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ABSTRACT

Recent sequencing technologies that allow massive
parallel production of short reads are the method
of choice for transcriptome analysis. Particularly,
digital gene expression (DGE) technologies
produce a large dynamic range of expression data
by generating short tag signatures for each cell
transcript. These tags can be mapped back to a ref-
erence genome to identify new transcribed regions
that can be further covered by RNA-sequencing
(RNA-Seq) reads. Here, we applied an integrated
bioinformatics approach that combines DGE tags,
RNA-Seq, tiling array expression data and species-
comparison to explore new transcriptional regions
and their specific biological features, particularly
tissue expression or conservation. We analysed
tags from a large DGE data set (designated as
‘TranscriRef’). We then annotated 750 000 tags that
were uniquely mapped to the human genome ac-
cording to Ensembl. We retained transcripts
originating from both DNA strands and categorized
tags corresponding to protein-coding genes, anti-
sense, intronic- or intergenic-transcribed regions
and computed their overlap with annotated non-
coding transcripts. Using this bioinformatics
approach, we identified �34 000 novel transcribed
regions located outside the boundaries of known
protein-coding genes. As demonstrated using

sequencing data from human pluripotent stem
cells for biological validation, the method could be
easily applied for the selection of tissue-specific
candidate transcripts. DigitagCT is available at
http://cractools.gforge.inria.fr/softwares/digitagct.

INTRODUCTION

Although the fraction of protein-coding sequences is
limited to �2–3% of the whole human genome, the tran-
script repertoire is much more diverse and complex than
anticipated. Growing evidence suggests that most of the
genome is pervasively transcribed (pervasive transcription,
known also as ‘dark matter’) (1–3).

The first genome-wide transcription studies performed
using complementary DNA (cDNA) sequencing and tiling
microarrays showed that a significant fraction of the
genome gives rise to RNAs with reduced protein-coding
potential (1,4,5). Thereafter, the rapid development of
next-generation sequencing technologies provided new
tools to thoroughly profile all aspects of transcription
diversity at unprecedented resolution. However, using
these new technologies, Van Bakel et al. (6) concluded
that widespread transcription was mainly associated with
known genes. This conclusion was refuted by Clark et al.
(7) who showed that the existence of pervasive transcrip-
tion is supported by multiple independent techniques,
and by Kapranov et al. (8) who provided estimates of
the relative mass of the ‘dark matter’ RNA by sequencing
total RNA. More recently, GENCODE v7 provided a
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catalogue of human long non-coding RNAs (lncRNAs)
(9), and several reports described the roles of lncRNAs
in gene expression and epigenetic regulation (10–12),
arguing in favour of the biological significance of perva-
sive transcription (13,14).

For a decade, several novel technologies have permitted
genome-wide investigations of the transcriptome. Each
technology comes with its pros and cons, its limitations
and its possible artefacts. For instance, Digital Gene
Expression (DGE) delivers short sequence signatures with
known strand orientation, the quantification of which gives
a reliable and comparable measure of a transcript expres-
sion level. On the other hand, RNA-sequencing (RNA-
Seq) generates reads that cover almost entirely the
sequenced RNAs and requires more complex methods,
like RPKM/FPFM, for quantification (15). However,
RNA-Seq is the only technique that can differentiate
between overlapping transcripts at a specific genomic
position and can thus distinguish frequent splice variants.

Each of these technologies (whole-genome tiling arrays,
DGE and RNA-Seq) provides a global view of the tran-
scriptome, but may miss interesting novel RNAs. Owing
to their specific limitations, these technologies may
complement each other for RNA discovery. Therefore, it
seems reasonable to combine data from different sources
and techniques to improve the prediction and reconstruc-
tion of novel RNA transcripts with accuracy. In this
work, we examined whether integrating various types
of transcriptomic data might improve the identification
of novel non-coding RNAs (ncRNAs). In addition, we
wanted to determine whether the short sequences (tags)
generated by the DGE method could be useful to
address the still debated issue of whether pervasive tran-
scription is biologically relevant or originates from
sequencing artefacts and/or spurious transcriptional
noise (6,7,16–18).

To this aim, we developed a new integrated transcrip-
tome analysis procedure in which DGE data are first
analysed using a perfect mapping approach to reduce
random annotations. The procedure includes the compu-
tation of false-positive tag locations (2% in the human
genome) and the analysis of a large number of oriented
orphan tags (i.e. without genomic annotation) (19). The
transcriptional information given by the annotated DGE
tags is then completed by integrating expression data
obtained by using other techniques (RNA-Seq and tiling
arrays). Currently, one of the major difficulties in
characterizing new transcripts is the absence of informa-
tion on their expression levels, which may help assessing
their biological relevance. From a computational point of
view, tags are instrumental for measuring and comparing
the expression level of transcripts in different tissues.
To validate our approach, DGE data from 54 publicly
available libraries from normal (including human pluripo-
tent stem cells [hpSCs]) and cancer tissues were used
for transcript detection and tissue expression comparison.
We characterized �34 000 new potential non-coding
transcribed regions (genomic location, conservation in
the mouse and human genomes and tissue-specificity)
and identified >1121 transcribed regions that are
abundantly expressed in hpSCs.

MATERIALS AND METHODS

DigitagCT pipeline to combine different transcriptome
data

We developed a computational bioinformatics pipeline
that combines DGE tag expression data from different
samples with the available annotation resources to
obtain a general view of the transcription landscape in a
reference genome (Figure 1). The pipeline uses two man-
datory arguments: a sequence alignment/map (SAM)
input file of mapped DGE reads and a general feature
format (GFF) file that must contain at least the required
features on ‘exon’, ‘mRNA’ and ‘gene’. Others features,
such as ‘cds’ (coding sequence), ‘30UTR’ or ‘50UTR’,
can be added to give more information about the annota-
tion (see http://www.sequenceontology.org/gff3.shtml
for more detail). When RNA-Seq and DGE data are
combined, the pipeline uses a non-mandatory argument
to integrate the SAM file of mapped RNA-Seq reads.
Although the pipeline can accept SAM files from any
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Figure 1. The digitagCT pipeline. Schematic representation of the in-
tegrative digitagCT pipeline to analyse high-throughput sequencing
data (DGE and RNA-Seq). First, DGE tags are mapped to the refer-
ence genome by using the crac software with the –emt argument tool
(described in ‘Materials and Methods’ section). The pipeline uses
existent annotation sources (Ensembl annotations for human and
mouse) and interrogates the subset of uniquely mapped tags using
the Ensembl API. In output, a selection of transcripts can be
retained with or without filtering. In the filtering process, retained
DGE transcripts are compared with RNA-Seq data, which are
integrated in the pipeline by using the CRAC (described in ‘Materials
and Methods’ section), tiling arrays and other DGE data. Users may
configure several parameters according to their needs, such as by
defining an occurrence threshold for DGE tags or a specific class of
transcript (intergenic, non-coding, etc.).
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tools, it is advisable to provide a SAM file from CRAC
(20). In fact, one of the CRAC specificities is to deliver
computational predictions for point mutations, indels,
sequence errors, normal and chimeric splice junctions in
a single run and to list this information, which can be used
to characterize the nature of new transcripts, in extra
columns of the SAM file. For example, the combination
of a splice junction and an intergenic tag could indicate a
new long intergenic non-coding RNA (lincRNA). Our
pipeline is called digitagCT and is part of the CracTools
suite (not published). DigitagCT is available at http://
cractools.gforge.inria.fr/softwares/digitagct/.
Here, we used the digitagCT pipeline to combine the

strengths of the DGE and RNA-Seq methods. First,
sequences were mapped back to the reference genome
using the CRAC software (with the ‘—emt’ argument
for an exact matching tool that is particularly suitable
for DGE data), available at http://crac.gforge.inria.fr (20).
As the DGE method often implies that each transcript

is represented by one tag, DGE data were annotated
according to a GFF file from Ensembl Genome Browser
by giving priority first to location in exons and then in
intronic or intergenic regions. The GFF file was built
from Ensembl API (version 66). First the protein-coding
gene and pseudogene categories were considered to deter-
mine whether the tags corresponded to intragenic (cds,

UTR and introns) or intergenic sequences (process A)
(Figure 2). For intergenic regions, tags were then classified
as proximal (intergene proximal), when the distance
between the tag and the 50 of the next gene was <5 kb, or
as distal (intergene distal and intergene EST), when such
distance was > 5 kb. The procedure could also distinguish
between sense and antisense transcripts originating from
both DNA strands because the DGE protocol generates
oriented tags (Figure 2). Then, we classified the tags by
giving higher priority to gene versus intergenic annota-
tions, and to annotations on the same strand rather than
to annotations on the opposite strand. The classification
algorithm proceeded as follows. If the gene and the tag
were in the same orientation (sense tags), a tag located
within a gene could be exonic (tag1, tag2, tag3) when
entirely within an exon, inxonic (tag4) if it covered an
intron–exon junction or intronic (tag5). The same
approach was used with genes on the opposite strand (if
any): anti-sense tags could thus be exonic (tag6, tag7, tag8),
inxonic (tag9) or intronic (tag10). If a tag was not
annotated, we assessed its possible intergenic localization
and then classified the tag as proximal (tag11) or distal
(tag12) relative to a 30 gene.

The second step (process B) of our pipeline allowed
compiling all the previously Ensembl-annotated, non-
coding and unclassified transcripts to specify their
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Figure 2. Classification of ‘TranscriRef’ sequences using process A and process B of the digitagCT pipeline. We adopted a two-step strategy to
annotate the subset of ‘TranscriRef’ tags (from Ensembl annotation) that were uniquely mapped to the human genome using CRAC: a general
annotation process that considers protein-coding genes and pseudogenes (process A) and a non-coding annotation process that considers only non-
coding genes (process B) (see schematic representation in Figure 1 and ‘Materials and Methods’ section for details). (Process A) A tag located in a
protein-coding gene or a pseudogene (sense orientation) could thus be categorized as exonic (tag1, tag2, tag3), inxonic (tag4) or intronic (tag5).
Similarly, a tag located in a gene, but on the opposite strand, could be exonic (tag6, tag7, tag8), inxonic (tag9) or intronic (tag10). A tag outside a
gene (intergenic localization) was classified as proximal (tag11) or distal (tag12) to the nearest 3’ gene. The external pie chart shows the genomic
distribution of DGE sequences assigned to coding-genes based on the tag classification. (process B) Then, tags that overlapped with sequences of
non-coding genes were classified in (A) small ncRNAs, (B) lincRNAs, (C) other lncRNAs and (D) other ncRNAs. A tag could identify both a non-
coding and a protein-coding gene (e.g. tag 1 corresponds to the 3’ UTR region of a coding transcript and also to a non-coding transcript). In this
case, we consider that the non-coding transcript overlaps with a protein-coding gene. The internal pie chart shows the global genomic distribution of
DGE sequences assigned to non-coding transcripts.
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genomic proportion and distribution (Figure 2). Most
ncRNAs were annotated by aligning their genomic
sequence against RFAM using BLASTN. MicroRNAs
(miRNA) were predicted by BLASTN of genomic
sequence slices against miRBase sequences. LincRNAs
were predicted using the lincRNA Ensembl gene annota-
tion, cDNA alignments and chromatin-state maps (21).
For any tag, the digitagCT transcriptome pipeline could
also analyse RNA-Seq data to complement the DGE in-
formation and help constructing the transcript sequence
by generating supplementary features, such as splice
variants or polymorphisms. Hence, we could intersect
any DGE tag position with those of neighbouring RNA-
Seq reads. Moreover, a filtering process that integrated
other transcriptome expression data (i.e. TranscriRef,
tiling arrays) was used to improve the relevance of our
analysis (Figure 1). For each tag and according to its
location, a value was computed to indicate the detection
of a transcribed region with each technology (DGE,
RNA-Seq and tiling). Future users may adjust the param-
eters of the transcriptomic pipeline functions according to
their requirements. An optional filtering process for
species-comparison analysis may be performed by
choosing the genome of the studied species and using a
selection of DGE tags as input.

Data sets

SAGE/DGE data were collected from publicly available
repositories: the CAGP project (Sage genie: ftp://ftp1.nci.
nih.gov/pub/SAGE/) for human and mouse data and the
kidney DGE library described in Philippe et al. (19). One
hundred base pairs of RNA-Seq paired-end reads of the
HD291 human embryonic stem cell (hESC) line were
obtained using an Illumina HiSeq2000 device at
DNAVision (Gosselies, Belgium). The DGE libraries for
the induced pluripotent stem (iPS) cell line M4C2 and
human foreskin fibroblasts were generated at the MGX
platform (Montpellier, France) using the NlaIII restriction
enzyme (CATG sites) (unpublished data, Bai et al.).
RNA-Seq data from acute myeloid leukaemia (AML)
primary cells were produced in the laboratory. The com-
pilation of all the used DGE libraries (54 libraries; list in
Supplementary Table S2) was designated as ‘TranscriRef’.
Homo sapiens chromosome sequences (GRCh37 version)
were retrieved from the Genome Reference Consortium
(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/
grc/human/) and Mus musculus chromosome sequences
(NCBI37/mm9 version) from the UCSC genome browser
Web site (http://genome.ucsc.edu/). Annotations and
orthology information were retrieved from Ensembl
(E66 version) and tiling arrays data from the UCSC
Genome Bioinformatics site (http://genome.ucsc.edu/).
We used transcriptional active region (TAR) data from
the Affymetrix Transcriptome Project Phase2,
Affymetrix PolyA+ RNA transfrags, Yale RNA TARs
and Yale Maskless Array synthesizer experiments [see
Rivals et al. for detailed information (22)].

Annotations and ncRNA categories

For clarity, ‘tag’ defines a representative sequence and
‘occurrence’ indicates all sequences that are identical to

that tag. Thus, the number of occurrences (occnb) indicates
the number of times a tag is found in the library collection
and it is considered a measure of its biological validity.
Specifically, a tag observed only once may be the result
of a sequencing error, whereas a tag observed at least
10 times is more likely to be a valid biological observation.
Non-coding transcripts were classified in four groups

according to the Ensembl annotation and the annotation
proposed by ENCODE: (i) small ncRNAs (mainly
miRNAs, snoRNAs and snRNAs); (ii) lincRNAs
defined by Ensembl; (iii) other lncRNAs: this is an
ENCODE category that includes processed, antisense
and sense intronic transcripts and is described in (9);
and (iv) other ncRNAs: this category is defined by
Ensembl. The full definition of each category can be
found in the Ensembl website. Potential new transcripts
that could not be annotated according to the Ensembl
human genome annotation (process B) were classified in
the intergenic distal category.
Concerning intergenic tags, we always reported their

distance from the 30- and 50-ends of known genes, irre-
spective of the strand orientation (Supplementary Figure
S1), because 3’ extension of known genes is one of the
potential sources of annotation artefacts that generate
false intergenic transcription (6). The tag distribution
allowed the easy distinction of the two classes of intergenic
tags defined as proximal (intergene proximal) and distal
(intergene distal). For intergene distal tags, we could
compute the overlap with EST (intergene EST). Distal
tags were equally distributed in the genome, whereas
proximal tags were heterogeneously distributed with
high density at the 30-ends of known genes. Thus, we
decided to consider only intergenic distal tags for subse-
quent analyses.

Manual validation and curation

To select specific candidate tissue-specific transcripts, the
corresponding DGE and RNA-Seq libraries were analysed
with the pipeline using the filtering process (Figure 1). We
retained all tags seen at least 10 times (i.e. occnb �10) in at
least one DGE sample and covered by at least 3 RNA-Seq
reads. Each tag was annotated to give its chromosome
position, orientation, expression level in ‘TranscriRef’,
tiling array information, proximity to coding and non-
coding genes (at both 30- and 50-ends) and coverage by
RNA-Seq reads. These features were then used for biolo-
gical selection and validation by real-time quantitative
PCR (qPCR). The selection criteria can be adjusted
according to the user’s requirements. Selected candidates
were verified in silico by integrating our personal DGE and
RNA-Seq data in the Ensembl Genome Browser using a
DAS server. For tags corresponding to protein-coding
genes that are conserved in human and mouse, enrichment
analysis of the predicted GO-MF was carried out using the
DAVID database with default parameters and functional
annotation chart report (23).

Clustering

Hierarchical clustering was performed with the Cluster
and Treeview software packages (24). To obtain a

Nucleic Acids Research, 2014, Vol. 42, No. 5 2823

 at C
E

R
D

I on M
arch 21, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

non-coding RNAs (
)
,
T
ftp://ftp1.nci.nih.gov/pub/SAGE/
ftp://ftp1.nci.nih.gov/pub/SAGE/
100 bp
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1300/-/DC1
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
(
)
``
''
``
''
while
ten 
Web 
'
' 
ly
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1300/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1300/-/DC1
Intergene 
Intergene 
Intergene 
where 
' 
We thus
only 
,
'
' 
) (23
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


homogeneous proportion of data from different tissues,
we removed the over-represented libraries. Thus, only 33
of the 54 available libraries (highlighted in green,
Supplementary Table S1) were used, and each individual
tissue was represented at most by three different libraries.
Tissue-specific tags were selected with the percentile
method. As each tissue was represented in �10% of all
libraries (3/33), a 90% percentile was used for clustering.
A compressed archive (clustering-digitagCT_
transcriRef_34000intergenic_tags.tar.gz) is available
at http://www.get.univ-montp2.fr/en/ncRNA with the
‘Clustering-digitagCT_transcriRef_34000intergenic_tags.
txt’ file containing the 34 000 tags used for clustering and
all the files generated by the clustering program. To cluster
the 34 000 tags, the following command line was used
with the clustering program: cluster –f Clustering-
digitagCT_transcriRef_34000intergenic_tags.txt -l -cg a
-ca a -g 1 -e 1 -m a.

Cell lines and culture

The embryonic kidney HEK 293, the human chronic
myelogenous leukaemia K562 and the human AML U937
cells are routinely grown in our laboratory. Briefly, cells
were cultured in RPMI 1640 (Invitrogen, Carlsbad, CA,
USA) supplemented with 10% foetal calf serum at 37�C
in a humidified atmosphere containing 5% CO2 and 95%
air. U937 cells were treated (U937DIFF) or not (U937NT)
with 10 mM 1,25-(OH)2 Vitamin D3 (Sigma), 10 mM
TTNBP {4-[E-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-
naphthalenyl)-1-propenyl]} benzoic acid and 1 mM
targretin (LGD1069), a selective retinoid X receptor
agonist (both from Roche Pharmaceutics), for 48 h.
The HD291 hESC line was derived in the Institute for

Research in Biotherapy (Montpellier, France) according
to our previous report (25), and the M4C2 human iPS cell
line was obtained by reprogramming new-born human
foreskin fibroblasts using lentiviral vectors to express
human OCT4/POU5F1, SOX2, NANOG and LIN28
(26). HD291 and M4C2 cells were cultured in 80% KO-
DMEM, 20% KOSR, 2mM L-glutamine, 1% non-essen-
tial amino acids, 0.5mM b-mercaptoethanol (all from
Gibco Invitrogen, Cergy-Pontoise, France), comple-
mented with 10 ng/ml bFGF (Abcys, Paris, France) and
maintained on irradiated (40Gy) human foreskin fibro-
blast feeders. Both lines were mechanically passaged
weekly. We also used SH-SY5Y (human neuroblastoma
cancer), MCF7 (human breast cancer) and MDAPCa 1
(human prostate cancer) cells that were provided by S.
Marchal and D. Noel (Montpellier, France).

RNA extraction, reverse transcription and real-time
quantitative PCR

Total RNA was extracted with the RNeasy kit and
included a DNase treatment (Qiagen). RNA quality and
quantity were analysed using a 2100-Bioanalyzer (Agilent
Technologies, Waldronn, Germany). Reverse transcrip-
tion was performed with random primers (High-capacity
cDNA Archive kit; Applied Biosystems, Courtaboeuf,
France) using 1 mg of total RNA (or water, negative
control) according to the manufacturer’s instructions.

qPCR was performed in 384-well plates (Sorenson
BioScience, Inc.) on a Lightcycler� 480 Real-Time PCR
System (Roche Diagnostics). One microlitre of each
cDNA sample (1/10 dilution) was added to a 5 ml of
reaction mix containing 3 ml of Master Mix (Roche
Diagnostics) and 0.33 mM forward and reverse primers.
Primer sequences were designed using the Primer3Plus
software and are listed in Supplementary Table S3.
Amplifications were carried out according to the following
conditions: 95�C for 5min, then 55 cycles as follows: 95�C
for 10 s, 60�C for 10 s and 72�C for 10 s. At the end, a
melting curve from 95�C to 65�C was performed to
control primer specificity. The relative quantity (RQ) of
gene expression was analysed using the 2���Ct method
(27). Transcriptional modulation (log10RQ) was
calculated using the expression data of RPS19 as endogen-
ous control.

RESULTS

Global transcription distribution in the human genome
(process A)

We developed a computational bioinformatics tool called
digitagCT pipeline (Figure 1) that combines DGE data
with the available Ensembl annotations to obtain an
overall view of transcription distribution across the
human reference genome. For this purpose, DGE data
from 54 human tissue libraries (25 normal and 29 cancer
tissues) were compiled in the ‘TranscriRef’ data set. These
DGE libraries represent �268 million 21-bp-long se-
quences and correspond to �5 million distinct tags
(Supplementary Table S1). Tags were then mapped to
the human genome using the crac software in perfect
match mode. Of all sequences, �147 million (750 110
distinct tags) matched to unique genomic locations, �69
million (142 786 distinct tags) showed multiple matches
and �50 million (4 247 867 distinct tags) had no match
in the genome. Although only 15% of distinct tags had
a single genomic location, they represented >50% of all
sequences (147 million over 268 million occurrences). As
mentioned in previous reports, the major cause of
unmapped tags is sequence errors, and erroneous tag lo-
cations have been estimated to concern only 2% of the
located sequences (19,28).

For each unique mapped sequence, a genomic annota-
tion (according to protein-coding information) was ex-
tracted (process A of Figure 1 and Table 1) (21). Briefly,
priority was given to tags located in gene exons in the
sense orientation, then to intronic or antisense positions
and finally to intergenic regions (Figure 2). The distribu-
tion of genomic annotations of the ‘TranscriRef’ data set
represented the abundance of the different classes in this
transcriptional repertoire (Figure 2, pie chart). The vast
majority of mapped sequences (�89%) originated from
exons of protein-coding genes and their precise location
was also established (i.e. 30UTR, CDS and 50 UTR)
(Figure 2, pie chart). As the DGE technology generates
stranded tags preferentially in the 30 part of polyA+
mRNAs, most of them matched the 30 UTR (�69%)
and less frequently the CDS (12.19%) or the 50 UTR
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Table 1. Occurrence, proportion (%) and number of tags of all ‘TranscriRef’ sequence according to the specific annotation processes

A  (Process A)
Type Nb Occ. (in %) Nb Tags

1: 3’ UTR sense 101 651 692 68.73 78 227
2: CDS sense 18 032 580 12.19 44 334
3: 5’ UTR sense 594 999 0.40 4690
4: INXON sense 526 835 0.36 3529
5: INTRON sense 5 375 383 3.64 202 446
6: 3’ UTR antisense 8 543 983 5.78 47 610
7: CDS antisense 1 668 396 1.13 33 765
8: 5’ UTR antisense 1 429 397 0.97 16 072
9: INXON antisense 125 319 0.08 2712

10: INTRON antisense 2 716 927 1.84 123 399
11: Intergene proximal 2 087 546 1.41 25428
12: Intergene distal 5 138 478 3.47 167 879

Total 147 891 535 100.00 750 091

C  (Process A x B)
Class A: Small ncRNA B: lincRNA C: Other lncRNA D: Other ncRNA Total

1: 3’ UTR sense 3668 750 77 072 2368 83 858
2: CDS sense 0 17 177 899 554 178 470
3: 5’ UTR sense 126 13 1439 72 1650
4: INXON sense 23 1610 9046 8 10 687
5: INTRON sense 7700 15 566 146 950 1070 171 286
6: 3’ UTR antisense 1457 29 014 473 029 2443 505 943
7: CDS antisense 117 3798 63 238 329 67 482
8: 5’ UTR antisense 225 1361 166 397 126 087 294 070
9: INXON antisense 0 101 59 609 278 59 988

10: INTRON antisense 1400 8528 215 160 6876 231 964
11: Intergene proximal 2323 32 943 129 600 71 994 236 860
12: Intergene distal 14 540 554 559 1 098 217 55 850 1 723 166

Total 31 579 648 260 2 617 656 267 929 3 565 424

Type Nb Occ. (in %) Nb Tags

1: 3’ UTR sense 83 858 2.35 1089
2: CDS sense 178 470 5.01 155
3: 5’ UTR sense 1650 0.04 57
4: INXON sense 10 687 0.30 65
5: INTRON sense 171 286 4.81 3146
6: 3’ UTR antisense 505 943 14.19 3080
7: CDS antisense 67 482 1.89 1504
8: 5’ UTR antisense 294 070 8.26 959
9: INXON antisense 59 988 1.68 160

10: INTRON antisense 231 964 6.50 6773
11: Intergene proximal 236 860 6.64 1366
12: Intergene distal 1 723 166 48.33 22898

Total 3 565 424 100.00 41 252

B  (Process B)
Type Nb Occ. (in %) Nb Tags

A: Small ncRNA 31 579 0.89 450
B: lincRNA 648 260 18.18 10 260
C: Other lncRNA 2 617 656 73.42 29 770
D: Other non-codingRNA 267 929 7.51 772

Total 3 565 424 100.00 41 252

Detailed distribution, proportion and occurrence of ‘TranscriRef’ DGE tags with a unique match on the human genome. (A) Genomic
distribution and occurrences of DGE tags assigned to coding transcripts (process A). (B) Genomic distribution and occurrences of DGE tags
assigned to non-coding transcripts (process B). (C) Global distribution and occurrences of DGE tags assigned to non-coding transcripts (process
A�B).
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(0.4%) of a gene sequence (29). The protein-coding gene
fraction included 556 784 tags corresponding to 91% of
the protein-coding HUGO terms identified in Ensembl
(18 282 of the 20 075 HUGO terms), thus indicating that
‘TranscriRef’ represents a large transcriptome data set
(Table 2). Transcribed regions were also identified in the
intronic (5.48%) and intergenic (4.88%) categories as well
as in the exon antisense class (7.96% of all TranscriRef
occurrences with a unique match in the human genome).
In parallel, we also analysed separately two DGE libraries
included in the ‘TranscriRef’ data set to study transcrip-
tome variability in specific tissues. The first library was
generated using normal hESCs (hESC-hs0238: 3 636 083
total sequences and 293 179 unique tags) and the second
one using a peripheral blood sample from a patient with
AML (AML-hs0430: 6 399 705 total sequences and
204 169 unique tags). The distribution of tags in exonic,
intronic and intergenic regions (90%, 4–5% and 5–6%,
respectively) in these two libraries was comparable with
the overall profile obtained for the whole ‘TranscriRef’
data set (Supplementary Figures S2 and S3).

Distribution of non-coding annotated transcripts in the
human genome (process B)

We then evaluated the proportion of Ensembl-annotated
non-coding transcripts by considering the ‘TranscriRef’
tags that matched non-coding sequences (process B of
Figures 1 and 2). Non-coding transcripts amounted to
41 252 distinct tags, corresponding to 7194 non-coding
genes among the 20 365 (35.33%) listed in Ensembl
(Table 2). Non-coding transcripts were classified in four

groups (as defined in ‘Materials and Methods’ section):
(i) small ncRNAs (mainly miRNAs, snoRNAs and
snRNAs), (ii) lincRNAs, (iii) other lncRNAs (processed,
antisense and sense intronic transcripts) and (iv) other
ncRNAs (Figure 2 and Table 2). As expected for DGE
data, the proportion of small ncRNAs was negligible
(0.96%). Within the ‘TranscriRef’ data set, lincRNAs rep-
resented �34% of all non-coding genes (2450 of 7194) and
were thus over-represented compared with Ensembl data
set (24%: 4883 of 20 365 non-coding genes) (Table 2).

In the hESC-hs0238 and AML-hs0430 DGE libraries,
4% of all tags corresponded to annotated ncRNAs, inde-
pendently of the cell type (normal or cancer), and were
similarly distributed as those obtained for ‘TranscriRef’
(Supplementary Figures S2 and S3).

We then repeated the analysis by allowing a tag to over-
lap both coding and non-coding annotations. This proced-
ure enabled to extract not only overlapping annotations
but also transcripts overlapping with non-annotated
genomic regions (Figure 3A and Table 1). A negligible
fraction of the non-coding sequences (5%) was in cds
regions, irrespective of the tag orientation. Conversely,
non-coding sequences were abundantly represented in
the antisense categories. For example, 20% of the 50

UTR antisense occurrences (i.e. 294 070/1 429 397)
overlapped with non-coding transcripts.

As expected, most non-coding transcripts (33.5%)
overlapped with intergenic distal regions (1 723 166 of
the 5 138 478 occurrences): �50% were lincRNAs and
the rest belonged mostly to the ‘other lncRNAs’
category. Interestingly, in this category, 3 415 312
sequences remained without annotation and could thus

Table 2. Comparison of the ‘TranscriRef’ and Ensembl annotations

Categories TranscriRef tag TranscriRef gene Ensembl gene Percentage (TranscriRef/Ensembl)

Process A
Protein coding 548 998 18 282 20 075 91.07
Pseudogene/polymorphic 7 672 2 786 12 550 22.06
IG/TR gene/pseudogene 114 64 562 11.38
Total 556 784 21 132 33 196 63.66

Process B
Small ncRNAs

miRNA 31 31 1 756 1.77
rRNA 10 8 530 1.51
snoRNA 213 90 1 521 5.92
snRNA 135 10 1 944 0,51
Small nc-pseudogene 61 61 1 835 3,32

lincRNAs
lincRNA 10 260 2 450 4 883 50.17

Other lncRNAs
Sense intronic 481 203 456 44.52
Processed transcript 16 332 1 645 2 076 79.24
Antisense 12 957 2 499 3 892 64.21

Other ncRNAs
Sense overlapping 358 109 136 80.15
Non-coding 345 53 101 52.48
misc RNA and pseudogene 28 5 1 190 0,42
ncRNA host 41 9 19 47.37

Total 41 252 7 194 20 365 35.33

The output of the ‘TranscriRef’ library (after process A or B) was compared with the Ensembl database version 66. The first two columns describe
the distribution of ‘TranscriRef’ tags and genes, respectively. The third column describes the distribution of Ensembl genes and the fourth column
represents the ‘TranscriRef’ genes/Ensembl genes ratio.
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correspond to either potential new transcripts or
methodological artefacts (Figure 3B).These transcripts
corresponded to 144 981 (‘TranscriRef’ dataset), 8131
(AML-hs0430 library) and 6273 (hpESC-hs0238 library)
intergenic tags (Supplementary Figures S2 and S3).

The filtering step of the digitagCT pipeline: selection with
high accuracy of new tissue-specific intergenic transcripts

To address the question of the biological significance
of intergenic transcripts and to avoid the problem of
false locations that could generate random annotations
(methodological artefacts), we optimized our data mining

procedure by integrating other available transcriptomic
data, as described in ‘Materials and Methods’ section
(filtering and species-comparison processes).
We first tested the species-comparison process (an

optional filtering procedure) to validate the hypothesis
that sequence conservation could provide interesting
biological information. For this purpose, we investigated
tags conserved between the human and the mouse
genomes. We intersected all the human ‘TranscriRef’
tags with a unique location with a collection of murine
DGE/SAGE libraries to select tags that are expressed in
both species. In all, 8705 distinct tags corresponding to
6 363 596 input sequences were expressed and located in

A
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other non-
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Figure 3. Distribution of overlapping non-coding transcripts (process A x B) and non-annotated sequences in ‘TranscriRef’. (A) Bar chart describing
the proportion of DGE sequences assigned to different non-coding transcript categories in each genomic region. LincRNA and other lncRNA
sequences are more abundant in the intergenic distal regions. (B) Pie chart showing the distribution of all ‘TranscriRef’ sequences in the human
genome. The first inset pie chart represents all intergenic ‘TranscriRef’ sequences. The second inset corresponds to the four identified categories
of non-coding transcripts in intergenic regions (small ncRNAs, lincRNAs, other lncRNAs and ncRNAs) with their relative proportions (%).
The difference between the two pie charts represents orphan sequences without annotation that could correspond to potential new transcripts or
methodological artefacts. New non-annotated sequences are more abundant than the identified non-coding sequences.
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both genomes. The distribution of annotation categories
for this set of tags was comparable with that of the whole
‘TranscriRef’ data set (Supplementary Figure S5). We
then considered the subset of common exonic tags (in
the sense orientation for orthology analysis). Among the
3268 protein-coding gene tags (4 005 620 sequences),
96.1% corresponded to orthologous genes. We then thor-
oughly analysed their functional relevance using the
DAVID database. The same analysis was performed
with common intronic or antisense tags, and the enrich-
ment in GO molecular functions is reported in
Supplementary Table S2. Not surprisingly, this analysis
revealed enrichment in GO annotations that correspond
to highly conserved molecular functions, thus validating
our selection and annotation processes. The three
categories of conserved tags (exon, intron and antisense)
showed common GO function enrichment profiles, such as
nucleotide binding, transcription factor activity or RNA
polymerase activity. Interestingly, the antisense group pre-
sented specific annotations, such as pyrophosphatase
activity, hydrolase activity or nuclear hormone receptor
binding. Finally, species-comparison selection also
revealed 293 conserved non-coding transcripts, including
40 lincRNAs and 222 other lncRNAs. Moreover, we
identified 486 potential new intergenic transcripts that
were conserved and expressed in both species.
Other parameters could be used and collected for each

intergenic tag, based on its chromosome position and
strand orientation. Complementary data could be
associated, including expression level (i.e. occurrence in
SAGE Genie and ‘TranscriRef’ data sets), tiling array
information, proximity to coding and non-coding genes
on both 30- and 50-ends and coverage by RNA-Seq reads.
To validate these parameters in the filtering process for
identifying potential tissue-specific transcripts, first the
hESC-hs0238 DGE and hpSC RNA-Seq libraries were
analysed and 36 potentially relevant intergenic tags were
randomly chosen (see ‘Manual validation and curation’
in the Materials and Methods section for the selected
parameters). Then, analysis of their distribution in the 54
available libraries allowed to classify them as ubiquitous or
ESC-specific (Figure 5A). The 36 selected intergenic
candidates were not annotated by Ensembl version 62 at
the time of the screening. Following the release of the
current version 66, 16 of these tags have been annotated
(6 are associated with antisense transcripts, 3 with intronic
transcripts and 7 with newly annotated genes or pseudo-
genes), whereas the other 20 tags are still non-annotated.
We measured their expression level by qPCR in normal
and cancer cell lines and validated 78% of all candidates
(90% when considering only the 20 non-annotated
intergenic tags) (Supplementary Table S3). We further
categorized the selected candidates by manual curation
using the Ensembl display window with the DGE and
RNA-Seq data. Among the annotated tags, some
corresponded to new non-coding variants (Figure 4A),
and among the non-annotated ones, a large fraction of can-
didates were lncRNAs (longer than 500 bp) (Figure 4B and
Supplementary Figure S4) and a few could correspond to
short exons or small RNAs (Figure 4B and Supplementary
Figure S4).

As the coverage by RNA-Seq data could be used for
tissue-specific selection, we tested specifically the hpSC
data. Clustering analysis was performed on a selected
data set of intergenic distal tags (see ‘Materials and
Methods’ section for details). This set included �34 000
potential new transcribed regions (Figure 5B). Clustering
allowed ‘checking’ tissue specificity. As highlighted by the
focus in Figure 5B, all embryonic cell libraries clustered
together and showed a tissue-specific pattern with 1121
highly expressed tags. When applying the digitagCT
pipeline filtering process (by comparing tags with the
HD291 human embryonic stem cell RNA-Seq reads) to
extract the more reliable transcripts, we identified 524
intergenic tags that were covered by both DGE and
RNA-Seq (�50% of the 1121 highly expressed tags).
Of note, the majority of the 1121 intergenic tags repre-
sented novel ncRNAs (931 candidates including 423 tags
detected by RNA-Seq), whereas only 190 tags corres-
ponded to already annotated non-coding transcripts
(Supplementary Figure S6). All these data are available
at http://www.get.univ-montp2.fr/en/ncRNA.

Looking at the nearest 50 and 30 genes, we observed that
intergenic tags were often neighbours of lincRNAs,
indicating transcriptional clusters. The search of neigh-
bouring genes could be an interesting mean to provide
potential functional information, as illustrated by the
case of the PIWIL4 neighbours that are specifically
expressed in hESCs (Figure 4A).

DISCUSSION

By combining gene expression data and next-generation
sequencing-based assays, our digitagCT pipeline provides
a high-quality catalogue of human transcriptome data
and allows the easy selection of tissue-specific candidates.
The high-throughput assays generate huge data volumes,
but also many artefacts that blur the biological signal.
Comparison and integration of complementary transcrip-
tion data eliminate technology-specific errors and also
reinforce the biological significance of newly identified
RNAs. Moreover, our filtering process allowed
determining the expression profile (in a variety of condi-
tions/tissues, or only in specific tissues) of these
newly identified RNAs, suggesting that they are transcrip-
tionally regulated. This is possible only by simultaneously
interrogating distinct gene expression data sources.

The proposed strategy avoids false locations and
annotations

Although the analysis of DGE tags for transcript
identification and characterization is now considered
as a ‘resolved’ issue (30), most procedures include an
approximate genomic localization that generates false
positives. In the present report, the procedure for
annotating DGE transcripts is based on previous results
showing that the probability of false location in the
human genome for a tag of 21 nt in length is minimized
by using a perfect match approach (19). As a consequence,
most of the erroneous tags were not mapped to the genome
and were discarded. We also considered the impact of tags
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A

B C

A

B C

Figure 4. Examples of new non-annotated transcripts. (A) Display of the Ensembl Genome Browser web page for new non-annotated transcripts.
The blue horizontal bars represent chromosomes. Gene structures (‘Ensembl Genes’, ‘Human cDNAs’, ‘EST-based’ tracks) are annotated
by Ensembl. Public and private DGE data (‘DGE tag location’ track: blue rectangle for occurrence �2, green for occurrence=1) are displayed
on both strands of the chromosome with their relative occurrences (histogram of ‘DGE expression level’ track) using a private DAS server. The
histogram of the RNA-Seq coverage (private data: RNA-Seq for hpSC and AML) in the chromosomal region is displayed on the top (‘ES HD291
RNASeq’ and ‘AML RNASeq’ tracks). (B) Relative expression of new transcripts in different cell lines validated by qPCR. (C) The corresponding
melting curve analysis.
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generated from inner enzymatic sites when the anchoring
enzyme fails to cleave the expected canonical site. We
have previously estimated this experimental artefact and
showed that it could correspond to a frequency of 0.1%
(31). This effect can be minimized by taking into account
the tag occurrence. For instance, for a highly expressed
transcript (10 000 occurrences of the canonical tag), the
non-canonical enzymatic cutting generated only 10 occur-
rences, thus strongly reducing the weight of second rank
tags in the global sequence distribution. Moreover, the
total number of tags from ‘TranscriRef’ with a unique

location (�750 000) included in the analysis represents
an interesting biological data set of human transcription
with strand orientation information.

Why combining DGE and RNA-Seq data?

By using RNA-Seq and DGE technologies, it is now
possible to obtain accurate and dynamic ranges of tran-
script expression levels at the genome-wide scale with a
level of sensitivity that is unachievable with any other
technology. DGE reads arise from polyA+RNAs within

A B

Figure 5. Clustering of ‘TranscriRef’ intergenic tags across different tissues. (A) Heat map of the expression level of the 36 tags randomly selected
from the hESC-hs0238 DGE and hpSC RNA-Seq libraries in the 54 DGE libraries. (B) Heat map showing the expression level of the 34 000
intergenic tags used for the clustering analysis in 33 DGE libraries.
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the total RNA starting material and can be used to detect
stranded transcripts and to provide an interesting
approach for overall gene expression data mining. A
DGE tag is a transcript signature. Hence, the tag allows
determining the tissue expression profile of a transcript by
examining its number of occurrence in each available
DGE library and comparing it in all available libraries.
DGE facilitates the comparison of large transcriptomic
data sets and allows estimating the tissue-specific distribu-
tions and abundances. These features are particularly
important, especially when looking for new non-coding
transcripts, because they can suggest regulated and differ-
ential expression. On the other hand, RNA-Seq provides a
digital measure of RNA abundance, which is represented
by the sequence read counts in a region of interest and is
independent from any pre-existing knowledge about the
studied transcriptome. Considering how difficult it is to
determine transcript boundaries especially in non-coding
regions when transcription coverage is low (30) and how
difficult it is to discriminate various isoforms at a specific
gene location with the DGE method, the usage of RNA-
Seq is a valuable complementary approach to discover and
characterize new transcripts in specific tissues.

Potential novel ncRNAs constitute a significant fraction of
polyA+transcription

Several studies have shown that polyA+ intergenic tran-
scripts are less varied and abundant than exonic ones,
which codes for proteins (6), and that intergenic tran-
scripts located near genes (which are qualified as
proximal) are extensions of protein-coding genes. Our
analysis confirmed this view and provided new insights
on the distribution of overlapping coding and non-
coding transcripts, thereby bringing converging evidence
that the transcriptome is more complex than thought, as
recently discussed in the review by Dinger et al. and
largely demonstrated by the ENCODE project (32).
Moreover, we report here �34 000 intergenic transcripts
that are located away from annotated genes, thus ruling
out an origin as extension of protein-coding transcripts.
This number exceeds the value published previously by
van Bakel et al. and could be partly explained by the
size and complexity of the compendium of DGE data
used here. The extent and function of pervasive transcrip-
tion is still a matter of debate, but our data provide new
estimates on new polyA+ non-coding transcription that
are in agreement with other studies (16,17). This is in
line with the plethora of novel lncRNAs reported by
Mercer et al. (13) showing that the non-coding part of a
genome is a reservoir of lincRNAs. This finding was
recently confirmed by the GENCODE v7 project (9).
Moreover, our results on the mouse–human genome
comparison are in favour of a conserved function of a
non-negligible subset of lncRNA.

What are the biological features of novel ncRNA
candidates?

The integration of other mammalian genomes could help
investigating non-coding transcript conservation in several
species and selecting new specific potential transcripts.

In the present work, we investigated transcript conserva-
tion in the human and mouse genomes because their
evolutionary distance is considered sufficiently high to
allow separating conserved functional sequences that are
under purifying selection from background neutral DNA
(33). Using the digitagCT pipeline to investigate the con-
servation of protein-coding genes in the human and mouse
genomes, we found significant enrichment of GO molecu-
lar functions. Moreover, by comparing conserved exonic,
intronic and antisense transcripts, we show the presence of
specific and common molecular functions, suggesting that
conserved non-coding transcripts have essential functions.
Specifically, conservation analysis of intergenic non-
coding transcripts revealed 303 expressed and conserved
novel ncRNAs, the function and tissue-specific expression
of which could be further investigated. To our knowledge,
this is the first demonstration that a 21-bp DGE tag can
be efficiently used to target transcripts that are expressed
and conserved between species. Moreover, the proportion
of conserved intergenic tags was smaller than that of
conserved protein-coding tags, in agreement with the
lower conservation of lncRNAs compared with protein-
coding genes (9,10).
As expected, annotated lincRNAs were in intergenic

regions, and by mining ‘TranscriRef’, we could detect
50% of the annotated Ensembl data set. However, this
DGE data set includes only polyA RNA+, while many
non-coding transcripts have also been found using total
RNA (8). It could be interesting to determine whether the
lincRNAs described by the ENCODE project are present
in our data set as well (9). A common feature of non-
coding transcripts, and particularly of lincRNAs, is their
low expression level. This led to the conclusion that their
transcription level is not the best parameter for evaluating
the biological involvement of non-coding transcripts
(9,10). Another feature is their strong tissue-specific ex-
pression, illustrated in the present study by the 1121
regions that are specifically transcribed only in hpSCs.
Finally, our method is based on the use of a flexible and

rigorous computing process for the analysis of a biological
data set. This analysis is in itself a source of information
that could be used to help optimizing the selection of new
non-coding transcripts. Thus, our method provides new
information on the diversity of the transcriptional reper-
toire in the human genome and an easy-to-use tool for
selecting new tissue-specific non-coding transcripts by
combining DGE and RNA-Seq transcription data. DGE
data sets from other species (like parasites or plants) could
readily be mined by using the digitagCT pipeline.
Moreover, this approach could be extended to integrate
other types of biological information, such as transcrip-
tion binding sites and chromatin marks. Overall, we
believe that this report brings convincing arguments in
favour of data integration as a key for a more exhaustive
exploitation of the data delivered by high-throughput
technologies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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