
Transformation distances: a family of
dissimilarity measures based on movements of
segments

�*&2@!8*4-&2* $&66?	� �*&2@�&90 �*0&-&<*	 &2) �6.(.:&07

	�&'36&83.6*)��2+361&8.59* �32)&1*28&0*)* �.00* ������� #� ���� A �>8 ��� ��
$.00*2*9:*)��7(5 �*)*;� �6&2(* &2)
"-*36*8.7(-* �.3�2+361&8./ �*987(-*7
�6*'7+367(-92,=*28691 ����%�� �1 �*9*2-*.1*6 �*0)
��� �*.)*0'*6, ��	
��
�*61&2<

�������� ��
����� �� ����� ������� �� 	������ ��� ����� �������� �� 	������ ��� ����

Abstract
Motivation: Evolution acts in several ways on DNA: either
by mutating a base, or by inserting, deleting or copying a
segment of the sequence (Ruddle, 1997; Russell, 1994; Li
and Grauer, 1991). Classical alignment methods deal with
point mutations (Waterman, 1995), genome-level mutations
are studied using genome rearrangement distances (Bafna
and Pevzner, 1993, 1995; Kececioglu and Sankoff, 1994;
Kececioglu and Ravi, 1995). The latter distances generally
operate, not on the sequences, but on an ordered list of genes.
To our knowledge, no measure of distance attempts to
compare sequences using a general set of segment-based
operations.
Results: Here we define a new family of distances, called
transformation distances, which quantify the dissimilarity
between two sequences in terms of segment-based events. We
focus on the case where segment-copy, -reverse-copy and
-insertion are allowed in our set of operations. Those events
are weighted by their description length, but other sets of
weights are possible when biological information is avail-
able. The transformation distance from sequence S to
sequence T is then the Minimum Description Length among
all possible scripts that build T knowing S with segment-
based operations. The underlying idea is related to Kolmo-
gorov complexity theory. We present an algorithm which,
given two sequences S and T, computes exactly and
efficiently the transformation distance from S to T. Unlike
alignment methods, the method we propose does not
necessarily respect the order of the residues within the
compared sequences and is therefore able to account for
duplications and translocations that cannot be properly
described by sequence alignment. A biological application
on Tnt1 tobacco retrotransposon is presented.
Availability: The algorithm and the graphical interface can
be downloaded at http://www.lifl.fr/∼varre/TD
Contact: {varre,delahaye}@lifl.fr, E.Rivals@dkfz-heidel-
berg.de

Introduction

Evolution operates molecular alterations of two types: point
mutations, namely insertion, deletion or substitution of
single residues, and segment-based modifications: duplica-
tion, inversion, insertion, etc. of whole segments of the se-
quence. Genome level mutations operate also on large pieces
of DNA and can thus be included in segment-based modifi-
cations. To our knowledge, no measure attempts to quantify
dissimilarity by assessing segment-based differences, and by
describing the differences between two sequences with an
edit-script containing such segment-based operations.

Sequence comparison is usually performed on similar
parts of the sequences, like structurally or functionally re-
lated domains of proteins. Even if they correspond to com-
plete biological entities like a whole gene or a protein, entire
sequences are not compared, or only in case of high similar-
ity. With such restrictions, one misses some biological mean-
ingful information written in the molecules.

Certain alignment oriented methods take into account the
existence of ‘segment’ of similarity. Morgenstern et al.
(1996) proposed a segment-based alignment method which
aligns pairs of direct segments having local similarities and
excludes regions of low similarity from the alignment.
Schöniger and Waterman (1992) found a dynamic program-
ming algorithm to include in a classical alignment parts
where the sequences are aligned in reverse order. These sol-
utions are alignment oriented: the segments put into corre-
spondence always respect the overall order of the positions
in the sequences.

In our approach, this order is disregarded. We do not want
to restrict our attention to ‘alignable’ segment similarities,
but also consider a wider class of segment operations like:
duplication, inversion, or translocation. We use a different
definition of similarity and this leads to a different class of
problems.

$30� 	 23� � 	���

�&,*7 	���
�

194 � Oxford University Press

BIOINFORMATICS

A family of dissimilarity measures based on movements of segments

195

Other approaches, called genome rearrangement dis-
tances, quantify segment-based evolution through the mini-
mal number of operations needed to transform a ‘chromo-
some’, i.e. an ordered list of genes, into another ‘chromo-
some’, the same list of genes in another order. Several
operations were considered (often one operation per dis-
tance): reversals (Hannenhalli and Pevzner, 1995), trans-
positions (Bafna and Pevzner, 1998), translocations (Han-
nenhalli, 1996), block interchanges (Christie, 1996) and the
syntenic distance which is applied to (unordered) set of genes
(Ferretti et al., 1996). In most contexts, those methods do not
apply directly to sequences, but to given lists of labels each
one representing a gene. The costs are user parameters. Most
of those distances are computationally expensive. In our
framework, segments which are rearranged have to be dis-
covered. Moreover, we propose to weight more precisely the
operations.

We propose a new measure which evaluates segment-
based dissimilarity between two sequences: the source S and
the target T. This measure relates to the process of construct-
ing the target sequence T with segment operations. The con-
struction starts with the empty string and proceeds from left
to right by adding segments, one segment per operation. A
list of operations is called a script. Three types of segment
operations are considered: the copy adds segments that are
contained in the source sequence S, the reverse copy adds
segments that are contained in S in reverse order, and the
insertion adds segments that are not necessarily contained in
S. For the sake of clarity, we call the insertion of a segment
in general, a type of operation, while the insertion of the seg-
ment, say ‘agtct’, is an operation because it is completely
specified. The measure depends on a parameter that is the
Minimum Factor Length; it is the minimum length of the seg-
ments that can be copied or reverse copied. A positive weight
is assigned to each operation and the weight of a script is the
sum of the weights of its operations. Depending on the
number of common segments between S and T, there exist
several scripts that construct the target T. The minimal scripts
are all scripts of minimum weight and the transformation
distance (TD) is the weight of a minimal script. This defines
a precise optimization problem which we solve in this work.
We would like to emphasize that with another set of types of
operations, one can use the same generic definition of trans-
formation distance. Thus, the transformation distance gener-
alizes in a family of measures of distance between sequences.

How are operations weighted? In our framework, unit cost
is meaningless (see next section). From the biological point
of view, a satisfactory probabilistic model does not exist that
applies to segment operations on a sequence and would allow
us to derive weights. Therefore we apply another idea and
follow the principle of parsimony. The principle of parsi-
mony is justified by the more general Minimum Description

Length Principle (MDLP) (Li and Vitányi, 1997; Rissanen,
1989). We adopt the MDLP and weight each operation by its
description length. A generic description scheme is asso-
ciated with a type of operation. For the copy, the description
requires a 2-bits code to distinguish the type of operation, an
offset between the locations of the segment in S and in T, and
the length of the segment. To a reverse copy corresponds the
same description but with another 2-bits code for a reverse
copy. For an insertion, one needs the 2-bits code for an inser-
tion, the length of the segment and the sequence of segment.
Some examples are given in the next section.

Description length is not an arbitrary way of weighting. In
fact, it seems natural in the absence of specific knowledge:
it represents the quantity of information necessary to de-
scribe an operation. This property has its underlying in the
Algorithmic Information Theory (Kolmogorov, 1965). This
theory suggests that the description length is the fairest
weighting scheme that one could use a priori. The use of in-
formation theory is advocated by Yockey (1992). For an in-
troduction to the AIT, we refer the reader to the book of Li
and Vitányi (1997); an explanation of its use to ‘weight ev-
ents’ in computer sequence analysis can be read in Rivals et
al. (1996).

Additionally to this definition, we present a polynomial
time algorithm to compute exactly the transformation dis-
tance according to the definition given above. For this, we
consider a weighted graph of all possible scripts. We demon-
strate that minimal scripts correspond to the shortest paths
from a source node to a sink node, representing respectively
the left- and right-end of the target sequence. Taking into ac-
count the relative weights of different segment-operations,
we use properties of some non-optimal scripts which allow
us to exclude them from the graph. The subsequent decrease
in the size of the graph results in a practicable algorithm.
Moreover, we provide an efficient implementation together
with a user-friendly interface, and make them available to the
community through our web-site.

In a study of the family of sequences of Tnt1 Tobacco re-
trotransposons, the TD reveals the presence of segments du-
plications and segments re-orderings in some parts of the se-
quences. These sequences are clearly not alignable and
therefore only restricted comparisons are possible with
alignment methods.

The transformation distances

In the introduction, we defined precisely the TD we use and
wrote that it can be generalized to adopt other sets of types
of operations. We detail this point here, and explain why the
description length is a reasonable choice for the weights, al-
though not the only possible one.

J.-S.Varré et al.

196

The set of types of segment operations

First, the set must contain an insertion. When constructing T,
one may need to add a segment which does not occur in the
source S. Clearly, the set must enclose a type of operation
which enables this: it is the insertion. In addition to the inser-
tion, most of the other operations can be included: those used
in genome rearrangement distances, but also the du- or multi-
plication of a segment which could be in tandem or not, and
the deletion.

Some remarks must be stated. First, the set we choose al-
lows detecting most of the events mentioned above. For
example, our ‘copy’ can displace a segment from the source
in the target: special cases of this are transpositions and block
interchanges. The difference is that in our framework, trans-
positions are not given a different weight than block inter-
changes. Nevertheless, transpositions and block inter-
changes can be detected. Second, the more types of oper-
ations that are considered, the higher the number of possible
scripts: this will increase the complexity of the problem.
Third, deletion is a very peculiar operation which requires
that an already inserted segment could be modified in a sec-
ond operation: this corresponds to a construction which is not
left to right. This also requires a more complex algorithm.

Operations weights

We mentioned that unit costs are unsuitable in our frame-
work. Indeed, a script containing a single insertion of the seg-
ment T itself always exists. With unit costs, this script would
be minimal. Thus, when choosing a weighting function, one
must let the insertion of a ‘long’ segment of S cost more than
a copy of it, so that the TD is able to reveal sequence relation-
ship. The description length fulfills this property because the
segment of a copy is available in the source sequence S, while
it must be encoded explicitly in an insertion, and also because
the description length increases with the segment length.

The study of the construction of a target sequence is the
object of the AIT in the case of general sequences. This
theory suggests that for the measure we define here, descrip-
tion length is the fairest a priori weights one can choose. This
is because the process of constructing a sequence using a set
of operations has intrinsic properties, whatever the type of
sequences. Because of these properties, the minimum de-
scription length measures the information content of an oper-
ation, and here operations are potential modifications of the
genetic sequences. Detailed explanations are beyond the
scope of this paper. In his book Yockey (1992) reviews the
characteristics of information theory and concludes that
using it should benefit sequence comparison.

The weighting function can be adapted according to bio-
logical knowledge. For instance, the weights can be multi-
plied by a given coefficient if one wants to favor copies in-

stead of reverse copies. This does not change the definition,
nor the algorithm.

Remarks and justification

Interpretation of the TD and of a script. The TD and the asso-
ciated minimal scripts are clearly not an attempt to view evol-
ution as a computer program. First in biological evolution,
the source and the target sequences derived from a common
ancestor sequence, say A. Our model is a simplification in
that it considers a process linking directly the source to the
target and which does not exist. Nevertheless, a minimal
script suggests (1) what parts of the sequences are common
to S and T, (2) which of those parts may have been rearranged
in their relative order, and (3) possible operations for those
rearrangements which could have happened between A and
S or A and T.

Minimum Factor Length parameter. There is a limit of the
length of the segment, below which inserting a segment costs
more than copying it if it occurs in S. One may interpret this
limit, saying that below, it is unclear whether the segment
appeared by convergence or divergence. Therefore, all seg-
ments shorter than the Minimum Factor Length are system-
atically added using insertions.

A script as a program. In fact, ‘executing’ the script builds
the sequence T. The script is a program which outputs T when
S is supplied as data. The definition of the script is a restricted
form of the definition of a program given by Kolmogorov in
the AIT (Li and Vitányi, 1997). The conditional Kolmogorov
complexity of a string x relatively to a string y, denoted
K(x|y), is the length of a shortest binary program which, on
a universal Turing machine, outputs x if y is furnished as an
auxiliary input data. K(x|y) measures the minimal amount of
information required to generate x knowing y by any effec-
tive process. This defines the algorithmic information dis-
tance. The transformation distance approximates of the rela-
tive Kolmogorov complexity of T knowing S: as our ‘ma-
chine’ only allows three instructions (copy, reverse-copy and
insertion) it is not universal. Therefore, the transformation
distance does not consider all programs but only those li-
mited to these 3 instructions. On the other hand, unlike the
general algorithmic distance, the transformation distance is
computable.

Properties. The computation of the transformation distance
does not depend on the way we read sequences (5′ to 3′ or 3′
to 5′). This stems from the way we encode target positions.
The transformation distance is not symmetrical
(d(S,T) ≠ d(T,S)). It is intrinsic to our definition: the way of
describing S from T is not necessarily the same that the one
of describing T from S. When a symmetrical distance is re-
quired, one can use the following definition: (d(S,T) +

A family of dissimilarity measures based on movements of segments

197

d(T,S))/2. The transformation distance does not satisfy the
triangular inequality. However, we have made some experi-
ments and it seems that, in practice, the triangular inequality
is often satisfied.

Encoding scripts. To be comparable, descriptions have to be
written in the same language. We use the binary language
because efficient encoding procedures are known. As DNA
is made up from 4(= 22) possible bases, each of them might
be encoded over 2 (the exponent) bits. A n-bases long se-
quence is thus encoded over 2n bits. The number of bits re-
quired for representing an integer l is �log2(|l|+1)�. When the
item can be either positive or negative, we add one bit for the
sign. One needs a 2-bits code to encode each type of oper-
ation (2 = log2(3)).

Figure 1 gives an example of a script and its weights. The
first line (insertion(UGUGCA)) has a weight of 2+12+3: 2 =
�log2(3)� is the number of bits required to encode the type of
the operation, 12 = 2 × 6 is the number of bits to encode the
segment explicitly, 3 = �log2(6+1)� is the number of bits to
encode the length of the segment. The fourth line (copy(27,
113, 8)) has a weight of 2+1+7+4: as for the insertion 2 is for
encoding the type of the operation, 4 = �log2(8+1)� is for the
length, 7 = �log2((113 – 27)+1)� is the number of bits required
to encode the offset between the locations of the segment in
S (113) and in T (27), 1 is for the sign of the offset because it
can be negative (e.g. the copy of h).

A script is defined by its copies. We remark that a script is
entirely defined by specifying which copies or reverse-
copies it contains. This means that insertions can be deduced
from those information alone. Indeed, the insertions must
provide the segments of T which are not brought by the
copies, i.e. the complementary parts. In the algorithm,
searching for a script is equivalent to a search for a combina-
tion of segment pairs that can be copied.

Algorithm

This section describes the algorithm we have designed to
compute the transformation distance. We show that the mini-
mal script corresponds to the shortest path from a source
node to a sink node in a weighted directed graph we define
below.

Factors

Let us call a factor a pair of segments, one segment from each
sequence (source and target), such that the two segments are
either identical or the first segment is the reverse complement
of the second one. The set of all factors is denoted F. A factor
is specified by the triplet (p,q,l): its starting positions in the
target sequence (p), in the source sequence (q) and its length
(l). We define a relation <0 on the set of all factors such that

Fig. 1. An example of the computation of the transformation
distance onto two RNA sequences. The target and the source are
displayed aligned on their first residue. Common segments are
denoted by letters within brackets. The associated script is shown in
the table below: one line per operation and with the corresponding
weight (i.e. number of necessary bits for this operation).

J.-S.Varré et al.

198

for two factors f = (p,q,l) and g = (p′,q′,l′), f <0 g holds if p+l
≤ p′, i.e. if f strictly precedes g in the target sequence.

To search for all factors, we use the algorithm of Leung et
al. which is able to discover exact but also point mutated
repeats. To find factors, we apply this algorithm onto the text
formed by the concatenation of T, S and the reverse-comple-
ment of S. We implemented the algorithm to allow substitu-
tions inside factors without modifying the weight function,
i.e. without adding a penalty. For simplicity, we describe it in
the case of exact factors.

Script graph

As written above, a script is entirely specified by its copy
operations (from now we do not distinguish copy and reverse
copy and simply write ‘copy’), i.e. when the set of its copied
factors is known. Those factors in a script do not overlap in
the target (see definition, condition (i)), this is a simple
consequence of the construction process. Additionally, if
many factors are concurrent for some segment of the target,
i.e. if they are overlapping, at least one of them must be co-
pied. In other words, an optimal script cannot ‘forget’ a factor
that can be copied (condition (ii)). We introduce the defini-
tion of a factor script which is a script that fulfills those two
properties.

Definition A factor script FS is a set of factors such that:
(i) for all f,g ∈ FS, f <0 g or g <0 f
(ii) and for all f,g in FS such that f <0 g implies �� h ∈
F–FS such that f <0 h <0 g.

We now define the script graph which is the basic structure
for the computation of the transformation distance.

Definition A and Z are respectively source and sink nodes of
the graph. f and g are two factors of F, the set of all factors.
The script graph G = (V,E) is defined by:

• V = F ∪ {A,Z},
• (f,g) ∈ E iff:
 (1) f <0 g,
 (2) and �� h ∈ F such that f <0 h <0 g,
• (A,f) ∈ E iff �� h ∈ F such that h <0 f,
• (f,Z) ∈ E iff �� h ∈ F such that f <0 h

The script graph is a directed graph where factors are the
nodes. Two nodes joined by an edge represent successive
copies in a script and their factors fulfill the <0 relation. Each
edge is oriented from the leftmost factor towards the right-
most one (we build the target sequence from left to right).
Additionally, we define a source node A and a sink node Z
which serve respectively as the beginning and end of any
factor script. A can be viewed as the factor (0,0,0) and Z as
the factor (|T|,|S|,0). A path from A to Z represents a selection
of factors and as such defines a unique factor script.

In order to compute the description length of each script
(path) we assign costs to edges and vertices. The cost of a

vertex is the cost of the copy of the factor it represents. The
cost of an edge is the cost of the insertion needed between the
copied segments, i.e. the source and target nodes of this edge.
The cost of a path is obtained by adding costs of all edges and
vertices on this path.

Proposition The computation of the shortest path going from
source node A to the sink node Z gives the minimum descrip-
tion length script.

Sketch of the proof: each path of the graph is clearly a
script because it combines copies and insertion operations
such that the points 1 and 2 of the definition are verified. Each
possible script is represented by a path in the graph. In fact,
all possible copies operations are included in the graph and
the set of successors of a node f contains exactly all the nodes
which can be reached from f. The cost of a path is the descrip-
tion length of the associated script: indeed, the cost of a path
is the sum of the costs of the insertions operations (edges) and
the copies operations (nodes) it contains.

Time and space complexity

Computing the set of all factors with the Leung et al. (1991)
algorithm is known to be efficient. Statistical studies have
shown that its complexity increases almost linearly with the
sequence lengths. Computing the shortest script is achieved in
O(Card(V)+Card(E)) with the algorithm Dag-Shortest-Path
presented in chapter 25.4 of Cormen et al. (1990). Let us de-
note n the length of longest sequence among the target se-
quence and the source sequence. There are at most n3 seg-
ments between S and T, and therefore as much vertices in the
script graph. As a complete graph over n3 vertices has less
than n6 edges, the computation of the transformation distance
requires less than O (n6) units of time. This complexity is for
worst cases and is a loose approximation. Nevertheless, in
practice, the computation of the complete script graph is too
inefficient to be applied on long sequences (more than 100
kb). It is the space requirement that prevents the computation.

Practicable algorithm

In practice, the size of the complete script graph grows dra-
matically for long sequences (of more than 100 kb), and par-
ticularly in the case of similar sequences because they share
numerous factors. We studied the properties of copies oper-
ations that cannot belong to the minimal script. The corre-
sponding factors can thus be removed from the graph. So
without defining it here, we implement the compact script
graph which encloses only ‘interesting’ copies and reverse
copies. The above-mentioned properties and the definition of
this compact graph cannot be detailed here for the sake of
shortness. Moreover for implementation matter, only maxi-
mal factors, those that are not sub-factors of another factor,
are included in the graph at run time. It is then possible to
create their sub-factors only when necessary. Acceleration of

A family of dissimilarity measures based on movements of segments

199

Fig. 2. Running times of the distance computation versus sequence
length (on a PC Pentium 233 computer).

the computation time is illustrated hereunder. Table 1 reports
the number of factors and the construction time for the script
graph and the compact script graph. Only the compact script
graph allows computing in little time the transformation dis-
tance on long sequences (more than 500 kb).

Figure 2 illustrates the variation of the running time in
function of the sequence length. The source and target se-
quences are the tobacco’s and rice’s chloroplast genomes. To
show the influence of the sequence length, we compute the
TD for longer and longer prefixes of these sequences. For
instance, the point of the curve with abscissa x = 80 000
corresponds to the running time for the prefixes of length 80
000 bps of the source and the target. The Minimal Factor
Length parameter was set to �log2 (|T|+1)� where |T| is the
length of T and it varies with the sequences lengths (it is also
plotted on the graphic). The vertical drops of the plain line
curve denote an acceleration because the number of nodes
decreased. They correspond to losses of factors when the
minimal factor length reaches a new discrete value. In fact,
they relate to drops in the MFL curve. With the present im-
plementation, the time requirement is short even for long se-
quences: around 5 s for 130 kb.

Implementation

The algorithm is implemented in C and available at
http://www.lifl.fr/∼varre/TD. As shown on Figure 3, a user-
friendly graphical interface (implemented with Tcl/Tk) al-
lows to compute all against all comparisons for a set of se-
quences and to visualize each comparison.

Fig. 3. Example of computation of the transformation distance for a set of sequences. One can display the actual distance and the corresponding
minimal script between two sequences by clicking on the corresponding square in the matrix.

J.-S.Varré et al.

200

Table 1. Construction time and number of factors included in the graph for both the script graph (SG) and the compact script graph (CSG). For the Rice,
Tobacco, O. sinensis and E. gracilis, the sequences used are the complete chloroplast genomes. Sequences HIV1 and HIV2 are two clones of the HIV type 1
genome (accession numbers U34603 and U34604). Bac. Subtilis 1 and 9 are parts of the bacillus subtilis complete genome (accession numbers Z99104 and
Z99112). C.E. 1 and C.E. 2 are two clones of Caenorhabditis elegans (accession numbers Z98856 and Z92860). Running times have been computed on a PC
Pentium 166MMX. A ‘–’ indicates that the program exhausts the computer memory

Number of factors Running time (s)

Sequence length (kb) SG CSG SG CSG

Rice and tobacco 140 10 963 818 75 6.9

E. gracilis and O. sinensis 140 1683 209 18.4 16

HIV1 and HIV2 10 8578 111 – 7.6

Bac. Subtilis 1 and Bac. Subtilis 9 250 18 144 6 – 18

C.E. 1 and C.E. 2 630 20 172 5147 – 151

Results and discussion

We applied the TD to investigate the evolution of the TnT1
tobacco retrotransposon. The results illustrate the usefulness
of the TD and its larger applicability compared to alignment
methods: the TD allows finding segments duplications and
re-orderings which may result from evolutionary events.

Families of Tnt1 tobacco retrotransposon

The problem considered here is the evolution of Tnt1 to-
bacco’s retrotransposon, and specifically the evolution of its
Long Terminal Repeat (LTR). The material is a set of 140
sequences of this LTR taken out of seven species of tobacco.
The LTR feature is the following from 5 to 3: the RT box, the
linker, then the U3 and R boxes. It has been suggested that
the high mobility of Tnt1 may require rapid evolution (Casa-
cuberta et al., 1995).

We computed all pairwise comparisons for the 140 se-
quences (the running time was less than 1 h). Figure 4 shows
the representative comparison of the retrotransposons of To-
bacco sylvestris (top horizontal line) and Tobacco tomentosi-
formis (bottom horizontal line). The 5′ and 3′ ends feature
each 3 parallel vertical bars that link the segments shared by
both sequences. It shows that those regions corresponding
respectively to the RT + linker and to the R box are well con-
served, and thus also well aligned (this is observed on all
comparisons). On the opposite in the middle part of the se-
quence, in the U3 region, one sees 6 vertical bars which inter-
sect each other, suggesting that the order of the correspon-
ding segments has changed during divergence of those se-
quences. Moreover, two vertical bars have the same
end-point and then refer to the same segment in T. tomentosi-
formis sequence, while they point to different segments (i.e.
end-points) in T. sylvestris: this segment may have been du-
plicated during evolution. Such segment relations observed
in many pairwise comparisons simply prevent correct align-
ment. Those results are consistent with the analysis of Casa-
cuberta et al. in which they suggested that the RT + linker and
R boxes were conserved, while they suspected rearrange-

ments inside the U3 box. However providing evidence for
the latter was nearly impossible as it required studying by eye
all pairwise alignments. The TD algorithm allowed us to de-
tect and visualize some rearrangements events automatically,
suggesting that the TD is a useful and complementary ap-
proach to classical alignment strategies.

Conclusion

This work provides a new measure, the transformation dis-
tance, for comparing genetic sequences and an efficient algo-
rithm to compute it. The application to Tobacco retrotranspo-
sons TnT1 points out types of sequence relationships which
are undetectable with alignments. Indeed, it detects segments
duplication and re-ordering which usually prevent correct
alignments. This argues for the usefulness of the transform-
ation distances as an alternative tool for the investigation of
sequences relationships. Compared to alignments, our work
shows that the concepts of the Algorithmic Information
Theory may be useful to suggest practical approaches and
effective algorithms in a biological context. Among others,
wider applications of the transformation distance are: phylo-
genies, sequences clustering and analysis, and investigation
of segment-based evolution.

The use of other weights and/or other sets of operations
than those studied here yields variants of the TDs that may
include biological knowledge. Thus, the general idea of our
method is susceptible to various specifications to be ex-
plored.

We suggest that the transformation distance may be par-
ticularly appropriate to investigate the evolution of RNA se-
quences, where the palindromic segments may correspond to
elements of the secondary structure. The TD favors con-
servation of such segments and would thus better account for
the secondary structure. The study of the phylogeny of iso-
pods based on mitochondrial RNA sequences is in progress.

A family of dissimilarity measures based on movements of segments

201

Fig. 4. Comparison of Tnt1 tobacco retrotransposon of tobacco tomentosiformis (as source) and tobacco sylvestris (as target).

Acknowledgments

We would like to thank Samantha Vernhettes, Helene Chia-
pello and Marie-Angèle Grandbastien (INRA Versailles,
http://www.inra.fr/Versailles/BIOCEL) for Tnt1 retrotran-
sposon data and very interesting discussions. The authors are
also grateful to Didier Bouchon and Alice Michel (Génétique
et Biologie des Populations de Crustacés, UMR CNRS 6556,
http://wwwumr6556.univ-poitiers.fr) for their data and nu-
merous useful comments, and to Dominique Anxolabéhére
(Modélisation de la dynamique des populations d’éléments
transposables, Dynamique du Génome et Evolution, Institut
Jacques Monod, Paris VII, http://www.ijm.jussieu.fr) for in-
teresting discussions. E. R. thanks E. Bornberg and M.-L.
Muiras (DKFZ) for their careful reading of the manuscript.

The authors also wish to thank the referees for their sharp
and helpful comments.

References

Bafna,V. and Pevzner,P. (1993) Genome rearrangements and sorting
by reversals. In Proceedings of the 34th FOCS, IEEE, pp. 148–157.

Bafna,V. and Pevzner,P. (1995) Sorting permutations by transposi-
tions. In 6th Symposium on Discrete Algorithms SODA, pp.
614–621.

Bafna,V. and Pevzner,P. (1998) Sorting by transpositions. SIJDM:
SIAM J. Discrete Math., 11.

Casacuberta,J., Vernhettes,S. and Grandbastien,M.A. (1995) Sequence
variability within the tobacco retrotransposon Tnt1 population.
EMBO J., 14, 2670–2678.

Christie,D.A. (1996) Sorting permutations by block-interchanges. Inf.
Process. Lett., 60, 165–169.

Cormen,T.H., Leiserson,C.E. and Rivest,R.L. (1990) Introduction to
Algorithms. MIT Press.

Doolittle,R.F. (1981) Similar amino acid sequences: chance or
common ancestry? Science, 214, 149–159.

Ferretti,V., Nadeau,J.H. and Sankoff,D. (1996) Original synteny,
combinatorial pattern matching. In: Hirschberg,D.S. and
Myers,E.W. (eds), 7th Annual Symposium, Lecture Notes in
Computer Science, 1075, 159–167. Springer, Berlin.

 Grumbach,S. and Tahi,F. (1995) Compression et compréhension de
séquences nucléotidiques. Technique et Science Informatique, 14,
217–233.

Hannenhalli,S. and Pevzner,P. (1995) Transforming cabbage into
turnip (polynomial algorithm for sorting signed permutations by
reversals). In Proceedings of the Twenty-Seventh Annual ACM
Symposium on the Theory of Computing. Las Vegas, Nevada, pp.
178–189.

Hannenhalli,S. (1996) Polynomial-time algorithm for computing
translocation distance between genomes. DAMATH: Discrete
Applied Mathematics and Combinatorial Operations Research and
Computer Science, Vol. 71.

Hillis,D.M., Moritz,C. and Mable,B.K. (1996) Molecular Systematics.
Sinauer Associates Inc.

Kececioglu,J. and Sankoff,D. (1994) Efficient bounds for oriented
chromosome inversion. In 5th Symposium on Combinatorial
Pattern Matching, pp. 307–325.

Kececioglu,J. and Ravi,R. (1995) Of mice and men: algorithms of
evolutionary distances between genomes with translocations. In 6th
Symposium on Discrete Algorithms SODA, pp. 604–613.

Kolmogorov,A.N. (1965) Three approaches to the quantitative defini-
tion of information. Probl. Inf. Transmiss., 1, 1–7.

Leung,M.Y., Blaisdell,B.E., Burge,C. and Karlin,S. (1991) An effi-
cient algorithm for identifying matches with errors in multiple long
molecular sequences. J. Molec. Biol., 221, 1367–1378.

Li,W.H. and Graur,D. (1991) Fundamentals of Molecular Evolution.
Sinauer Associates Inc.

Li,M. and Vitányi,P.M.B. (1997) An Introduction to Kolmogorov
Complexity and Its Applications. 2nd Edn. Springer, New York.

J.-S.Varré et al.

202

Morgenstern,B., Dress,A. and Werner,T. (1996) Multiple DNA and
protein sequence alignment based on segment-to-segment compari-
son. Proc. Natl Acad. Sci. USA, 93, 12098–12103.

Rissanen,J. (1989) Stochastical Complexity and Statistical Inquiry.
World Scientific.

Rivals,E., Dauchet,M., Delahaye,J.P. and Delgrange,O. (1996) Com-
pression and genetic sequences analysis. Biochimie, 78.

Ruddle,F.H. (1997) Vertebrate genome evolution – the decade ahead.
Genomics, 46, 171–173.

Russel,R.B. (1994) Domain insertion. Protein Eng., 7, 1407–1410.

Sankoff,D. and Blanchette,M. (1998) Multiple genome rearrange-
ments and breakpoint phylogeny. J. Computat. Biol., 5, 555–570.

Schöniger,M. and Waterman,M.S. (1992) A local algorithm for DNA
sequence alignment with inversions. Bull. Math. Biol., 54, 521–536.

Varré,J.S., Delahaye,J.P. and Rivals,E. (1997) The Transformation
Distance. Genome Informatics Workshop, Tokyo, Japan.

Waterman,M.S. (1995) Introduction to Computational Biology. Chap-
man and Hall.

Yockey,H.P. (1992) Information Theory and Molecular Biology.
Cambridge University Press, Cambridge.

