

Next Generation Sequencing data Analysis at Genoscope

Jean-Marc Aury

Genoscope (National Sequencing center)

 \checkmark Among the largest sequencing center in Europe

œ

 ✓ Part of the CEA Institut de Génomique since 05/2007

 ✓ Provide high-throughput sequencing data to the French Academic community, and carry out in-house genomic projects

- ✓ Involved in large genome projects : human genome project, arabidopsis, rice, ...
- ✓ Coordination of large genome projects : tetraodon, paramecium, vitis, oikopleura, ...
- \checkmark and as well fungal genomes (botrytis, tuber) and prokaryotic genomes

✓NGS activities :

œ

✓ Sequencing of prokaryotic genomes (2007)

 ✓ RNA-Seq / Annotation of eukaryotic genomes (2008)
 ✓ SNP calling : identification of mutations (2008)

✓ Metagenomic projects (2008)

✓ Sequencing of large eukaryotic genomes (2009/2010)
✓ Chip-Seq, detection of structural variations, ... (2009/2010)

Genoscope (National Sequencing center)

✓ Sequencing capacity :

19

2

1

ABI 3730

3 454/Roche Titanium

Illumina

Soli

GA2

d v3

Applied Biosystems ABI 3730XL

Roche / 454 Genome Sequencer FLX

Illumina / Solexa Genetic Analyzer

What's different :

- Quantity and types of data
- Quality of data

(Ce)

Illumina / Solexa – Genetic Analyzer

- ✓ 1 lane on Acinetobacter baylyi (3,5Mb)
- ✓ 11,4M reads
- ✓ cumulative size of 900Mb

✓ 98,5% aligned reads

- ✓ Average error rate : 0,38%
- \checkmark 3% deletions, 2% insertions, 95% substitutions.

œ

Alignment of larger gap sized Outward Facing Reads (blue arrows) and shorter gap sized Inward Facing Reads (red arrows) back onto A) Fragmented 3.5kb circularized molecule B) Linear size-selected molecule C) Genomic Reference sequence.

Sequencing of prokaryotic genomes

home | journals A-Z | subject areas | advanced search | authors | reviewers | libraries | jobs | about | my BioMed Central

Тор	Research article Highly accessed Open Access
Abstract	High quality draft sequences for prokaryotic genomes using a mix of
Background	new sequencing technologies
Results	Jean-Marc Aury ^{1,2,3} 🖂, Corinne Cruaud ¹ 🖂, Valérie Barbe ^{1,2,3} 🖂, Odile Rogier ^{1,2,3} 🖂, Sophie Mangenot ¹ 🖂, Gaelle Samson ^{1,2,3} 🏹 Julie Poulain ¹ 🖂, Véronique Anthouard ^{1,2,3} 🖂, Claude Scarpelli ^{1,2,3} 🏹 François Artiguenave ^{1,2,3} 🏹 and
Discussion	Patrick Wincker1.2.3 🔀
	1 CEA, DSV, Institut de Génomique, Genoscope, 2 rue Gaston Crémieux, CP5706, 91057 Evry, France
Conclusion	2 CNRS, UMR 8030, 2 rue Gaston Crémieux, CP5706, 91057 Evry, France
	3 Université d'Evry, 91057 Evry, France
Methods	
	🗠 author email 🛛 🗠 corresponding author email
Authors' contributions	BMC Genomics 2008, 9:603 doi:10.1186/1471-2164-9-603

454 / Roche – Genome Sequence FLX

✓ Required genome coverage :

454 / Roche – Genome Sequence FLX

✓ Required genome coverage :

454 / Roche – Genome Sequence FLX

✓ Required genome coverage :

Procaryotic genomes sequencing

	Sanger	Unpaired 454	Unpaired + PE 454
Coverage	7.4X	20X	25X
Assembler	Arachne (Broad Institute)	Newbler (454/Roche)	Newbler (454/Roche)
# of contigs	173	119	119
Contigs N50 (Kb)	39.0	48.7	58.2
# of scaffolds	2	119	10
Scaffolds N50 (Kb)	2,200	48.7	1,000
Assembly size (% of reference)	3.417Mb (95%)	3.542 Mb (98%)	3.544 Mb (98%)
Mis-assemblies	0	0	0
# of errors	3,442	420	431
Substitutions	2,494	67	75
Insertions / Deletions	948	353	356

- Good assembly structure (more scaffolds => library of 3 and 10Kb for the Sanger assembly against 3Kb for the 454 assembly)
- Good representativeness of the genome (homogeneous coverage)
- Error rate is still too high for a high quality draft : ~ 1 error / 8,5Kb. The vast majority are indels (introducing frameshifts in coding regions)
- Rational : polish the consensus of the 454 assembly with a complementary technology.

Illumina / Solexa – Genetic Analyzer

- ✓ 1 lane on Acinetobacter baylyi (3,5Mb)
- ✓ 11,4M reads
- ✓ cumulative size of 900Mb

✓ 98,5% aligned reads

- ✓ Average error rate : 0,38%
- ✓ 3% deletions, 2% insertions, 95% substitutions.

- Alignment of illumina reads on the 454 assembly using Soap (gapped alignments) : 2 mismatches and 3 gaps
- Only uniquely mapped reads were retained

œ

- Each difference was kept only if it met the following three criteria :
 - Error is not located in the first 5bps or the last 5bps
 - Quality of the considered base, the previous and the next one are above 20
 - Remaining sequences (around the error) are not homopolymers
- Each detected difference is considered as a sequencing error if :
 - At least three reads detected the given error
 - 70% of the reads located at that position agree

.

Prokaryotic genomes sequencing

Illumina sequencing coverage :

- At 50X, still remains 163 errors :
 - 51 were attributed to errors in the original consensus sequence or to the presence of variations occurring during cultivation
 - 112 are found in repetitive regions or low coverage (with illumina reads) regions (contigs extremity).

Step	Sequenced reads	Uniquely mapped reads	Filtered reads
Number of reads	5.000.000	4.543.370	3.497.539
Number of bases	180.000.000	163.561.320	60.680.570
Genome coverage	50 , 0X	45 , 5X	16,9X

- Alignment of illumina reads on the 454 assembly using Soap (gapped alignments) : 2 mismatches and 3 gaps
- Only uniquely mapped reads were retained

(e)

- Each difference was kept only if it met the following three criteria :
 - Error is not located in the first 5bps or the last 5bps
 - Quality of the considered base, the previous and the next one are above 20
 - Remaining sequences (around the error) are not homopolymers

Prokaryotic genomes sequencing

	Sanger	Unpaired + PE 454	unpaired + paired 454 with Illumina / Solexa GA1
Coverage	7.4X	25X	25X and 50X
Assembler	Arachne (Broad Institute)	Newbler (454/Roche)	Newbler (454 / Roche)
# of contigs	173	119	119
Contigs N50 (Kb)	39.0	58.2	58.2
<pre># of scaffolds</pre>	2	10	10
Scaffolds N50 (Kb)	2,200	1,000	1,000
Assembly size (% of reference)	3.417Mb (95%)	3.544 Mb (98%)	3.544 Mb (98%)
Mis-assemblies	0	0	0
# of errors	3,442	431 (1 error / 8Kb)	163 (1 error / 22Kb)
Substitutions	2,494	75	71
Insertions / Deletions	948	356	92

Prokaryotic genomes sequencing

(e)

 \checkmark Propose a strategy to sequence prokaryotic genomes, accounting for assembly quality and costs

 ✓ Mixing 454 and illumina technologies to obtain high quality drafts (454 provide read length and illumina low error rate)

	2002	2003	2004	2005	2006	2007	2008	2009	
	Sanger - 12 ~72 project	2X ts				454 (15X) + San ~23 projec	ger (4X) ts	
			45	4 (20X) + S	anger (1X) - ~12 project	⊦ Solexa (~5 s	50X)		
	Dhuan						NL	454 (20X) 58	+ Solexa (~50X) projects
•	Phrap 2002	2003	2004	2005	2006	2007	Nev 2008	vbler 2009	→ └───

Prokaryotic genomes sequencing

	Sanger	unpaired + paired 454 + illumina GAI 36bp	Unpaired 454 + illumina GAIIx MP 4,5Kb 76bp	Illumina GAIIx MP 4,5Kb 76bp
Coverage	7.4X	25X and 50X	25X and 40X	22X
Assembler	Arachne (Broad Institute)	Newbler (454 / Roche)	Newbler (454 / Roche)	Soap (BGI)
# of contigs	173	119	44	495
Contigs N50 (Kb)	39.0	58.2	197	12.2
<pre># of scaffolds</pre>	2	10	9	84
Scaffolds N50 (Kb)	2,200	1,000	1,009	818
Assembly size (% of reference)	3.417Mb (95%)	3.544 Mb (98%)	3.567 (99%)	3.674 Mb (102%)
Mis-assemblies	0	0	0	0
# of errors	3,442	163 1 error / 22Kb	63 1 error / 55Kb	35 1 error / 100Kb
Substitutions	2,494	71	60	33
Insertions / Deletions	948	92	4	2

1	
	 Extend prokaryotic strategy to eukaryotic genomes
	 ✓ Sanger sequencing is still used to sequence long DNA fragments : >20Kb, BAC ends, …
	2002 2003 2004 2005 2006 2007 2008 2009 Sanger - 10X - >12 projects
	Tetraodon, paramecium, vitis, meloidogyne, tuber, blastocystis.
	chondrus, podospora, oikopleura, Ectocarpus
	chondrus, podospora, oikopleura, Ectocarpus 454 (~15X) + Sanger BAC ends + Solexa (~50X) 9 projects : Cocoa, banana, trypanosome, citrus, clytia, adineta, coffee, trout, colza Arachne Newbler

Annotating genomes using RNA-Seq

home | comment | reviews | reports | deposited research | refereed research | interactions | supplements | search | information | my journal 👘

Тор	Method Highly accessed Open Access
Abstract	Annotating genomes with massive-scale RNA sequencing
Background	France Denoeud* 1,2,3 🖂, Jean-Marc Aury* 1,2,3 ጁ, Corinne Da Silva1,2,3 🔀, Benjamin Noel1,2,3 🔀, Odile Rogier1,2,3 🔀, Massimo Delledonne4 🔀, Michele Morgante5 🔀, Giorgio Valle5 🔀, Patrick Wincker1,2,3 🔀, Claude Scarpelli1,2,3 🔀, Olivier
Results and	Jaillon ^{1,2,3} 🖂 and François Artiguenave ^{1,2,3} 🖂
discussion	1 CEA, DSV, Institut de Génomique, Genoscope, 2 rue Gaston Crémieux, CP5706, 91057 Evry, France
	2 CNRS, UMR 8030, 2 rue Gaston Crémieux, CP5706, 91057 Evry, France
Conclusion	3 Université d'Evry, 91057 Evry, France
	4 Scientific and Technology Department, strada le Grazie 15, 37134 Verona, Italy
Materials and	5 Istituto di Genomica Applicata, Parco Scientifico e Tecnologico di Udine, Via Linussio 51, 33100 Udine, Italy
methods	6 CRIBI, Università degli Studi di Padova, viale G. Colombo, 35121 Padova, Italy
Abbreviations	🖂 author email 🛛 🔀 corresponding author email 🛛 * Contributed equally
Authors'	Genome Biology 2008, 9:R175 doi:10.1186/gb-2008-9-12-r175

- Goal : annotate eukaryotic genomes using transcriptomic data from ultra-high throughput sequencers : Illumina and Solid
- Difficulties :
 - Predict complete gene structures with 40 bp reads
 - Align short reads to exon/exon junctions (mapping algorithms allow a limited number of gaps during alignments).

Molecular biology: Power sequencing. Brenton R. Graveley. Nature 453, 1197-1198(26 June 2008)

Typical RNA-Seq experiments

ced

Nature Reviews | Genetics

Step 1. covtigs construction

Annotating genomes using RNA-Seq

Step 2. extraction of candidate exons

✓ Method set-up to annotate the vitis genome (500Mb)

✓ Around 175 million of illumina reads

 \checkmark 4 tissues : leaf, root, stem and callus

✓ 140 million of uniquely aligned reads (73,5Mb)

✓ around 380 000 covtigs (38,5Mb)

 $\checkmark 46~062$ transcript models (19 486 loci), and 28 399 with a plausible CDS (12 341 loci)

✓ Around one week of computation with a desktop computer

Annotating genomes using RNA-Seq

Characteristics of known and novel G-Mo.R-Se models (all, and with a plausible CDS)

	All models	Models with a plausible CDS (65%)	cDNAs
Number of loci	18,811	12,236	7,895
Number of models	45,290	28,283	9,827*
Number of models per locus	2.4	2.3	1.25

* ~ 90 000 ESTs assembled, 95% of assembled transcripts detected by Gmorse

Alternative splicing events detected in cDNAs and G-Mo.R-Se models

	cDNAs ⁻	7,895 loci	Mode 19,48	ls (all) 36 loci	Models 12,34	s (CDS) 11 loci	Events common to cDNAs and models (% of cDNA events)
alternative acceptor/donor	690	73.1%	7405	62.5%	2988	58.0%	156 (22.6%)
skipped	250	26.5%	3656	30.9%	1677	32.5%	18 (7.2%)
mutually exclusive	4	0.4%	781	6.6%	487	9.5%	1 (25.0%)
intron retention (IR)	1227	-	-	-	-	-	-
	2171 (94	4 without					
Total		7)	11	,84	51	52	175 (18.5%)
Total number of loci with alternative splicing (% of all identified loci)	783 (9.9	9%) (598 ut IB)	1602	(8.2%)	1029	(8.3%)	_

G-Mo.R-Se is not optimised to detect splicing events, but it detects more alternative transcripts than classical cDNA sequencing.

Annotating genomes using RNA-Seq

✓G-Mo.R-Se (Gene MOdeling using Rna-Seq), is downloadable from Genoscope website : http://www.genoscope.cns.fr/gmorse

 ✓ Used with illumina data, but it can be easily adapt to manage Solid data (in colorspace)

 \checkmark Method used to annotate the whole vitis genome

Example of a novel gene identified by G-Mo.R-Se

	Introduction Download Example Contact
h	ntroduction
G Fi ar te R	-No.R-Se is a method aimed at using RNA-Seq short reads to build <i>de novo</i> gene models. rst, candidate exons are built directly from the positions of the reads mapped on the genome (without ny <i>ab initio</i> assembly of the reads), and all the possible splice junctions between those exons are sted against unmapped reads : the testing of junctions is directed by the information available in the NA-Seq dataset rather than <i>a priori</i> knowledge about the genome. Exons can thus be chained into randed gene models.
Т	1 10
C	townload
A fro	: the moment, G-No.R-Se is still in development, but the current unstable version can be obtained m here.
To	1 qt
G	Grapevine genome example
VN S kr av m	fe demonstrate the feasibility of this method on the grapevine genome using ~175 million olexa/Illumina RNA-Seq reads from four tissues. This allowed the identification of new exons (in nown loci) and alternative splice forms, as well as entirely new loci. The G-Mo.R-Se models are ailable here. They can be visualized on the Vitis vinifera genome browser (tracks G-Mo.R-Se odels). Solexa/Illumina reads can be downloaded from here.
Te	1 qu

Annotations Genoscope GSVIVT00023695001 Solexa reads (view 1) log(depth_Solexa_reads) Solexa covtigs Avg Depth : 14 Avg Depth : 11.2105 Avg Depth : 4.65385 Avg Depth : 119.496 Avg Depth : 5 Avg Dept Avg Depth : 83.6951 Avg Depth : 15.9024 Avg Depth : 10.5417 Avg Depth : 17.3804 Avg Depth : 15.8734 Avg Depth : 16.1098 Avg Depth : 236.394 Avg Depth : 12.2348 Avg Depth : 13.1897 Avg Depth : 8.14706 G-Mo.R-Se Coding models with plausible CDS chr7.modele1715 chr7.modele297_modele522 chr7.modele1716 · · · · · Solexa assembled with Velvet

- Diversification of applications and projects : de novo sequencing, genome annotation, re-sequencing, metagenomic, functional genomic, identification of mutations and structure variations...
- Increase of number and size of projects

• De novo sequencing :

(e)

- Assembly of prokaryotic genomes with Illumina sequencing only
- Sequencing of large eukaryotic genomes with 454 and Sanger : banana (~500Mb ; WGS with 20X 454 + 4X Sanger), cocoa (~400Mb ; WGS with 20X 454 + Sanger BAC ends), trout (~2Gb ; WGS with 454 and Sanger BAC ends), wheat chromosome 3b (~1Gb ; 454)
- Benchmarking assembly of illumina data for large eukaryotic genomes : banana, cocoa, …
- Re-sequencing :
 - 100 Arabidopsis genomes : transposons mobility and methylation

- Tara Oceans Project:
 - Eukaryotic meta-genomic and meta-transcriptomic
 - 3 years expedition with regular sampling at different depth and different cell size fractions.
 - Pilot project of 6 months in progress
 - 1 samplig station, 3 different depths, 3 cell size fractions,
 2 or 3 sequencing technologies (454, illumina and Solid)
 - Sequencing of DNA, total RNA and messenger RNA
 - Etablish a collection of reference genome sequences and

gene catalogue : 454

Laboratoire d'Analyse Bioinformatique des Séquences

François Artiguenave

Jean-Marc Aury Christophe Battail France Denoeud Olivier Jaillon Vincent Meyer Arthur Moisdon Benjamin Noel Gaelle Samson Corinne da Silva Marc Wessner

Laboratoire d'informatique

Claude Scarpelli Veronique Anthouard Arnaud Couloux Frederic Gavory Eric Pelletier

Laboratoire de séquençage

Patrick Wincker

Corinne Cruaud Julie Poulain Adriana Alberti Karine Labadie

Laboratoire finishing

Valérie Barbe Sophie Mangenot

