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Abstract Introduction

Motivation: Evolution acts in several ways on DNA: either

by mutating a base, or by inserting, deleting or copying &olution operates molecular alterations of two typent
segment of the sequence (Ruddle, 1997; Russell, 1994; hijiations namely insertion, deletion or substitution of
and Grauer, 1991). Classical alignment methods deal W|tging|e residues, argkgment-based modificatiorauplica-

point mutations (Waterman, 1995), genome-level mutationgy, ‘inversion, insertion, etc. of whole segments of the se-
are studied using genome rearrangement distances (Baf@gence. Genome level mutations operate also on large pieces
and Pevzner, 1993, 1995; Kececioglu and Sankoff, 1994t n\a and can thus be included in segment-based modifi-

Kececioglu and Ravi, 1995). The latter distances general%/ations_ To our knowledge, no measure attempts to quantify

operate, not on the sequences, buton an ordered list of gen i§similarity by assessing segment-based differences, and by
To our knowledge, no measure of distance attempts

. cribing the differences between two sequences with an
compare sequences using a general set of Segment'ba%%ﬁ—soript containing such segment-based operations.
operations.

Results:Here we define a new family of distances, called Sequence comparison 1S usually performed on similar
transformationdistances which quantify the dissimilarity parts of the_ sequences, like stru_cturally or functionally re-
between two sequences in terms of segment-based eventsl."’\ﬁgI d_o mains of p'ereII’.]S. Even if they correspond_ to com-
focus on the case where segment-copy, -feverse-copy gte biological entities like a whole gene or a protein, entire
’ pequences are not compared, or only in case of high similar-

are weighted by theidescription lengthbut other sets of Ity. With such restrictions, one misses some biological mean-

weights are possible when biological information is availNgful information written in the molecules.
able. The transformation distance from sequence S toCertain alignment oriented methods take into account the

sequence T is then thinimum Description Lengtmong existence of ‘segment’ of S|m|Iar|ty._ Morgensteen al. _
all possible scripts that build T knowing S with segmen{1996) proposed a segment-based alignment method which
based operations. The underlying idea is related to Kolma?ligns pairs of direct segments having local similarities and
gorov complexity theory. We present an algorithm Which?xclud_es regions of low similarity from the a_llgnment.
given two sequences S and T, computes exactly amrghonigerand Waterman (1992) found a dynamic program-
efficiently the transformation distance from S to T. Unlikéning algorithm to include in a classical alignment parts
alignment methods, the method we propose does nihere the sequences are aligned in reverse order. These sol-
necessarily respect the order of the residues within thétions are alignment oriented: the segments put into corre-
compared sequences and is therefore able to account fapondence always respect the overall order of the positions
duplications and translocations that cannot be properlyin the sequences.

described by sequence alignment. A biological application In our approach, this order is disregarded. We do not want
on Tntl tobacco retrotransposon is presented. to restrict our attention to ‘alignable’ segment similarities,
Availability: The algorithm and the graphical interface canbut also consider a wider class of segment operations like:
be downloaded at http://www.lifl.fd¢arre/TD duplication, inversion, or translocation. We use a different
Contact: {varre,delahaye}@lIifl.fr, E.Rivals@dkfz-heidel- definition of similarity and this leads to a different class of
berg.de problems.
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A family of dissimilarity measures based on movements of segments

Other approaches, called genome rearrangement disength Principle (MDLP) (Li and Vitanyi, 1997; Rissanen,
tances, quantify segment-based evolution through the miri989). We adopt the MDLP and weight each operation by its
mal number of operations needed to transform a ‘chromalescription lengthA generic description scheme is asso-
some’, i.e. an ordered list of genes, into another ‘chromasiated with a type of operation. For the copy, the description
some’, the same list of genes in another order. Severgquires a 2-bits code to distinguish the type of operation, an
operations were considered (often one operation per digffset between the locations of the segme8tand inT, and
tance): reversals (Hannenhalli and Pevzner, 1995), trari§€ length of the segment. To a reverse copy corresponds the
positions (Bafna and Pevzner, 1998), translocations (Hafame description but with another 2-bits code for a reverse
nenhalli, 1996), block interchanges (Christie, 1996) and thgopy- For an insertion, one needs the 2-bits code for an inser-
syntenic distance which is applied to (unordered) set of gent@n. the length of the segment and the sequence of segment.
(Ferrettiet al, 1996). In most contexts, those methods do not0Me examples are given in the next section.
apply directly to sequences, but to given lists of labels eachDescription length is not an arbitrary way of weighting. In
one representing a gene. The costs are user parameters. N it Séems natural in the absence of specific knowledge:

of those distances are computationally expensive. In oty "EPresents the quantity of information necessary to de-

framework, segments which are rearranged have to be d@ribe an operation. This property has its underlying in the

; ; gorithmic Information Theory (Kolmogorov, 1965). This
covered. Moreover, we propose to weight more precisely t eory suggests that the description length is the fairest

operations. N I -
We propose a new measure which evaluates segmew[(_alghtlng scheme that one could use a priori. The use of in

based dissimilarity between two sequences: the sGiarce formation theory is advocated by Yockey (1992). For an in-

. roduction to the AIT, we refer the reader to the book of Li
the targef. This measure relates to the process of construci— ’

ing the target sequen@avith segment operationghe con- nd Vitanyi (1997); an explanation of its use to ‘weight ev-

) : ; nts’ in computer sequence analysis can be read in Rivals
struction starts with the empty string and proceeds from le (1996)

to right by adding segments, one segment per operation. Aqgitionally to this definition, we present a polynomial
list of operations is called stript Threetypes of segment ime gigorithm to compute exactly the transformation dis-
operationsare considered: theopyadds segments that are (5nce according to the definition given above. For this, we
contained in the source sequei®¢hereverse copyadds  consider a weighted graph of all possible scripts. We demon-
segments that are containedSin reverse order, and the strate that minimal scripts correspond to the shortest paths
insertionadds Segments that are not necessal’ily Containedﬂ‘ﬁm a source node to a sink node, representing respective|y
S For the sake of clarity, we call the insertion of a segmeffe |eft- and right-end of the target sequence. Taking into ac-
in general, aype of operatioywhile the insertion of the seg- count the relative weights of different segment-operations,
ment, say ‘agtct’, is anperationbecause it is completely we use properties of some non-optimal scripts which allow
specified. The measure depends on a parameter that is theo exclude them from the graph. The subsequent decrease
Minimum Factor Lengtfitis the minimum length of the seg- in the size of the graph results in a practicable algorithm.
ments that can be copied or reverse copied. A positive weighioreover, we provide an efficient implementation together
is assigned to each operation and the weight of a script is twith a user-friendly interface, and make them available to the
sum of the weights of its operations. Depending on theommunity through our web-site.
number of common segments betw&andT, there exist In a study of the family of sequences of Tntl Tobacco re-
several scripts that construct the tafigdheminimal scripts ~ trotransposons, the TD reveals the presence of segments du-
are all scripts of minimum weight and ttransformation  plications and segments re-orderings in some parts of the se-
distance(TD) is the weight of a minimal script. This definesquences. These sequences are clearly not alignable and
a precise optimization problem which we solve in this worktherefore only restricted comparisons are possible with
We would like to emphasize that with another set of types @lignment methods.
operations, one can use the same generic definition of trans-
formation distance. Thus, the transformation distance gener-
alizes in a family of measures of distance between sequences. ) )

How are operations weighted? In our framework, unit costN€ transformation distances
is meaningless (see next section). From the biological point
of view, a satisfactory probabilistic model does not exist thah the introduction, we defined precisely the TD we use and
applies to segment operations on a sequence and would allvote that it can be generalized to adopt other sets of types
us to derive weights. Therefore we apply another idea amd operations. We detail this point here, and explain why the
follow the principle of parsimony. The principle of parsi-description length is a reasonable choice for the weights, al-
mony is justified by the more general Minimum Descriptiorthough not the only possible one.
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The set of types of segment operations stead of reverse copies. This does not change the definition,

nor the algorithm.
First, the set must contain an insertion. When construtting

one may need to add a segment which does not occur in HQ
sourceS Clearly, the set must enclose a type of operation
which enables this: it is the insertion. In addition to the inser- ) )
tion, most of the other operations can be included: those usitierpretation of the TD and of a scriihe TD and the asso-
in genome rearrangement distances, but also the du- or muf§@ted minimal scripts are clearly not an attempt to view evol-
plication of a segment which could be in tandem or not, ari¢fion as a computer program. First in biological evolution,
the deletion. the source and the target sequences derived from a common
Some remarks must be stated. First, the set we choosefIc€stor sequence, sdyOur model is a simplification in
lows detecting most of the events mentioned above. Fépat it considers a process linking directly the source to the
example, our ‘copy’ can displace a segment from the souré@'get and which does not exist. Nevertheless, a minimal
in the target: special cases of this are transpositions and bigt&iPt suggests (1) what parts of the sequences are common
interchanges. The difference is that in our framework, trané@ SandT, (2) which of those parts may have been rearranged
positions are not given a different weight than block interl their relative order, and (3) possible operations for those
changes. Nevertheless, transpositions and block intdi@rangements which could have happened betiveed
changes can be detected. Second, the more types of opef A andT.

ations that are considered, the higher the number of possile . mum Factor Length parameteFhere is a limit of the

scripts: this will increase the complexity of the problemygn i of the segment, below which inserting a segment costs

Third, deletion is a very peculiar operation Whl_c_h réquire$hore than copying it if it occurs B One may interpret this

that an already inserted segment could be modified in @ S§qi; saying that below, it is unclear whether the segment

ond operation: this corresponds to a construction which is ngf ye ared by convergence or divergence. Therefore, all seg-

left to right. This also requires a more complex algorithm. . ants shorter than théinimum Eactor Lengtiare system-
atically added using insertions.

&marks and justification

Operations weights A script as a programin fact, ‘executing’ the script builds
ioned th . itable i ; the sequenct The script is a program which outptitswhen
We mentioned that unit costs are unsuitable in our frames;q o, hnjied as data. The definition of the script s a restricted
work. Indeed, ascript containing a §|ngle Insertion .Of the Segsim of the definition of programgiven by Kolmogorov in
mentT itself always exists. With unit costs, this script wouldye 1T (Lj and Vitanyi, 1997). The conditional Kolmogorov
be minimal. .Thus,. when choosing a weighting function, OnEompIexity of a string relatively to a stringy, denoted
must let the insertion of a !ong segmenSafost more than _K(xly), is the length of a shortest binary program which, on
acopy of it, so that the TD is able to reveal sequence relationy,iversal Turing machine, output y is furnished as an
ship. The description length fulfills this property because thg, ijiary input datak (xly) measures the minimal amount of
segment ofacopy is avall_abl_e n the source seqimiele  j ¢ormation required to generate x knowing y by any effec-
itmust be encoded explicitly in an insertion, and also becaugge hrocess. This defines the algorithmic information dis-
the description length increases with the segment length. ;5,06 The transformation distance approximates of the rela-
The study of the construction of a target sequence is tlﬁge Kolmogorov complexity off knowingS as our ‘ma-

ohbject of the AIThin fthehcase of gener;(ajl ?_equr:ence(sj. Thiine’ only allows three instructions (copy, reverse-copy and
theory suggests that for the measure we define here, descy sertion) it is not universal. Therefore, the transformation

tion length is the fairest a priori weights one can choose. Thigciance does not consider all programs but only those li-

is because the process of constructing a sequence using ??éd to these 3 instructions. On the other hand, unlike the

of operations has intrinsic properties, whatever the type @lonera aigorithmic distance, the transformation distance is
sequences. Because of these properties, the minimum Bmputable.

scription length measures the information content of an oper-
ation, and here operations are potential modifications of tHeroperties The computation of the transformation distance
genetic sequences. Detailed explanations are beyond thges not depend on the way we read sequendes3or 3
scope of this paper. In his book Yockey (1992) reviews th® 5). This stems from the way we encode target positions.
characteristics of information theory and concludes thathe transformation distance is not symmetrical
using it should benefit sequence comparison. (d(S,T) 2 d(T,9). It is intrinsic to our definition: the way of
The weighting function can be adapted according to biadescribingSfrom T is not necessarily the same that the one
logical knowledge. For instance, the weights can be multdf describingT from S. When a symmetrical distance is re-
plied by a given coefficient if one wants to favor copies inquired, one can use the following definitio(%,T) +
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d(T,9)/2. The transformation distance does not satisfy the
triangular inequality. However, we have made some experi-
ments and it seems that, in practice, the triangular inequality

is often satisfied.

Encoding scriptsTo be comparable, descriptions have to be
written in the same language. We use the binary language
because efficient encoding procedures are known. As DNA
is made up from 4(=2 possible bases, each of them might ,,
be encoded over 2 (the exponent) bit:m-Bases long se-
guence is thus encoded overlits. The number of bits re-
quired for representing an integer(llisgy(|l|+1)]. When the

item can be either positive or negative, we add one bit for the **°
sign. One needs a 2-bits code to encode each type of oper-
ation (2 = log(3)).

Figurel gives an example of a script and its weights. The 200
first line (insertion(UGUGCA)) has a weight of 2+12+3: 2 =
[logx(3)] is the number of bits required to encode the type of
the operation, 12 =2 6 is the number of bits to encode the

60

0 10 20 30 40 49

UGUGCAAAGGUAGCAUAAUCAUUUGUUUUUUAAUUGGAAACUGGAAUGAA
[---1--

UGUGCUAAGGUAGCAUAAUAAUUAGUUAUUCAAUUGGUAACUAGAAUGAA

AGAGGCGACGAGAGGUAGGCUUUUUAUUACACAAGUUAACUUGACAUAAA

g
UGGAUUGACAAAAAAAUAACUUUAUUAAUAAUUUAUUAAAUUAAUAUUAA

AGUUAAAAGGCUUUUAUAUUUCGGCGGGACGAUAAGACCCUAUAAAACUU
[--j---1 [---i---1

1 [---1--1-£--1 [---i---1  [~-j

AGUAAAAAAGCUCUUUUAAUUUAAAAAGACGACAAGACCCUAAAACCUUU

UACUAACAACUUAUVAUUAUUAUUGAACUAGUAGCAGGUUGUUGGUUAAGC
i
---1 [---h---] [---k----]-e---]
UAUAAUAAUAUUUACUGGGGCGGUAAUUUACUAUUGACAUAAAUUUAAAU
UGGGGCGGCAAAUAUAUAAACAAUAUUAAUAUUAAAUAUUUAAAAUAGAA
-=-h---] [----g-----1 [---£--]

(T)

(s)

(49}

(T)
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(T)

(S)
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250 AAUUAGAACUUAAGUUAAAAAUUUAAACAAGUUACUUUAGGGAUAACAGC (T)
segment explicitly, 3 flogy(6+1)] is the number of bits to [---e---] [-mmmmm e 4----
encode the length of the segment. The fourth line (copy(27, AOGOATARCAGOATA AU CUATUUAGAGOUCUURUCOACATAGAAGAVY ()
113, 8)) has a weight of 2+1+7+4: as for the insertion 2 is for ~ =========mcomcmo oo
encoding the type of the operation, Alegy(8+1)] is for the 300 TMUTTTUCUUGRUAGUUCUURIUGGCAGRAMGUIDAUGACCUCERYG (T)
length, 7 Hlogx((113 — 27)+1)is the number of bits required =~ --—----- L — ]
to encode the offset between the locations of the segment in ~_*V¢ACCUCGAUGUUGARUUAAUAUAACUUCUAVRAGCAG L@
S(113) and inT (27), 1 is for the sign of the offset because it 350 UUGAAUUGAGAUGUCCUUUAUGGUGCAG (M
can be negative (e.g. the copy ofh). T !

(8)

A script is defined by its copied/e remark that a script is
entirely defined by specifying which copies or reverse-

. X s N A . Operation Cost
copies it contains. This means that insertions can be deduced insertion(UGUGCA) 3¥12+3
from those information alone. Indeed, the insertions must m | copy(6, 6, 13) 2+1vivd
i X insertion (CAUUUGUU) 2+16+4
provide the segments df which are not brought by the 1 | copy(27, 113, 8) 2414744
H H H insertion(GGAAA...ACAAGUUAAC) 2+110+6
copies, i.e. the c.om'plem(.entary parts. In the algorlth.m, t | copy(90, 183, 10) 14744
searching for a script is equivalent to a search for a combina- insertion (AGUUAAAAGG) 2+20+4
: ; ; j | copy(110, 146, 8) 2+1+6+4
tion of segment pairs that can be copied. Tmbartion(UU UCGECIGEAC GAI) 30ua
i | copy(133, 133, 9) 2+1+1+4
X insertion (UAAAACUU. . .UUGGUUAAG) 2+114+6
Algorlthm h | copy(199, 164, 9) 2+1+6+4
insertion(CA AAUAUAUAAA CAAU) 2+32+5
. . . . . g | copy(224, 89, 12) 2+1+8+4

This section describes t_he a]gonthm we have deS|gneq to Snsertion(D) et
compute the transformation distance. We show that the mini- f | copy(237, 118, 8) 2414744
. insertion (UAGAA AAUUAGAACU UAAGUUAA) 2+46+5
mal script <_:orrespon_ds to the shortgst path from a source |, | .o iiass, 190, 9) 14704
node to a sink node in a weighted directed graph we define insertion(CAA GU) 2+10+3
below. d | copy(282, 244, 25) 2+1+6+5
. insertion(UUC UUGAU) 2+16+4
c copy (315, 277, 9) 2+1+6+4
insertion(UGGCAG AAAAGU) 2+24+44
Factors b copy (336, 298, 21) 2+14+6+5
insertion(GAG AUGUCCUUUA UGGUGCAG) 2+42+5

Let us call dactora pair of segments, one segment from each 709

gequence (§ource a”‘?' target), Suc,h that the two segments é[& 1. An example of the computation of the transformation
either identical or the first segment is the_reverse complemensiance onto two RNA sequences. The target and the source are
Of the Second one. The set Of a” faC'[OI’S IS denoted F A faCtQﬁsp|ayed a|igned on their first residue. Common segments are
is specified by the triplep(q,): its starting positions in the denoted by letters within brackets. The associated script is shown in
target sequencey, in the source sequenap &nd its length  the table below: one line per operation and with the corresponding
(. We define a relationgon the set of all factors such that weight (i.e. number of necessary bits for this operation).
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for two factord = (p,q,) andg = (p'.q',I'), f <gg holds ifp+l  vertex is the cost of the copy of the factor it represents. The
<p, i.e. iff strictly precedeg in the target sequence. cost of an edge is the cost of the insertion needed between the
To search for all factors, we use the algorithm of Leeing copied segments, i.e. the source and target nodes of this edge.
al. which is able to discover exact but also point mutatedhe cost of a path is obtained by adding costs of all edges and
repeats. To find factors, we apply this algorithm onto the textertices on this path.
formed by the_concatenation'ﬁfSand_the reverse-compl_e- Proposition The computation of the shortest path going from
ment _ofS_ We |mplem_ented the a_lgprlthm to aI_Iow SUbSmu'source node A to the sink node Z gives the minimum descrip-
tions inside factors without modifying the weight functlon,tion length script

i.e. without adding a penalty. For simplicity, we describe itin Sketch of the proof: each path of the graph is clearly a

the case of exact factors. script because it combines copies and insertion operations
. such that the points 1 and 2 of the definition are verified. Each
Script graph possible script is represented by a path in the graph. In fact,
As written above, a script is entirely specified by its copyall possible copies operations are included in the graph and
operations (from now we do not distinguish copy and reverdbe set of successors of a nbdentains exactly all the nodes
copy and simply write ‘copy’), i.e. when the set of its copiedvhich can be reached frdnThe cost of a path is the descrip-
factors is known. Those factors in a script do not overlap ition length of the associated script: indeed, the cost of a path
the target (see definition, condition (i), this is a simplés the sum of the costs of the insertions operations (edges) and
consequence of the construction process. Additionally, the copies operations (nodes) it contains.

many factors are concurrent for some segment of the target,

i.e. if they are overlapping, at least one of them must be cdtme and space complexity

pied. In other words, an optimal script cannot ‘forget’ afacu.’f:omputing the set of all factors with the Lewtcal. (1991)

that can be copied (condition (ii)). We introduce the defini- : . . - ;
tion of afactor script which is a script that fulfills those two algorithm is known to be efficient. Statistical studies have

shown that its complexity increases almost linearly with the

properties. sequence lengths. Computing the shortest script is achieved in
Definition A factor script FSs a set of factors such that: O(Card(V)+Card(E)) with the algorithmDag-Shortest-Path
() forallf,gOFSf<ggorg<pf presented in chapter 25.4 of Cornegral. (1990). Let us de-
(ii) and for allf,g in FSsuch thaf <g g implies Ah O noten the length of longest sequence among the target se-
FFSsuch that <gh <pg. quence and the source sequence. There are anfreey-

We now define the script graph which is the basic structuf@eNts betweeBandT, and therefore as much vertices in the
for the computation of the transformation distance. script graph. As a complete graph owénvertices has less
thann® edges, the computation of the transformation distance

Definition A and Z are respectively source and sink nodes @gquires less than ®@§) units of time. This complexity is for
the graph. f and g are two factors of F, the set of all factorsyorst cases and is a loose approximation. Nevertheless, in

ThescriptgraphG = (VE) is defined by: practice, the computation of the complete script graph is too
«V=FO{AZ, inefficient to be applied on long sequences (more than 100
* (f,g) D Eiff: kb). It is the space requirement that prevents the computation.
Df<og, _ _
(2) and Ah O F such that <gh <p g, Practicable algorithm
* (A DEIff AhDF such thah <pf, In practice, the size of the complete script graph grows dra-
* (2 OEiff AhOFsuchthat<gh matically for long sequences (of more than 100 kb), and par-

The script graph is a directed graph where factors are tlieularly in the case of similar sequences because they share
nodes. Two nodes joined by an edge represent successienerous factors. We studied the properties of copies oper-
copies in a script and their factors fulfill thgrelation. Each  ations that cannot belong to the minimal script. The corre-
edge is oriented from the leftmost factor towards the righsponding factors can thus be removed from the graph. So
most one (we build the target sequence from left to rightyvithout defining it here, we implement tkempact script
Additionally, we define a source nodeand a sink nodg  graphwhich encloses only ‘interesting’ copies and reverse
which serve respectively as the beginning and end of amppies. The above-mentioned properties and the definition of
factor scriptA can be viewed as the factor (0,0,0) @@k this compact graph cannot be detailed here for the sake of
the factor [T],|9,0). A path fromAto Z represents a selection shortness. Moreover for implementation matter, only maxi-
of factors and as such defines a unique factor script. mal factors, those that are not sub-factors of another factor,
In order to compute the description length of each scrifre included in the graph at run time. It is then possible to
(path) we assign costs to edges and vertices. The cost afraate their sub-factors only when necessary. Acceleration of
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Figure 2 illustrates the variation of the running time in
function of the sequence length. The source and target se-
guences are the tobacco’s and rice’s chloroplast genomes. To
show the influence of the sequence length, we compute the
TD for longer and longer prefixes of these sequences. For
instance, the point of the curve with abscissa 80 000
corresponds to the running time for the prefixes of length 80
000 bps of the source and the target. The Minimal Factor
Length parameter was set[logy (T[+1)] where[T] is the
length of T and it varies with the sequences lengths (it is also
plotted on the graphic). The vertical drops of the plain line
curve denote an acceleration because the number of nodes
decreased. They correspond to losses of factors when the
minimal factor length reaches a new discrete value. In fact,
they relate to drops in the MFL curve. With the present im-
plementation, the time requirement is short even for long se-

Fig. 2. Running times of the distance computation versus sequencguences: around 5 s for 130 kb.

length (on a PC Pentium 233 computer).

the computation time is illustrated hereunder. Talégports

Implementation
The algorithm is implemented in C and available at

the number of factors and the construction time for the scripttp://www.lifl.fr/ Ovarre/TD. As shown on Figuf® a user-
graph and the compact script graph. Only the compact scrippiendly graphical interface (implemented with Tcl/Tk) al-
graph allows computing in little time the transformation dislows to compute all against all comparisons for a set of se-
tance on long sequences (more than 500 kb).

guences and to visualize each comparison.

Fig. 3. Example of computation of the transformation distance for a set of sequences. One can display the actual distancespdrttimgorr
minimal script between two sequences by clicking on the corresponding square in the matrix.
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Table 1.Construction time and number of factors included in the graph for both the script graph (SG) and the compact script grajur {Rece

Tobaccq O. sinensisandE. gracilis the sequences used are the complete chloroplast genomes. SeHidheeglHIV2 are two clones of the HIV type 1

genome (accession numbers U34603 and U348&¢). Subtilis Jand9 are parts of the bacillus subtilis complete genome (accession numbers 299104 and
799112).C.E. 1andC.E. 2are two clones of Caenorhabditis elegans (accession humbers 298856 and Z92860). Running times have been computed on a |
Pentium 166MMX. A ‘~ indicates that the program exhausts the computer memory

Number of factors Running time (s)
Sequence length (kb) SG CsSG SG CsSG
Rice and tobacco 140 10 963 818 75 6.9
E. gracilisandO. sinensis 140 1683 209 184 16
HIV1 and HIV2 10 8578 111 - 7.6
Bac. Subtilis JandBac. Subtilis 9 250 18 144 6 - 18
C.E. landC.E. 2 630 20172 5147 — 151
Results and discussion ments inside the U3 box. However providing evidence for

he latter was nearly impossible as it required studying by eye
Il pairwise alignments. The TD algorithm allowed us to de-
&8¢t and visualize some rearrangements events automatically,

ggesting that the TD is a useful and complementary ap-
roach to classical alignment strategies.

We applied the TD to investigate the evolution of the TnT
tobacco retrotransposon. The results illustrate the usefuln

of the TD and its larger applicability compared to alignmen
methods: the TD allows finding segments duplications an
re-orderings which may result from evolutionary events.

Families of Tntl tobacco retrotransposon

The problem considered here is the evolution of Tntl tdconclusion

bacco’s retrotransposon, and specifically the evolution of its

Long Terminal Repeat (LTR). The material is a set of 14c}his work provides a hew measure, the transformation dis-
sequences of this LTR taken out of seven species of tobac%l).

The LTR feature is the following from 5 to 3: the RT box, the. hee, for comparing genetic sequences and an efficient algo-

linker, then the U3 and R boxes. It has been suggested tﬁlélilmto compute it. The application to Tobacco retrotranspo-

the high mobility of Tntl may require rapid evolution (Casa:Sons TnT1 points out types of sequence relationships which

cubertaet al, 1995). are undetectable with alignments. Indeed, it detects segments

We computed all pairwise comparisons for the 140 Séi_uplication and re-ordering which usually prevent correct
quences (the running time was less than 1 h). Figshews alignments. This argues for the usefulness of the transform-

the representative comparison of the retrotransposdits of ation distances as an alternative tool for the investigation of
bacco sylvestriop horizontal line) an@iobacco tomentosi-  S€AUences relationships. Compared to alignments, our work

formis (bottom horizontal line). The' Bind 3 ends feature shows that the concepts of the Algor@thmic Information
each 3 parallel vertical bars that link the segments shared Be0ry may be useful to suggest practical approaches and
both sequences. It shows that those regions correspondffégctive algorithms in a biological context. Among others,
respectively to the RT + linker and to the R box are well corvider applications of the transformation distance are: phylo-
served, and thus also well aligned (this is observed on &Enies, sequences cIuste_rlng and analysis, and investigation
comparisons). On the opposite in the middle part of the séf Segment-based evolution. _
guence, in the U3 region, one sees 6 vertical bars which inter-The use of other weights and/or other sets of operations
sect each other, suggesting that the order of the correspdfan those studied here yields variants of the TDs that may
ding segments has changed during divergence of those #clude biological knowledge. Thus, the general idea of our
quences. Moreover, two vertical bars have the sanf@ethod is susceptible to various specifications to be ex-
end-point and then refer to the same segméntamentosi-  plored.

formissequence, while they point to different segments (i.e. We suggest that the transformation distance may be par-
end-points) irT. sylvestristhis segment may have been du-ticularly appropriate to investigate the evolution of RNA se-
plicated during evolution. Such segment relations observegliences, where the palindromic segments may correspond to
in many pairwise comparisons simply prevent correct alignelements of the secondary structure. The TD favors con-
ment. Those results are consistent with the analysis of Casservation of such segments and would thus better account for
cubertaet al.in which they suggested that the RT + linker andhe secondary structure. The study of the phylogeny of iso-
R boxes were conserved, while they suspected rearrangeds based on mitochondrial RNA sequences is in progress.
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alttctitg gt

Fig. 4. Comparison of Tntl tobacco retrotransposon of tobacco tomentosiformis (as source) and tobacco sylvestris (as target).
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