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Abstract. We consider the set I'(n) of all period sets of strings of length
n over a finite alphabet. We show that there is redundancy in period
sets and introduce the notion of an irreducible period set. We prove that
I'(n) is a lattice under set inclusion and does not satisfy the Jordan-
Dedekind condition. We propose the first enumeration algorithm for I'(n)
and improve upon the previously known asymptotic lower bounds on the
cardinality of I'(n). Finally, we provide a new recurrence to compute the
number of strings sharing a given period set.

1 Introduction

We consider the period sets of strings of length n over a finite alphabet, and
specific representations of them, (auto)correlations, which are binary vectors
of length n indicating the periods. Among the possible 2" bit vectors, only
a small subset are valid autocorrelations. In [6], Guibas and Odlyzko provide
characterizations of correlations, asymptotic bounds on their number, and a
recurrence for the population size of a correlation, i.e., the number of strings
sharing a given correlation. However, until now, no one has investigated the
combinatorial structure of I'(n), the set of all correlations of length n; nor has
anyone proposed an efficient enumeration algorithm for I'(n).

In this paper, we show that there is redundancy in period sets, introduce the
notion of an irreducible period set, and show how to efficiently convert between
the two representations (Section 2). We prove that I'(n) is a lattice under set
inclusion and does not satisfy the Jordan-Dedekind condition. While A(n), the
set of all irreducible period sets, does satisfy that condition, it does not form a
lattice (Section 3). We propose the first enumeration algorithm for I'(n) (Section
4) and improve upon the previously known asymptotic lower bounds for the
cardinality of I'(n) (Section 5). Finally, we provide a new recurrence to compute
the population sizes of correlations (Section 6).

Periods of strings have proven useful mainly in two areas of research. First,
in pattern matching, several off-line algorithms take advantage of the periods
of the pattern to speed up the search for its occurrences in a text (see [2] for a



review). Second, several statistics of pattern occurrences have been investigated
which take into account the pattern’s periodicity. For instance, the probability
of a pattern’s absence in a Bernoulli text depends on its correlation [9]. In an-
other work [8], we investigate the number of missing words in a random text
and the number of common words between two random texts. Computing their
expectation requires the enumeration of all correlations and the calculation of
their population sizes. This has applications in the analysis of approximate pat-
tern matching, in computational molecular biology, and in the testing of random
number generators.

1.1 Notations, Definitions and Elementary Properties

Let X be a finite alphabet of size o. A sequence of n letters of X' indexed from
0 ton — 1 is called a word or a string of length n over Y. We denote the length
of a word U := UpU; ...Up—1 by |U|. Forany 0 < i < j <n, U; ; :=U;...U;
is called a substring of U. Moreover, Uy.; is a prefiz and U; n—1 is a suffiz of
U. We denote by X*, respectively by X™, the set of all finite words, resp. of all
words of length n, over X.

Definition 1 (Period). Let U € X™ and let p be a non-negative integer with
p <n. Then pis a period of U iff: VO<i<n —p : U; = Ujgp.

In other words, p is a period iff another copy of U shifted p positions to the
right over the original matches in the overlapping positions, or equivalently, iff
the prefix and suffix of U of length n — p are equal. By convention, any word has
the trivial null period, 0.

Some properties of periods are: If p is a period then any multiple of p lower
than n is also period. If p is a period and the suffix of length n — p has period
q, then U has period p + ¢, and conversely. For an in-depth study, we refer the
reader to [1,7,6]. Here, we need the Theorem of Fine and Wilf, also called the
GCD-rule, and a useful corollary.

Theorem 1 (Fine and Wilf [4]). Let U € ™. If U has periods p and g with
p<qandp+q<n+ged(p,q), then ged(p,q) is also a period.

Lemma 1. Let U € X" with smallest non-null periodp < |5 |. Ifi <n—p+2
is a period of U, then it is a multiple of p.

Proof. Assume that pti. Then g := ged(p,i) < p, and trivially g > 1. Therefore,
p+1i—g <n,and Theorem 1 says that g is a period, contradicting the premise
that p is the smallest non-null period. O

Sets of periods and autocorrelations Let U € Y™. We denote the set of
all periods of U by P(U). We have that P(U) C [0,n — 1]. The autocorrelation
v of U is a representation of P(U). It is a binary vector of length n such that:
V0<i<mn,v =1iffi € P(U), and v; = 0 otherwise. As v and P(U) represent
the same set, we use them interchangeably and write P(U) = v. We use both



1 € v and v; = 1 to express that i is a period of a word U with autocorrelation
v. We also write that i is a period of v. The smallest non-null period of U or of
v is called its basic period and is denoted by 7(U) or 7(v).

We denote the concatenation of two binary strings s and ¢ by s o ¢, and the
k-fold concatenation of s with itself by s*. So 10* o w is the string starting with
1, followed by k 0s, and ending with the string w.

Let I'(n) := {v € {0,1}"|3U € X" : v = P(U)} be the set of all autocorre-
lations of strings in X™. We denote its cardinality by x(n). The autocorrelations
in I'(n) can be partitioned according to their basic period; thus, for 0 < p < n,
we denote by I'(n,p) the subset of autocorrelations whose basic period is p, and
by &(n,p) the cardinality of this set. The set inclusion defines a partial order
on elements of I'(n). For u,v € I'(n), we denote by u C v, resp. by u C v, the
inclusion, resp. the strict inclusion, of v in v. We write v > u if v covers u in the
inclusion relationship, i.e., if u C v, and u C y C v implies y = w.

1.2 Characterization of Correlations

In [6], Guibas and Odlyzko characterized the correlations of length n in terms of
the Forward Propagation Rule (FPR), the Backward Propagation Rule (BPR),
and by a recursive predicate =. We review the main theorem and the definitions.

Theorem 2 (Characterization of Correlations [6]). Let v € {0,1}". The
following statements are equivalent:

1. v is the correlation of a binary word

2. v is the correlation of a word over an alphabet of size > 2

3. vo =1 and v satisfies the Forward and Backward Propagation Rules
4. v satisfies the predicate =

Definition 2. FPR, BPR, Predicate =. Let v € {0,1}".
FPR: v satisfies the FPR iff for all pairs (p,q) satisfying 0 < p < ¢ < n and

vp = vy = 1, it follows that v,yiq—p) = 1 foralli=2,..., Lﬁj.

BPR: v satisfies the BPR iff for all pairs (p,q) satisfying 0 < p < ¢ < 2p,
vp = vy = 1, and wvep = 0, it follows that v,_;,_,) = 0 for all i =
2,...,min(| =& |, | 2= ]).

g—p’Lg—p

Predicate =: v satisfies = iff vop=1 and, if p is the basic period of v, one of the
following conditions is satisfied:
Case a: p < | §]
Let r := mod(n,p), ¢ := p + r and w the suffix of v of length ¢q. Then
for all j in [1,n —¢] v; = 1 if j = ip for some i, and v; = 0 otherwise;
and the following conditions hold:
l.r=0orw,=1
2. if 7(w) < p then w(w) + p > q + ged(n(w), p)
3. w satisfies predicate =.
Case b: p > | 7]
We have: Vj : 1 < j <p, vj =0. Let w be the suffix of v of length
n — p, then w satisfies predicate =.



Guibas and Odlyzko proved that verifying the predicate requires O(n) time.
Note that = is recursive on the length of the binary vector. When v is tested, =
is recursively applied to a unique suffix of v denoted w (in case a, |w| = p + r;
in case b, |w| = n — p). We call the corresponding w the nested autocorrelation
of v. The following theorem is a consequence of the FPR and BPR, and of
characterization (3) in Theorem 2 (see [6]).

Theorem 3. Let v be a correlation of length n. Any substring v; ...v; of v with
0 <i<j<n such that v; =1 is a correlation of length j — i + 1.

2 Irreducible periods

We show that the period set of a word is in one-to-one correspondence with a
smaller set which we call its associated irreducible period set (IPS for short).

A full period set contains redundancies since some periods are deducible from
others as specified by the Forward Propagation Rule (FPR, see Section 1.2). For
example with n = 12, in the period set {0,7,9,11}, 11 can be obtained from 7
and 9 using the FPR (11 =9+ 1(9 — 7)) and is the only deducible period. The
IPS is thus {0, 7,9}. In this section, we formally define the notion of IPS and we
prove that the mapping R from I'(n) to A(n), the set of all IPSs, is bijective.
We also show how to compute the IPS from the period set, and conversely.

For every n € N, we define a function FC,,, the Forward Closure, from 2[0—1]
to 2197=11 Intuitively, FC,, repeatedly applies the FPR to all pairs of elements
until closure is reached. Note that the order in which pairs of elements are
considered does not matter, and therefore FC,, is well defined.

Definition 3 (Irreducible Period Set). Let T € I'(n) be a period set. A
subset S := {po,...,p} of T is an associated irreducible period set (IPS) of T'
iff it satisfies both following conditions:

1. T is the forward closure of S, i.e., FC,(S) =T,
2. For all triples (h, i, ) satisfying 0 < h <i < j <l wehaveVke Nt :p; #
pi + k(pi — pn)

Condition (2) expresses formally the fact that in an IPS no period can be ob-
tained from smaller periods with the FPR. It is equivalent to saying that S is the
smallest subset of T such that FC,,(S) = T. In other words, S is an IPS of T if it
is the intersection of all sets whose forward closure is 7. From this, one can see
that the associated IPS exists and is unique. Therefore, we can define a function
R that maps a period set to its associated IPS. Now, we define A(n) := R(I'(n))
and prove that the correspondence between period sets and IPSs is one-to-one.

Theorem 4. R: I'(n) = A(n), P — R(P) is bijective.

Proof. By definition, R is surjective. To prove that R is injective we need to show
that R(P) = R(Q) implies P = Q. If R(P) = R(Q) then P = FC,(R(P)) =
FC,(R(Q)) = Q by condition (1) of Definition 3. |



Algorithm 1: R
Input : Word length n, array P of periods in increasing order, size t of P
Output: Associated IPS R(P) as an array I; Variable: S: a sorted set;

1 I[0]:=P[0; 6 :=m5i:=1; k:=1; S:= 0

2 while ((i <t) and (6 > 1)) do

3 8 := P[i] — P[i — 1]; size := n — P[i — 1]; mul := | ££€];

4 if P[i)¢ S then

5 I[k]:= P[i]; k =k + 1;

6 if mul=2 then

7 | if mod(size,d) # 0 then S.insert(P[:]+4);

8 else if mul > 2 then S.insert(P[i — 1]+ mul x d); i := i + mul — 2;
9 | i:=i+1;

10 return [;

By Theorem 4, R~! exists; indeed, it is FC,, restricted to A(n). Algorithm 1
is an efficient implementation of R. The next theorem claims that R runs in
a time sublinear in the input size (which may be as large as @(n)) because
|R(P)| = O(logn) (We omit the proof and the algorithm R~'.) This is achieved
by exploiting the known structure of period sets; the algorithm does not need to
examine the whole input array P (cf. line 8 of R).

Theorem 5. For a given word length n and P € I'(n), Algorithm 1 correctly
computes R(P) in O(|R(P)|log(|R(P)|)) time.

Proof. R considers the periods of P in increasing order and uses the sorted set
S to store the forthcoming deducible periods. For each PJ[i], R tests whether it
is an irreducible period (line 4). If it is not, it is skipped; otherwise it is copied
into I (line 5), and we are either in case (a) or (b) of Predicate =. In case (b),
no deducible periods are induced by PJ[i], so nothing else is done. In case (a),
we have mul > 2. If mul = 2 and mod(size,d) # 0, the forward propagation
generates only P[i] + & which is inserted into S (lines 6 and 7). If mul > 2,
Lemma 1 allows to skip the periods in the range [P[i], P[i] + (mul — 2) x §] and
insert only P[i—1]+mul x §, which is done on line 8. This proves the correctness.

We now prove that the running time is O(|R(P)| log|R(P)|). We claim that
the while loop is executed at most 2- (R(P) — 1) times. Indeed, in each iteration,
either an element is inserted into I and possibly into S, or nothing happens;
the latter case arises only when the current P[i] is in S. But at most R(P) — 1
elements are ever inserted into S and I, as after termination |I| = |R(P)|.
Clearly, every operation in the loop takes constant time, except the operations
on S, which take O(log |S|) time when S is implemented as a balanced tree. O

3 Structural Properties of I'(n) and A(n)

3.1 I'(n) is a Lattice Under Inclusion.

First, we prove that the intersection of two period sets is a period set.



Lemma 2. Ifu,v € I'(n), then (uNwv) € I'(n).

Proof. Let u,v € I'(n) and w := u Nv. The results hold when n = 1. If w =
{0} we are done. Otherwise assume that for all ¢ < n,u',v' € I'(q) we have
(u' Nv') € I'(q). Let p be the smallest common non-null period of u and v. So p
is the smallest non-null period of w.

Case p < [5]: Let i := L%J We have that multiples of p are periods of u
and v: V1 < j <4 upj = vp; =1 and so wp.; = 1. Moreover, we have
VO<k<n—p, k+#jp: ug # vg, otherwise p would not be the smallest
common period of u and v. Hence, for all such k: wy = 0. Consider the
suffixes u',v', w' of length n’ := n — (i — 1)p of u,v and w respectively. We
know that w = (107 )" P ow’, uy = vy = u), = v, =1, and w' = v/ NV’
As from Theorem 3, we know that w',v' € I'(n'), we have by induction
that w' € I'(n'). Because w' satisfies the Theorem of Fine and Wilf, we have
m(w')+p > n'+ged(m(w'), p). Hence, w satisfies Predicate =, i.e., w € I'(n).

Case p > |5 |: Let o/, respectively v', be the suffix of length n — p of u, resp.
of v. By Theorem 3, u/,v' are autocorrelations of size n —p. As w = 10P~ ! o
(v’ Nw'), by induction it fulfills Predicate =. m|

Lemma 3. (I'(n), C) has a null element, 10", and a universal element, 1™.
Theorem 6. (I'(n),C) is a lattice.

Proof. From Lemma 2, we know that I'(n) is closed under intersection. There-
fore, the meet u Av of u,v € I'(n) is their intersection, and the join u V v is the
intersection of all elements containing both u and v. The existence of a universal
element ensures that this intersection is not empty. O

3.2 I'(n) does not satisfy the Jordan-Dedekind condition.

We demonstrate that I'(n) does not satisfy the Jordan-Dedekind condition, im-
plying that it is neither modular, distributive, nor a matroid. The next lemma
proves the existence of a specific maximal chain! between 1" and 10"~ in I'(n).

Lemma 4. Let n € N and p := | §] + 1. The following chain exists in I'(n):

A T 1)
Vp>i>n—2: 101.711"*“ - 1Oi1nfz'—1 (2)
10" %1 = 10™1 (3)

Moreover, this chain is mazimal and has length [].

! In a partially ordered set or poset, a chain is defined as a subset of completely ordered
elements, an antichain as a subset in which any two elements are uncomparable. The
length of a chain is its number of elements minus one.



Proof. We prove (1). Obviously, 1* D 10P~11"~P. We must show that: if 17 D
2 D 10P711™ 7P then £ = 10P~'1""P. Assume that such an z exists and is
different from 10°~'1""?. Then 0 < n(z) < p and Z,(;) = 1. By Lemma 1, we
have V j < n —m(z) + 2, z; = 0 iff n(z) { j. Thus, for some p < k < n, z =0
and z 2 10P~11"~P which is a contradiction.

The autocorrelations involved in (2) and (3) exist by Predicate = and only
differ from each other by one period. This implies (2) and (3) and proves that the
chain is maximal. By counting the links of the chain, one gets n—p+1=[2]. O

With p := | %] + 1 as above, consider I'(n,p) and its associated sub-lattice
in I'(n). From Predicate =, we have that I'(n,p) = {10?='} o I'(n — p). So the
structure of the sub-lattice defined by I'(n,p) is exactly the one of the lattice
of I'(n — p). Using the previous lemma, we deduce the existence of an induced
maximal chain between 10P=11"~=? and 10P=110"~?~! in I'(n). Combining this
with Equation 1 and 10P~110"P~! » 10"!, we obtain another maximal chain
between 1™ and 10"~ ! in I'(n). This proves the following lemma.

Lemma 5. Let n > 8 and p := | %] 41 be integers. The chain going from 1™ to
10P=11"=P, from there to 10P~ 110" P~ through the induced mazimal chain over

I(n,p), and then to 10"~ is a mazimal chain of I'(n). Its length is [[%lil] +2.

Hand inspection for n := 1,...,6 shows that I'(n) satisfies the Jordan-
Dedekind condition, i.e., all maximal chains between the same elements have
the same length. We now demonstrate it is not the case when n > 6.

Theorem 7. Forn > 6, I'(n) does not satisfy the Jordan-Dedekind condition.

Proof. From lemmas 4 and 5, we obtain the existence between 1™ and 10”1 of
two maximal chains of lengths [%] and [@] + 2. Clearly, for n > 8 these are
different. Moreover, hand inspection of I'(7) and I'(8) shows that they also do
not fulfill the Jordan-Dedekind condition. O

3.3 The poset (A(n), C) satisfies the Jordan-Dedekind condition.

For n > 3, (A(n), C) is not a lattice ({0,1} and {0, 2} never have a join). On the
other hand, in contrast to I'(n), we have the stronger result that any subset of
an IPS containing 0 is an IPS.

Lemma 6. Let R € A(n) and let {0} C Q C R, then @ € A(n).

Proof. Let P := FC,(R) € I'(n). We must show that P’ := FC,(Q) € I'(n), and
that no element of @) is deducible from others by the FPR. The latter property
follows from the minimality of R. To show P’ € I'(n), we only need to consider
the special case where R = QU{t}, i.e., where @) contains exactly one element
less than R. The general case follows by repeated application of the special case.

For a contradiction, assume P’ ¢ I'(n). Since P’ satisfies the FPR, it must
violate the BPR (see Characterization (3) of Theorem 2). So let 0 < p <
g < n with § := ¢ — p such that p—d ¢ P', but p —id € P' for some



i€ {2,...,min([£J, L%J)}. Since P does satisfy the BPR, we must have
that p — § € P, and this must be a result of adding ¢ to () and propagating it.
From this, we conclude that one of the supposedly non-deducible elements of (),
and hence of R, is in fact deducible from ¢. So R is not an IPS, a contradiction.

O

Theorem 8. The set A(n) of all Irreducible Period Sets is partially ordered and
satisfies the Jordan-Dedekind condition with respect to set inclusion.

Proof. Clearly, set inclusion induces a partial order on A(n). From Lemma 6, for
all pairs P,Q € A(n): P > Q iff P = Q U {q} for some ¢ in [1,n — 1]. Thus, any
two maximal chains between the same element have the same length. O

As a corollary of Lemma 6, the intersection of two IPSs is an IPS, but the
intersections of two IPSs is not the IPS of the intersection of their respective
period sets. Neither I'(n) nor A(n) are closed under union. The union of two IPSs
may recursively violate Theorem 1 several times, as in the following example:
u:={0,5,7},v:={0,5,8,9}, uUv = {0,5,7,8,9} ((7,8) require 6 in the suffix
of length 5, and (5, 6) require 1 in the whole u U v).

4 Enumeration of all Autocorrelations of Length n

In this section, we present the first enumeration algorithm for string autocor-
relations of length n. A brute force algorithm is to apply Predicate = to each
of the 2™ possible binary vectors and retain those that satisfy =. This is ex-
ponential in n and not practical. The recursive structure of = permits the use
of = as the basis of a dynamic programming algorithm that efficiently com-
putes I'(n) from I'(m,p) with m < 2n/3 and 1 < p < m. I'(n,1) = {1"} and
I(n,n) = {10™71} for all n. Below is the algorithm to compute I'(n, p) for n > 3
and 2 < p < (n—1). We assume that all necessary I'(m,p) with m < 2n/3 have
already been computed.

Case (a) [2 < p < 3]t Let ' :=nmodp and r := 7' +p. Then p <r < 2p,
and there are two sub-cases. In each of them, I'(n, p) can be constructed from
a subset of I'(r). Let s, := (107~ 1)l"/P1=1; every correlation in I'(n,p) is
of the form s, , o w with w € I'(r) chosen as follows.
1. Case r = p:

I(n,p) ={sppow|we [(r,p); r+ged(p,p’) <p' <p} (4
2. Case p<r < 2p:

I'(n,p) = {snpow|we I(r,p)} (5)

U {snpow|we(r,p); r'+ged(p,p’) <p' <p; w, =1}

In (4) and (5) : (r'+ged(p,p’) <p' <p) =p' 1p.



Case (b) [5 <p < (n—1)]: I'(n,p) is constructed from I'(n — p).
I'(n,p) = {10 ow |w € I'(n —p)} (6)

Proof (Correctness). Comparison with = reveals that every element that is in-
cluded in I'(n, p) according to each of (4), (5), or (6) fulfills =. (Case (a) of = has
been further subdivided into r = p and p < r < 2p.) It remains to be shown that
every vector satisfying = is included in the appropriate I'(n, p). If this is not the
case, let v be a vector of minimal length n that is an autocorrelation, but that is
not included in I'(n,p) where p = w(v). The only way this could happen would
be if the r-suffix of v were already not contained in its appropriate I'(r, p'). But
this would contradict the minimality of n. O

Improvements. Two improvements increase the efficiency and allow computa-
tion up to n = 450.

1. For given values of n and p, all autocorrelations in I'(n,p) have the same
prefix. The prefix length is p for p > % and p (|n/p] — 1) for p < 7. This
prefix is immediately available, and need not be stored explicitly.

2. In case (a), I'(n,p) is obtained from autocorrelations w € I'(r) with r > p.
By Lemma 1, such w must satisfy w(w) > (n mod p), and therefore it is
possible to construct I'(n, p) from the sets I'(s) with s < p. Hence, to obtain
I'(n,p), in both cases (a) and (b), only the sets I'(m,p’) with m < [2],1 <
p' < m are needed. For example, to compute I'(200), we only need to know
I'(1),...,I'(100) and their respective subsets, but not I"(101),...,I"(133).

5 Bounds on the Number of Autocorrelations

In this section, we investigate how the number k(n) of different autocorrelations
of length n grows with n. From Theorem 2, we know that x(n) is independent
of the alphabet size. In [6], it is shown that as n — oo,

In Kk, 1

+ol) < 47 = 2w/

1
— o(1). 7
53 +o(1) (7)
As shown in Figure 1, these bounds are rather loose. In fact, for small n, the
actual value of k(n) is below its asymptotic lower bound. While we conjecture
that lim,,_,o (lﬁll—':;)g = 515, it remains an open problem to derive a tight upper
bound and prove this conjecture. Our contribution is that a good lower bound
for Kk, is closely related to the number of binary partitions of an integer. Both
improved bounds we derive from this relationship are also shown in Figure 1.

We have k9 = 1, k1 = 1, and ke = 2. Considering only the correlations given
by case (b) of Predicate =, we have kn > >, /5 pcp in—p = E{géﬂ‘l K;. We

define Ly := 1, Ly := 1, and, for n > 2, L, := Z{Z{)ﬂ‘l L;. By induction,
L, < k, for all n > 0. From the definition of L,, we deduce that for n > 2,
L,=L, , forneven,and L, = L, -5+ LHT—l for n odd.



Comparison of Various (Asymptotic) Lower Bounds to the True Number of Autocorrelations
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Fig. 1. True values of Ink,/(Inn)? for n < 400, compared to Guibas & Odlyzko’s
(G&O0) asymptotic lower bound, the improved asymptotic bound from Theorem 9 (ii)
derived from DeBruijn’s results, and the non-asymptotic lower bound from Theorem
9 (i) based on Froberg’s work. Both of these bounds converge to the G&O asymptotic
value of 1/(2 In2) for n — oco. The upper bound of G&O, corresponding to the line
y =1/(21n(3/2)) ~ 1.23, is not visible on the figure.

Now we consider a related sequence: the number of binary partitions B, of an
integer n > 0, i.e., the number of ways to write n as a sum of powers of 2 where
the order of summands does not matter. For example, 6 can be written as such a
sum in 6 different ways: 442, 4+1+1, 24242, 242+1+1, 241+1+141, 1-H1+1+1+1+1.
Therefore Bg = 6. By convention, By = 1; furthermore B; = 1. Binary partitions
have been extensively studied; for example, see [3,5]. For n > 2, they satisfy the
recursion B, = B,,_s + B% for n even and B,, = B,,_1 for n odd. The following
lemma states the close relation between the lower bound L, for k(n) and the
number of binary partitions B,,.

Lemma 7. Forn > 1, L, =1/2-Bp41.

Proof. The proof is by induction. Forn =1, we have Ly =1 =1/2-By. If n > 2
is even, L, = Ly—1 = § - B(n_1)41 = 5 * Bnt1, as (n + 1) is then odd. If n > 3

isodd, L, =L, o+ LnT—l = % (Bn,l + BnT-}—l) = % - B, 11, by the recursion for

B, 41 for even (n +1). O

Froberg [5] and De Bruijn [3] give some bounds on B,. Combining Lemma 7,
Froberg’s and De Bruijn’s results allows us to derive good lower bounds on x(n)
in the next Theorem (The proof is omitted).



Theorem 9 (Lower Bounds on k(n)). Define

k

ad n
F = —_— - 8
(TL) I;) 2k(k2+1 Bl ( )

i/ For alln > 1, ky, > 0.31861 - F(n+1). i/ Asymptotically (with approzimated
constants),

Ink, 1 _(,_Inln 2 0.4139 1.47123 Inlnn o 1
Inn ( '

> -
(Inn)2 — 2In2 Inn (Inn)? Inn)?

6 Computing the Size of Populations

The correlation of a string depends on its self-overlapping structure, but is not
directly related to its characters. Hence, different strings share the same cor-
relation. For instance over the alphabet {a,b}, take abbabba and babbabb. The
population of a correlation v is the set of strings over X' whose correlation is v.
We wish to compute the size of the population of a given correlation, and by
extension of all correlations.

In [6], Guibas and Odlyzko exhibit a recurrence linking the population sizes
of a correlation and of its nested correlation. Here, we exhibit another recurrence
which links the population size of an autocorrelation v to the population sizes
of the autocorrelations it is included in. The recurrence depends on the number
of free characters (nfc for short) of v, to be defined next.

Definition 4 (Number of Free Characters). The nfc of a correlation v is
the maximum number of positions in a string U with P(U) = v that are not
determined by the periods.

To illustrate this definition, note that a correlation represents a set of equalities
between the characters of a string. For example, take v := 100001001 € I'(9). A
string U = ug . ..ug with P(U) = v must satisfy the following set of equations:
{ug = uz = us = ug,u1 = ug,us = ur}. Thus we can write any word U as
UQUL U2UgU4UU1 U2Ug TOr sOme ug, u1,us,us € X. So the nfc of v is 4.

The nfc is independent of X and can be computed from v alone. Given a
correlation v and its length n, Algorithm 2 (NFC), computes the nfc of v. NFC
follows the recursive structure of Predicate = and requires ©(n) time.

We now state our recurrence on the population sizes.

Theorem 10. Let n € N and let vy, be the k-th (k = 1,...,k(n)) autocorrela-
tion of ['(n). Let py denote the number of free characters of vy, and Ny be its
population size. We have:

Ny =0 - > Nj.

Jivg Cuvj



Algorithm 2: NFC

Input: n € N, v € I'(n); Output: the number of free characters of v;

i:= l;while (i < n) and (v; # 1) do i := i+ 1;// search for the basic period ;
if 7 = n then return n;// no basic period ;

if i =1 then return I1;

if (i < |%]) then return NFC(i + mod(n,s),v[n — i — mod(n,i)..n — 1]);
else return 2 x i —n + NFC(n —i,v[i..n — 1]);

Gk W N =

Proof. For any word U with P(U) = vy, there are pj, free positions. For each of
the o#* combinations of p; characters from X', we construct a word V satisfying
the character equalities associated with vy, and have vy C P(V). We do not
necessarily have vy = P(V'), because V may in fact satisfy additional character
equalities. Conversely, every word V with vy C P(V) is obtained in this way.

Therefore
oP* = Z NJ:Nk+ Z Nj,

jrup Coj Jrvg Cvj

which proves the theorem. O

Acknowledgments: We thank D. Bryant, the groups of S. Schbath at INRA
Jouy en Josas, and of Ph. Flajolet at INRIA Rocquencourt for helpful discus-
sions. E.R. is supported by the CNRS, part of this work has been done while
working at the DKFZ, in Heidelberg, Germany. S. R. is grateful to LIRMM for
a travel grant.

References

1. C. Choffrut and J. Karhuméki. Combinatorics of words. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, volume 1, pages 329-438. Springer-
Verlag, 1997.

2. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

3. N. G. DeBruijn. On Mahler’s partition problem. Proc. Akad. Wet. Amsterdam,
51:659-669, 1948.

4. N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer.
Math. Soc., 16:109-114, 1965.

5. C.-E. Froberg. Accurate estimation of the number of binary partitions. BIT, 17:386—
391, 1977.

6. L. J. Guibas and A. M. Odlyzko. Periods in strings. Journal of Combinatorial
Theory, Series A, 30:19-42, 1981.

7. M. Lothaire. Algebraic Combinatorics on Words. in preparation, 1999. URL:
http://www-igm.univ-mlv.fr/~berstel /Lothaire /index.html.

8. S. Rahmann and E. Rivals. Exact and Efficient Computation of the Expected
Number of Missing and Common Words in Random Texts. In R. Giancarlo and
D. Sankoff, editors, Proc. of the 11th Symposium on Combinatorial Pattern Match-
ing, number 1848 in LNCS, pages 375-387, Montréal, Canada, 2000. Springer-
Verlag, Berlin.

9. R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison-Wesley, Reading,
MA, 1996.



