) =dg(x,e) —dg(s, &) implies thats is a subsequence of Moreover,
2k — dg (s, ) = k and therefore.(s) = dg (s, €) = k, which completes the proof.0

The previous theorem means that, unlessRP (resp. FPE W[1]) it does not exists
a weighted edit distance satisfying natural properties under whieTER STRING iS
solvable in polynomial time (resp. is FPT in the number of input strings).

Note that if one replacedgr by d; the proof of Theorem 6is a valid proof for the
unweighted caseTheorem 3.
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4. Conclusion

In Section2.1 (see als¢21]), we have shown thatENTER STRING under Levenshtein
distance is NP-complete and[{¥-hard with respect to the number of input strings, even
for binary alphabet. In Sectid®) we generalize these results to any weighted edit distance
that satisfies a natural condition. This condition is fulfilled in many applications of compu-
tational biology for instance. It remains open to find any particular weighted edit distance
(of course, one that does not satisfy our condition) for whietlN@ER STRING would be
polynomial, but this seems improbable.

Concerning MEDIAN STRING, we have shown (SectioR.2) that under the Leven-
shtein distance it is also NP-complete and1\hard with respect to the number of in-
put strings, even for binary alphabets. The complexity under a particular weighted edit
distance remains open and seems non-trivial, singe4f {0, 1} and if the scores of inser-
tions/deletions 00 and of1l are not equal then our reduction does not seem to hold.

Although CENTER STRING and MEDIAN STRING are NP-complete, there exist ap-
proximation algorithms with bounded errd® and heuristic algorithms that are used in
practice[10,19] For example, given a finite languad@é over X, a set center(resp.set
mediar) of W can be found in polynomial time and is an approximate center (resp. me-
dian) of W with performance ratio 2 (resp.-2 %). Note that we call set center (resp. set
median) of W any string that minimizes the maximum (resp. the sum) of the distances to
strings in the seW andbelongs toW. An open question subsists: do these problems admit
Polynomial Time Approximation Schemes?
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Appendix A. A polynomial timealgorithm for CENTER STRING with a fixed
number of strings

In this sectiondr denotes a weighted metric edit distance ogrthat takes natural
values. We set

E :=maxdg(e,a) = maxdg (a, €).
acX acX

E is the insertion and deletion cost of the heaviest symbols.
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A.1l. Additional notations

For any stringw and anyk € [0, |w|], w® denotes therefix of w of lengthk, that is
w[1w([2]... w[k] (note thatw® = ¢). We denote byZ the set of all integers.

For anyn € N and anyP € Z", we call thesupportof P, the set denoted by su@p),
of i € [1, n] such thatP[i] # 0. For allI C [1, n], we callcharacteristic functiorof I in
[1, n], the element; of {0, 1}" given by:

1 ifiel,
0 ifi¢gl
We denotel ;) by 1; forany j € [1, n].
Theorem A.lstates the recurrence for the computatiod phetween two string28].

Vie[ln] 1] :[

Theorem A.1. Letdg be any weighted edit distance ovEF. For anyx, y € X* and any
a,be X, we have

dp(xa,e) =dg(x,e) +dg(a,e¢),

dg(e, yb) =dg(s,y) +dg (e, b),
dp(xa,y) +dg(e,b),

dg(xa, yb) =min{ dg(x, yb) +dg(a,¢),
dg(x,y) +dg(a,b).

A.2. A bound for the radius
The following property allows us to bound the radius of a language.

Proposition A.1. Let W be a non-empty finite language ovErand M the length of the
longest strings i¥. Then the radius oW is at most equal t&& M.

Proof. First, we bound the insertion cost of a stritmgy the cost of inserting a string that
is a power of the heaviest symbol as longiag-or anyw € X*, we have:

(w]| [w]

dg(e, w) = ZdE(s, wli]) < ZE = E|w|
i=1

i=1
and thus

R(W) < maxdg(e,w) < maxE|w|=EM. O
weW weW

The bound given above is tight as shown by the following example.

Example A.1. Suppose that for alt, y € X*, dg(x, y) = |x| + |y| — 2lcx, y), i.e., that
substitutions cost at least 2 and insertions/deletions cost 1. In other words substitution
are unnecessary, since one can always replace a substitution by a deletion followed by an
insertion. In this case, we have=1. Let ¥ := {0, 1}, M e NandW := {0™,1M}: ¢ and

0M1M are centers o andW admitsM as radius.
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A.3. Main algorithm

Letn e N* andW := {w1, wo, ..., w,} be a language with strings overX. We want
to compute the radius d¥ . We proceed bgynamic programming-et M := max,cw |w|
be the length of the longest stringsin and let

P =0, wal] x [0, [wa] x -+ x [0, [wal].

An element ofP is a combination of lengths, one for the prefix of eagh We denote by
AP x 7" — {T, L} the boolean valued mapping that for a3, D) € P x Z" is defined

by:
A[P,D] & 3sex*, Viellnlde(s,w""V) < Dlil.

D is a vector of maximum values for the edit distanca$P, D] is true iff it exists a
string s such that for each string; € W, the edit distance betweenand the prefix of
w specified byP[i] is at mostD[i]. By Proposition A.1it suffices to inspect the entries
Al(Jwal, lwal, ..., lw,|), D] for D € [0, EM]" to compute the radius d¥. Our algorithm
computes by dynamic programming the restrictiomato P x [0, EM]".

Before giving the recurrence relation ihheorem A.2we start by two lemmas.
Lemma A.lfollows from the fact that the metridry does not take negative values.
Lemma A.2rewritesA[ P, D] whenP = (0,0, ..., 0); it initializes the recurrence.

LemmaA.l. Forany P € P and anyD € Z" \ N", A[P, D] is false.
LemmaA.2. ForanyD € N", A[(0,0,...,0), D] is true.

Proof. Lets:=¢.If P=(0,0,...,0) thenforalli €[1,n], wl.(P[”) =g, and thus,

dE(s,w(P[i])) =0. O

i
The following Theorem A.2states the main recurrence that enables the computation of
A[P, D]'s by dynamic programming.

Theorem A.2. Let P € P with P # (0,0,...,0) and D € Z". We haveA[ P, D] if and
only if it existsj € supg P) such that

A[P —1j, D —dg(w;[P[j]]. €)1;]
OR it existsz € ¥ andJ < supg P) such that

A|:P —1;, D —dg(a, 8)1[1,,,]\] — ZdE(a, w; [P[j]])lji| (A.l)
jeJ

The first term of the logical OR is the case of an insertion at the end of sdfrlé).
The second term (EqA.1)) is the case of a deletion or a substitution (or a match) at the

end of all thewi.P[jD’s.
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Proof. For each(s, P, D) € X* x P x Z" we denote by"'[s, P, D] the boolean value of
the assertion:
Viel[lnl de(s,w"™) < DIil.

This notation allows us to shorten the proof since:

A[P,D] & 3FseX* I[s,P,D].
Let P € P with P #(0,0,...,0) andD € Z".

We first show théif " part.

e Assume that the first term of the logical OR is true. l.e., suppose it existsup P)
ands € X* suchthatl"[s, P —1;, D —dg(w;[ P[], ¢)1;]is true. Forany € [1, n]\ {;},
asPli]= (P —1;)[i], we get

dig (s, w ) = dp (s, w D)
< (D —dg(w;[PL)1]. €)1;)li]
— DIil.

Forw;, if we rewrite its prefix of lengthP[j] in its prefix of lengthP[ ;] — 1 concatenated
with its P[j]th letter, we obtain

di (5. w§"VP) = d (s. (w7 [PLT))
<dg(s, w;.(Pfl-")m)) +dg(e, w;[P[j1]) by TheoremA.1
< (D —de(w;[PLj1]. €)1;)[j1+de (e, w;[PLj1]) by hyp.
= DI[jl.
It follows thatI'[s, P, D] holds and thatA[ P, D] is true.

e Now, assume that the second term of the logical OR is true. l.e., it exist& and
J Csupf P) ands’ € X* such that

F[s/, P—1;,D—dg(a, &)l nng — ZdE(a, wj[P[j]])lj}
jelJ

is true. On one hand, for ariye [1, n] \ J, by decomposing the prefixes of the's we get

dE(s’a, w(P[i])) =dg (s’a, w((Pfl’)[iD) sincei ¢ J

i i

<dgp(s, wl.((P_l”[”)) +dg(a,e) byTheoremA.1

< (D —dg(a, &) ang — ZdE(a, w;j [P[j]])lj)[i]
jeJ
+dg(a,e) by hyp.
= DJi].
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On the other hand, for anye J, we have
dg(s'a, wl.(P[i])) =dg(s'a, (wl.((P_li)[i]))wi[P[i]])
<dg(s, wl.((P_li)[i])) +dg(a, wi[Pli]]) by TheoremA.1
< (D —dg(a, &)1 — ZdE(a, W [P[j]])lj)[i]
jeJ
+dg(a, wi[Pli]]) by hyp.
= DJi].

It follows thatI"[s’a, P, D] holds, which implies that\[ P, D] is true. This completes the
first part of the proof.
Let us now show thtonly if” part.
Suppose it exists € X* satisfyingl"[s, P, D]. Two cases arise.
e First, assume there exisfss supg P) such that:

de (s, w{") = dp (s, w7 + dg (e, wi [ PLT]). (A.2)
In this case, we obtain thdt[s, P — 1;, D — dg (e, w;[P[J]])1;] is true and we are done.
Note that Eq(A.2) means it exists an alignment betwaeandw "/ with minimum cost

R J
dg (s, w;P“D) ending by(e, w;[P[;1]) (i.e., by the deletion of the last letter wfﬁ.

e Conversely, assume that for eatk supp P), Eq.(A.2) is false.
This assumption requires# ¢ and thus, it exista € ¥ ands’ € X* such that = s'a.
(PLjD

Furthermore, for eacli € sup P), an alignment between and w; with minimum

costdg (s, w;PU])) ends either bya, ¢) (deletion of the last letter af) or by (a, w;[P[;11)
(match or substitution between the last letters of both words). Let us dendtéeysubset
of j € supf P) that are in the last case, i.e., such that there exists an alignment batween

andwﬁ.PUD with costdg (s, wE.P[”)) that ends bya, w;[P[j]]), then:

P[j]))_

Vied dp(s.w"V)=dg(s' w7+ di(a, wi[PLIT)).

On the other hand, for anye [1,n] \ J, an alignment betweenandw;”j]) with cost
dg (s, w;P[-’])) ends by(a, ¢) (note that ifj ¢ supg P) thenanyalignment betweem and
wj.P[j]) = ¢ ends by(a, ¢)). Hence we obtain
VielLn\J de(s wV) =dg(s", w™) +dp(a.e).

And so

F[s/, P—1;, D—dg(a,&)lpnps — ZdE (a, wj[P[j]])lj}
jeJ
is true, what we wanted. This completes both the proof of the “only if” part and the proof
of the theorem. O
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Theorem A.3. Assume: € N* is fixed and consider th€ENTER STRING problem under
dg for finite languaged¥ C X* of cardinality . It exists an algorithm that computes the
radius and a center ofV underdg in polynomial timeQ#X x M?"), whereM is length
of a longest string irWv.

Proof. We store in memory the restriction g@fto P x [0, EM]" in a Zz-dimensional table
of boolean values. The algorithm proceeds in two steps.

1. Initialization. According toLemma A.2 we set, for eaclD € [0, EM]", the bit cod-
ing for A[(0,0,...,0), D] to T. This step takes &P x (1+ EM)") time, which is
roughly bounded by Gt~ x M2").

2. RecurrenceWe enumerate alP € P in lexicographical order, and for eadh, we
compute all the entried[ P, D] for D € [0, EM]"; for this #P x (1+ EM)" boolean
values are computed. The recurrence relation givefitinorem A.2allows us to
compute each entry in @) time (note that Eq(A.1) has to be evaluated for all
a € X and negative values iP are handled bemma A.). So, the whole step takes
O#X x #P x (1+ EM)") time, which is bounded by @X x M?2").

Altogether to compute the radius 8, the algorithm requires @~ x M) time as
stated. A center o can then be obtained by backtracking in the matrix that staresto
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