rRNA 454 datasets and microbial biodiversity analyses

Richard Christen Virtual Biology Laboratory University of Nice & CNRS UMR 6543 Parc Valrose. F06108. France christen@unice.fr

Studying biodiversity, the "classic" approach

- 1. Purify the DNA
- 2. Extract all the ribosomal gene sequences.
- 3. Clone the ribosomal RNAs of every cell.
- 4. Random sequence ... as many clones as possible.
- 5. Analyse results, compare samples.
- 6. Publish you results 🙂

Genome Res. 2006 16: 316-322

Planctomycetes

Microbes Environ. Vol. 23, No. 4, 000-000, 2008 http://www.soc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.ME08525

Minireview

Global Sequencing: A Review of Current Molecular Data and New Methods Available to Assess Microbial Diversity

RICHARD CHRISTEN^{1*}

18043639Pyrosequencing enumerates and contrasts soil microbial diversity9011017183309Microbial ecology: human gut microbes associated with obesity1834817699621Molecular-phylogenetic characterization of microbial community1517215831718Diversity of the human intestinal microbial flora1183118252821Symbiotic gut microbes modulate human metabolic phenotypes725517055441Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to533416033867Obesity alters gut microbial ecology Antibiotic Treatment of388317409203Loss of Bacterial Diversity During Antibiotic Treatment of319818077362Molecular identification of bacteria in bronchoalveolar lavage319817760501Salmonella enterica serovar typhimurium exploits inflammation to289718218029Elevated atmospheric CO2 affects soil gut microbiome206217981945Short-term temporal variability in airborne bacterial and fungal190417041161Community structure analyses are more sensitive to differences in190416689872Comparison of prokaryotic diversity at offshore oceanic locations178117181 predominates in a diversity169216672518169216672515Unexpected diversity and complexity of the guerrero negro125217124165Effect of bowel preparation and colonoscopy on post-procedure13191803299Metagenomic and sen environmental factor that regulates	PMID	Short title	Entries
17183309Microbial ecology: human gut microbes associated with obesity1834817699621Molecular-phylogenetic characterization of microbial community1517215831718Diversity of the human intestinal microbial flora1183118252821Symbiotic gut microbes modulate human metabolic phenotypes725517055441Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to553416033867Obesity alters gut microbial ecology Antibiotic Treatment of388317409203Loss of Bacterial Diversity During Antibiotic Treatment of319818077362Molecular identification of bacteria in bronchoalveolar lavage319817760501Salmonella enterica serovar typhimurium exploits inflammation to226918218029Elevated atmospheric CO2 affects soil microbial diversity206216741115Metagenomic analysis of the human distal gut microbiome206217981945Short-term temporal variability in airborne bacterial and fungal196617041161Comparison of prokaryotic diversity at offshore oceanic locations178918059491Subsurface clade of Geobacteraceae that predominates in a diversity169216672518Unexpected diversity and complexity of the guerrero negro131917124165Effect of bowel preparation and factor that regulates fat13191803299Metagenomic and functional analysis of hindgut microbiota of a125217070733Gnotobiotic zebrafish reveal evolutionarily con	18043639	Pyrosequencing enumerates and contrasts soil microbial diversity	90110
17699621Molecular-phylogenetic characterization of microbial community1517215831718Diversity of the human intestinal microbial flora11831 flora18252821Symbiotic gut microbes modulate human metabolic phenotypes725517055441Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to553416033867Obesity alters gut microbial ecology Antibiotic Treatment of388317409203Loss of Bacterial Diversity During Antibiotic Treatment of319818077362Molecular identification of bacteria in bronchoalveolar lavage319817760501Salmonella enterica serovar typhimurium exploits inflammation to226918218029Elevated atmospheric CO2 affects soil gut microbial diversity206216741115Metagenomic analysis of the human distal gut microbiome206217981945Short-term temporal variability in airborne bacterial and fungal196617041161Community structure analyses are more sensitive to differences in190416689872Comparison of prokaryotic diversity at offishore oceanic locations178118059491Subsurface clade of Geobacteraceae that predominates in a diversity169216672518Unexpected diversity and complexity of the guerrero negro131917124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a12521505215The gut microbiota as an e	17183309	Microbial ecology: human gut microbes associated with obesity	18348
15831718Diversity of the human intestinal microbial flora11831 flora18252821Symbiotic gut microbes modulate human metabolic phenotypes725517055441Reciprocal Gut Microbiota Transplants 	17699621	Molecular-phylogenetic characterization of microbial community	15172
18252821Symbiotic gut microbes modulate human metabolic phenotypes725517055441Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to553416033867Obesity alters gut microbial ecology Antibiotic Treatment of388317409203Loss of Bacterial Diversity During 	15831718	Diversity of the human intestinal microbial flora	11831
17055441Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to553416033867Obesity alters gut microbial ecology Antibiotic Treatment of388317409203Loss of Bacterial Diversity During Antibiotic Treatment of327818077362Molecular identification of bacteria in bronchoalveolar lavage319817760501Salmonella enterica serovar typhimurium exploits inflammation to289718218029Elevated atmospheric CO2 affects soil gut microbial diversity226916741115Metagenomic analysis of the human distal gut microbiome206217981945Short-term temporal variability in airborne bacterial and fungal196617041161Community structure analyses are more sensitive to differences in190416689872Comparison of prokaryotic diversity at offshore oceanic locations178118059491Subsurface clade of Geobacteraceae that predominates in a diversity169216672518Unexpected diversity and complexity of the guerrero negro131917124165Effect of bowel preparation and colonoscopy on post-procedure125218033299Metagenomic and functional analysis of hindgut microbiota as an environmental factor that regulates fat120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and factor that regulates fat1075	18252821	Symbiotic gut microbes modulate human metabolic phenotypes	7255
16033867Obesity alters gut microbial ecology388317409203Loss of Bacterial Diversity During Antibiotic Treatment of327818077362Molecular identification of bacteria in bronchoalveolar lavage319817760501Salmonella enterica serovar typhimurium exploits inflammation to289718218029Elevated atmospheric CO2 affects soil 	17055441	Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to	5534
17409203Loss of Bacterial Diversity During Antibiotic Treatment of327818077362Molecular identification of bacteria in bronchoalveolar lavage319817760501Salmonella enterica serovar typhimurium exploits inflammation to289718218029Elevated atmospheric CO2 affects soil gut microbial diversity226916741115Metagenomic analysis of the human distal gut microbiome206217981945Short-term temporal variability in airborne bacterial and fungal196617041161Community structure analyses are more sensitive to differences in190416689872Comparison of prokaryotic diversity at offshore oceanic locations178918059491Subsurface clade of Geobacteraceae that predominates in a diversity169216672518Unexpected diversity and complexity of the guerrero negro131917124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a12521505215The gut microbiota as an environmental factor that regulates fat120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and factor that regulates fat1075	16033867	Obesity alters gut microbial ecology	3883
18077362Molecular identification of bacteria in bronchoalveolar lavage319817760501Salmonella enterica serovar typhimurium exploits inflammation to289718218029Elevated atmospheric CO2 affects soil microbial diversity226916741115Metagenomic analysis of the human distal gut microbiome206217981945Short-term temporal variability in airborne bacterial and fungal196617041161Community structure analyses are more sensitive to differences in190416689872Comparison of prokaryotic diversity at offshore oceanic locations178118059491Subsurface clade of Geobacteraceae that predominates in a diversity169216672518Unexpected diversity and complexity of the guerrero negro131917124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a125215070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and factor that regulates fat1075	17409203	Loss of Bacterial Diversity During Antibiotic Treatment of	3278
17760501Salmonella enterica serovar typhimurium exploits inflammation to289718218029Elevated atmospheric CO2 affects soil microbial diversity226916741115Metagenomic analysis of the human distal gut microbiome206217981945Short-term temporal variability in airborne 	18077362	Molecular identification of bacteria in bronchoalveolar lavage	3198
18218029Elevated atmospheric CO2 affects soil microbial diversity226916741115Metagenomic analysis of the human distal gut microbiome206217981945Short-term temporal variability in airborne bacterial and fungal196617041161Community structure analyses are more 	17760501	Salmonella enterica serovar typhimurium exploits inflammation to	2897
16741115Metagenomic analysis of the human distal gut microbiome206217981945Short-term temporal variability in airborne bacterial and fungal196617041161Community structure analyses are more sensitive to differences in190416689872Comparison of prokaryotic diversity at offshore oceanic locations178918059491Subsurface clade of Geobacteraceae that predominates in a diversity169216672518Unexpected diversity and complexity of the guerrero negro169217124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a125215070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and 10751075	18218029	Elevated atmospheric CO ₂ affects soil microbial diversity	2269
17981945Short-term temporal variability in airborne bacterial and fungal196617041161Community structure analyses are more sensitive to differences in190416689872Comparison of prokaryotic diversity at offshore oceanic locations178918059491Subsurface clade of Geobacteraceae that predominates in a diversity178116033867Obesity alters gut microbial ecology of the guerrero negro16921672518Unexpected diversity and complexity of the guerrero negro131917124165Effect of bowel preparation and colonoscopy on post-procedure125218033299Metagenomic and functional analysis of hindgut microbiota of a120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and unserved responses to1075	16741115	Metagenomic analysis of the human distal gut microbiome	2062
17041161Community structure analyses are more sensitive to differences in190416689872Comparison of prokaryotic diversity at offshore oceanic locations178918059491Subsurface clade of Geobacteraceae that predominates in a diversity178116033867Obesity alters gut microbial ecology of the guerrero negro16921672518Unexpected diversity and complexity of the guerrero negro158717124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a12521505215The gut microbiota as an environmental factor that regulates fat120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and 10751075	17981945	Short-term temporal variability in airborne bacterial and fungal	1966
16689872Comparison of prokaryotic diversity at offshore oceanic locations178918059491Subsurface clade of Geobacteraceae that predominates in a diversity178116033867Obesity alters gut microbial ecology169216672518Unexpected diversity and complexity of the guerrero negro158717124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a12521505215The gut microbiota as an environmental factor that regulates fat120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and 10751075	17041161	Community structure analyses are more sensitive to differences in	1904
18059491Subsurface clade of Geobacteraceae that predominates in a diversity178116033867Obesity alters gut microbial ecology169216672518Unexpected diversity and complexity of the guerrero negro158717124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of 	16689872	Comparison of prokaryotic diversity at offshore oceanic locations	1789
16033867Obesity alters gut microbial ecology169216672518Unexpected diversity and complexity of the guerrero negro158717124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a125215505215The gut microbiota as an environmental 	18059491	Subsurface clade of Geobacteraceae that predominates in a diversity	1781
16672518Unexpected diversity and complexity of the guerrero negro158717124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a125215505215The gut microbiota as an environmental factor that regulates fat120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and1075	16033867	Obesity alters gut microbial ecology	1692
17124165Effect of bowel preparation and colonoscopy on post-procedure131918033299Metagenomic and functional analysis of hindgut microbiota of a125215505215The gut microbiota as an environmental factor that regulates fat120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and1075	16672518	Unexpected diversity and complexity of the guerrero negro	1587
18033299Metagenomic and functional analysis of hindgut microbiota of a125215505215The gut microbiota as an environmental factor that regulates fat120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and1075	17124165	Effect of bowel preparation and colonoscopy on post-procedure	1319
15505215The gut microbiota as an environmental factor that regulates fat120615070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and1075	18033299	Metagenomic and functional analysis of hindgut microbiota of a	1252
15070763Gnotobiotic zebrafish reveal evolutionarily conserved responses to117918205817Differences in vegetation composition and 10751075	15505215	The gut microbiota as an environmental factor that regulates fat	1206
18205817 Differences in vegetation composition and 1075	15070763	Gnotobiotic zebrafish reveal evolutionarily conserved responses to	1179
plant species identity	18205817	Differences in vegetation composition and plant species identity	1075
18328082 Microbial community succession and 1055 bacterial diversity in soils	18328082	Microbial community succession and bacterial diversity in soils	1055

In 2007, three next-generation sequencing platforms were present: Roche/454's Genome Sequencer FLX (which succeeded a first model), Illumina's Genome Analyzer; and Applied Biosystems's SOLiD sequencer.

In many applications they will replace the "old Sanger" technology (ABI 3730XL)

Figure 1: Example Read Length Distribution of 629,643 reads from *E. coli* K-12 (Genome size ~4.5 Mb) with a modal read length of 504 bases.

Bioinformatics of 454 datasets

Major issues (in a fast and efficient manner):

- Design "good" primers ←→ Choose domain to amplify.
- Cluster tags.
- Assign tags to a given taxonomic level.
- "Statistical analyses"
 - Run biodiversity analyses on a single sample.
 - Compare samples.
- Relate diversity to ecology.

The domain amplified should :

- Have "good" taxonomic properties.
 - Compare tags extracted to full sequences; how many tags assign to different clades ?
- Be present in a large number of sequences in the public databases.
 - \rightarrow In order to do many taxonomic assignments.
 - \rightarrow Compare to clone libs.
- Be "454 compatible" in length: distal primers should be reached.

Find good primers

<u>Goal</u>: find existing primers by searching them into published articles.

Problem: very long process !

- Search for a set of relevant articles (pubmed, personal bibliography, etc.)

- Download pdf files
- Read and extract the proper primers
- Check if the primers match on the sequences we want to amplify
 - Compute theoretical values (Tm values, PCR product, ...)
 - Biological experiments and final validation

- Biological experiments

Examples

21 oligomer(s) 5' . . . (2047-2068) - ID 1 (2049-2070) - ID 2 (687-706) <u>(687-706</u>) (681-704) ---- ID_4 (806-823) <u>(806-823</u>) (682-702) ---- ID 6 (680-699) <u>(680-699</u>) (679-694) <u>–</u> ID 8 (675-694) - ID_9 (676-693) ---- ID_10 (802-826) ----- ID 11 (647-669) ---- ID_13 (716-741) <u>(D 14</u> (708-737) <u>LD_15</u> (708-741) <u>LD_16</u> (642-659) ---- ID_17 (641-664) ---- ID_18 (599-619) ---- ID 20 (704-730) --- ID_21

Use of OHM to provide an overview of Tms

http://bioinfo.unice.fr/ohm

Check for "good" primers & Choose domain to amplify.

PrimerExplorer

Design of Primers

- PrimerExplorer
 - Universal
 - GESOL & FONCTIOMIC-RMQS (INRA)
 - BioMarks
 - Group specific
 - CEA Cadarache
 - BioMarks
- Able to analyse 100 couples / 800 000 sequences per 24 hours
- Takes the IUPAC code
- Allows k more differences between a primer and a sequence

PrimerExplorer

Inputs :

- a file of primers,
- a file of fasta sequences
- a value of k for F and R primers

Outputs:

- Every couple of primers found at k differences.
- Every tag that is amplified in these conditions.
- The taxonomic descriptions of amplicons.

Variable domains in the 16S rRNA gene sequences

Variable region	E. coli 16S rDNA range			5' primer	3' primer			
	start	end	length					
VI	8	120	113	5'-AGAGTTTGATCMTGGCTCAG	5'-TTACTCACCCGTICGCCRCT			
V2	101	361	261	5'-AGYGGCGIACGGGTGAGTAA	5'-CYIACTGCTGCCTCCCGTAG			
V3	338	534	197	5'-ACTCCTACGGGAGGCAGCAG	5'-ATTACCGCGGCTGCTGG			
V4	519	806	288	5'-TGCCAGCAGCCGCGGTAA	5'-GGACTACARGGTATCTAAT			
V5	787	926	140	5'-ATTAGATACCYTGTAGTCC	5'-CCGTCAATTCMTTTGAGTTT			
V6	907	1073	167	5'-AAACTCAAAKGAATTGACGG	5'-ACGAGCTGACGACARCCATG			
V7 & VV8	1054	1406	353	5'-CATGGYTGTCGTCAGCTCGT	5'-ACGGGCGGTGTGTAC			
V9	392	1507	116	5'-GTACACACCGCCCGT	5'-TACCTTGTTACGACTT			

Table 1: 16S variable region range definitions.

Regions were chosen to be mostly non-overlapping, each containing one or two variable regions. Coordinates are given relative to the 1542 bp E. coli K12 16S rDNA sequence.

BMC Microbiol. 2007; 7: 108.

Bacterial flora-typing with targeted, chip-based Pyrosequencing

Sundquist, Bigdeli, Jalili, Druzin, Waller, Pullen, El-Sayed, Taslimi, Batzoglou and Ronaghi.

Variable domains in the 16S rRNA gene sequences

Variable region	E. coli	6S rDN	A range		5' primer		3' prim	ner						
	start	end	length	1										
VI	8	120	113	5'-AGAGTT	TGATCMTGGCTC	AG 5	-TTACTCACCCGTIC	CCGTICGCCRCT						
V2	101	361	261	5'-AGYGGG	CGIACGGGTGAGT	AA 5'	-CYIACTGCTGCCT	CTCCCGTAG						
∨3	338	534	197	5'-ACTCCT	ACGGGAGGCAGC	CAG 5	G 5'-ATTACCGCGGCTGCTGG							
V4	519	806	288	5'-TGCCAG	GCAGCCGCGGTAA	5'-GGACTACARGGTATCTAAT								
∨5	787	926	140	5'-ATTAGA	TACCYTGTAGTCC	5'-CCGTCAATTCMTTTGAGTTT								
V6	907	1073	167	5'-AAACTO	CAAAKGAATTGACO	GG 5'	G 5'-ACGAGCTGACGACARCCATG							
V7 & VV8	1054	1406	353	5'-CATGG	TGTCGTCAGCTC	GT 5	5'-ACGGGCGGTGTGTAC							
∨9	1392	1507	116	5'-GTACAC	CACCGCCCGT	5	'-TACCTTGTTACGA	CTT						
					extracted.		_							
domain¤	left¤	riç	yth¤	length¤	k¤	8 14	extracted¤	8 ¤	р <u>с</u> .					
V1¤	3 ¤	9	5 ¤	71×	129,671×	29.4×	83360×	18.9¤						
V2¤	74¤	31	L7¤	223¤	356,400×	80.9×	229978×	52.2×						
V3×	305×	40	73 ¤	148¤	388,054×	88.1¤	332483×	75.5×						
V4¤	458¤	72	28 ¤	252×	1,248¤	0.3×	323¤	0.1×						
V5×	645×	76	53 ¤	99¤	1,024¤	0.2×	188¤	0.0×						
V6×	811×	93	58 ¤	127×	358,323×	81.4×	315315×	71.6×						
V7·&·VV8¤	978¤	13	16¤	317¤	251,597×	57.1×	184965×	42.0×						
V9¤	1312¤	14	11¤	84¤	95,982×	21.8¤	85108¤	19.3¤						
									1					

Table 1: 16S variable region range definitions.

Calculation times for analysis of **440,390** bacterial 16S rRNA sequences longer than 800 nt (at 0 difference 749 seconds, at 1 difference 757 seconds , at 2 differences 695 seconds, at 3 differences 739 seconds = **10 minutes, almost 1 minute per couple of primers**).

Conserved domains in the 16S rRNA gene sequences

Primers for domain V2 nbr extracted tags at 2 differences : 356,400 (229,978 exact) min length=42, max length = 1060, mean length=223

F primers

AGYGGCGIACGGGTGAGTAA	244493	31.8
AXYGGCGIACGGGTGAGTAA	26738	3.5
AGYGGC X IACGGGTGAGTAA	19778	2.6
AGYGGCGIACGGGTG X GTAA	11116	1.4
AGY X GCGIACGGGTGAGTAA	9337	1.2
A X YGGCGIACGGGTG X GTAA	7890	1.0
AGYGGCGIACGGGTGAG X AA	6376	0.8
AGYGGCGIAC X GGTGAGTAA	4184	0.5
AGYGGCGIA X GGGTGAGTAA	3160	0.4
AGYGGCGIACGGGT X AGTAA	3020	0.4
AGYGGCGIACGG X TGAGTAA	2251	0.3
AGYGGCGI X CGGGTGAGTAA	1938	0.3
AGYGGCGIACGGGTGAGTA X	1816	0.2

R primers CYIACTGCTGCCTCCCGTAG 328877 42.7 4935 0.6 CYIACTGCTGCCTCCCG**X**AG 3480 0.5 **X**YIACTGCTGCC**X**CCCGTAG 3034 0.4 CYIACTGCTGCCXCCCGTAG CYIXCTGCTGCCTCCCGTAG 2485 0.3 2409 0.3 XYIXCTGCTGCCTCCCGTAG 0.2 XYIACTGC**X**GCCTCCCGTAG 1379 1174 0.2 XYIACTGCTGCCTCCCGTAG 0.1 CYIACTGC**X**GCCTCCCGTAG 1011 999 0.1 CYIACTGCTGCCTXCCGTAG 0.1 750 CYIACTGCTGXCTCCCGTAG CYI**X**CTGC**X**GCCTCCCGTAG 649 0.1 0.1 589 AGYGGCGIACGGGTGAGTAA

→ Quickly improve primers.

	V2	V 3	V6	V7_V8
Acidobacteria	26.7	31.3	19.1	13.4
Actinobacteria	46	51.9	47.8	36.9
Aquificae	63.3	68.8	70.6	27.4
Bacteroidetes	29.1	38.4	31.5	22.6
Caldus	_	100	100	100
Chlamydiae	30.5	38.3	62.5	48.8
Chlorobi	6.1	34.8	37.4	22.9
Chloroflexi	37.7	45	47.8	21.4
Chrysiogenetes	20	20	20	20
Cyanobacteria	20.6	24.4	27.9	20.8
Deferribacteres	55.7	58.2	55.7	47.5
Deinococcus-Thermus	52.8	55	57.2	48
Dictyoglomi	38.2	44.1	29.4	29.4
Fibrobacteres	84.9	96.3	87.6	74.9
Firmicutes	45.5	48.6	40	32.7
Fusobacteria	1.2	33.4	25.2	21.2
Planctomycetes	8.5	16.3	26.1	16.8
Proteobacteria	44.4	48.5	43.3	33.1
Spirochaetes	59.1	68.6	70.8	45.1
Synergistetes	75.5	76.1	44.7	29.8
Thermotogae	84.2	85.6	83.7	30
Verrucomicrobia	37.6	40.9	29.8	20.9

Automated taxonomic validations

% of sequences amplified

at 2 differences,

at least 200,000 extracted tags

Multiple occurences of couples

Positions 847 & 1418 in AY706434

CAACGCGAAAAACCCTTACC	
CNACGCGAAGAACCTTANC	
ATGCAACGCGAAAAACCTTACCCACCTTTGACATGTACGGAATTCGCCA/	GAGAT GGCITTAGT GCTC GAAAGA GAACC GTAACA CAGGT GCT GCAT GGCT GTC GTCA
GACCTUTGACATGTACGGAATTCGCCA	AGATGGCTTAGTGCTCGAAAGAGAACCGTAACAC

AY594276

ATACTATGCCATTCTAAGAGATTAGANGTTCCCTTCGGGGGACATGGATACAGGTGGTGCATGGTTGTČGT ATACTATGCCATTCTAAGAGATTAGANGTTCCCTTCGGGGGACATGGATAC ------AGGTGNTGCATGGTTGTCG ------AGGTGNTGCATGGTTGTCG ------AGGTGNTGCATGGCTGTCG

Universal primers ?

Problems :

- no such thing ?
- the yield of "universal primers" is context-dependent (sequence of the domain amplified).
- → Clade specific primers:
 - Specificity ?
 - Generality ?

Deinoccus specific primers

49793	31	TTTGATCCTGGCTCAGG <mark>X</mark>	1	Firmicutes
28172	17	TTTGATCCTGGCTCAG <mark>XX</mark>	2	Proteobacteria
13430	8	TTTGATCCTGGCTCAGG <mark>X</mark>	1	Bacteroidetes
13294	8	TTTGATCXTGGCTCAG <mark>XX</mark>	3	Proteobacteria
6615	4	TTTGATCCTGGCTCAGG <mark>X</mark>	1	Actinobacteria
3998	2	TTTGATCCTGGCTCAG <mark>X</mark> G	1	Proteobacteria
3584	2	TTTGATC <mark>X</mark> TGGCTCAGG <mark>X</mark>	2	Firmicutes
2019	1	TTTGATC <mark>X</mark> TGGCTCAGG <mark>X</mark>	2	Bacteroidetes
1849	1	TTTGATCCTGGCTCAGG <mark>X</mark>	1	Cyanobacteria
1831	1	TTTGATC <mark>X</mark> TGGCTCAGG <mark>X</mark>	2	Actinobacteria
1798	1	TTTGAT <mark>X</mark> CTGGCTCAGG <mark>X</mark>	2	Firmicutes
1554	0	TTTGATCCTGGCTCAG <mark>XX</mark>	2	Acidobacteria
1313	0	TTTGATCCTGGCTCAG <mark>XX</mark>	2	Verrucomicrobia
1065	0	TTTGATCXTGGCTCAGXG	2	Proteobacteria
1003	0	TTTGATXXTGGCTCAGGX	3	Firmicutes
982	0	TTTGATCCTGGCTCAGGX	1	Chloroflexi
962	0	TTTGATCCTGGCTCAXGX	2	Firmicutes
893	0	TTTGATCXTGGCTCAGGX	2	Cyanobacteria
801	0	TTTGATCCTGGCTCAGXX	2	Planctomycetes

Clustering the tags

- Objectives :
 - Reduce the number of sequences for further analyses.
 - Group together sequences that may represent a unique clade.
 - Compare samples.
 - Calculate diversity indexes.
 - ...

Clustering of tags Underlying hypotheses

- % of differences are rather meaningless.
 - we don't have good substitution matrices.
 - We don't know the penalties for gap & extension.
- Number of differences between two sequences is meaningful.
- PCR & 454 introduce errors, there will be a true sequence and error sequences.
 - The true sequence will have many occurences.
 - The error sequences will be rare (even more as tags are longer, not twice the same error at the same place by chance).
 - → Seed the alignment starting with most abundant tags, not on longest tags as done by cd-hit or uclust !

Which algorithm

- Clustering by word counting:
 - CD-HIT
 - UCLUST

CH-HIT is very fast, UCLUST is very very fast.

They were designed to cluster protein coding sequences (banded alignments) → not good for rRNA sequences (indels).

- Clustering by alignment :
 - Crunclust

Crunchclust is fast (now faster than CD-HIT)

It was designed **specifically** to cluster 454 PCR tags.

Tag strict dereplication

total number of tags : 442062 total number of distinct tags : 21529 number of seconds for analysis : 0.983651788507 number of single copy tags : 13251 TGGTCTTGACATAGAAAGAACTTTCCAGAGATGGATTGGTGCCTGCTTGCAGGAGCTTTCATAC 70985 40582 AACTCTTGACATCCAGAGAGAGGGCTAGAGATAGCTTTGTGCCTTCGGGAACTCTGAGAC ATCCCTTGACATCCTGCGAACTTTCTAGAGATAGATTGGTGCCTTCGGGAACGCAGTGAC 20128 AGCACTTGACATACAACGAACTCGTCAGAGATGACTTGGTGCCGC GGTGGAACGTTGATAC 14936 11751TGACATGCAGAGAACTTTCCAGAGATGGATTGGTG(TCACAC 9350 GACATGGAAAGTATGGATTGTGGAGACAC 8699 TCGGGAACGCAGAGAC 'GACATCOTGOGAACTTTOGAGAGATOGATTGGTGOOT 8603 GACATCCAGTGAACTTAGCAGAGATGCTTTGGTGCCTTCGGGAACACTGAGAC AGCCCTTGACATCCTCGGAACTTTCTAGAGATAGATT(100000 AACCOTTGACATCCCTATCGCGATTTCCAGAGATGGA 613

complete analysis in seconds : 1.04010820515

Cluster tags at k differences.

- Very fast (seconds).
- Does not require complex post analyses (Blast).
- Contrarily to Multiple Sequences Alignements, does no error.
- Allows to correct for almost 50% of 454 errors.
- Run on a single sample or include several samples.
 - ➔ Rank abundances.
 - → Saturation curves.
 - →... In minutes.
- → Demonstrates systematic 454 errors.

K=0

1		
	A GCT C C BATA GC GT AT ATT A A GTT GTT GC BGTT - BAAAA GCT C GT BGTT - GG BTTT CT	TGGCETT CETTTGCT GGT CGCGGGCT CEGETE - TTTTECCTT GEG- ERRETTEGEG
I	AGCTCC AATAGCGT AT ATT AAAGTTGTTGC AGTT - AAAAAGCT CGT AGTT - GGATTTCT	TGGCATTCATTTGCTGGTCGCGGGCTCAGATA-TTTTACCTTGAGAAATTAGAGT
I	A GCTCC A ATT A GC GT ATT A A A GTT GTT GC A GTT A A A A A GCT C GT A GTT - GG ATTT CT	TGGCATTCATTTGCTGGTCGCGGGCTCAGATA-TTTTACCTTGAG-BAAATTAGAGT
I	A GOTTO CAATAGO GTATATAAA GOTTOTTOTTOTAAAAA GOTTOTAAAAA GOTTOGO ATTITOT	TGGCATTCATTTGCTGGTCGCGGGCTCAGATA-TTTTACCTTGAG-AAAATTAGAGT
I	AGETTER ANT AGE OF AN ATT AA AGETTER OF AGETT - AAAAAGET COT AGET - GO AFTTER	TGGC ATTC ATTTGCT GGT CGC GGGCTC AGAT ATTTTT ACCTT GAG-AAAATTAGAGT
I	AGET COANT AGE GT AT ATT AAAGTT GTT GE AGTT - AAAAAGETT GT AGTT - GGATTT CT	T GGC ATTC ATTT GCT GGTCGC GGGCTC AGAT A-TTTT ACCTT GAG-AAAATT AGAGT
I	A COT OCANTA A COCTATION AND A COTTON OF A COTTON AND A COTTON A COTTON A CONTENT OF	TEEPATTCATTTEETEETEEEEEETCAGATA-TTTTACCTTGAGAAAAATTAGAGA
I	A COT OCANTA A COCT AT ATT A A A COTT OT A COTT - A A A A A COTT OF A COTT - COATT OT	T GGE ATTE ATTT GET GGT GGGGGGGET PAGAT ATTTTACCCTT GAGE AAAATT AGAGT
I	A COT OCANTA A COCT AT ATT A A A COTT OT A COTT - A A A A A COTT OF A COTT - COATT OT	TECHNIC ATTRACT COT COT COCCOURT A CAT & FITT ACCOURT CAC - AAAATT ACACT
I	A COT OCANTA A COCT AT ATT A A A COTT OT A COTT - A A A A A COTT OF A COTT - COATT OT	TACENTE ATTACTACTACTACCCCCCCCCCCCCCCCCCCCCCCC
I	A COT OCANTA A COCTATION AND A COTTAGE A COTTAGE A A A A A A COTTOCTACT - CONTTOCT	TACE ATTE ATTT CET CET CECCETE & CATA - TTTT & CETT CACA & A A ATT & CACA
I	A COT OCANTA A COCT AT ATTA A A A COTT OT A COTT A A A A A A COTT OCT A COTT - COATTTOT	
ľ		
l	a con constant of characterizations of the reacterization of a contract of a statement of a	CONTRACTOR OF CONCERNMENT OF CONTRACTOR OF CONTRACTOR OF CONCERNMENT
I	A COMPANY A COCHAN ANY A A A COMPONIC A COMPANY A A A A COMPONIC A COMPANY OF A	
I	A COMPANY A COCHAN ANY A A A COMPONIC A COMPANY A A A COMPONIC A COMPANY OF A	
I	A COMPANY A COCHAN ANY A A A COMPONIC A COMPANY A A A A COMPONIC A COMPANY OF A	
I	A COMPANY A COCHAN ANY A A A COMPONIC A COMPANY A A A A COMPONIC A COMPANY OF A	
I	A COMPANY A COCHAN ANY A A A COMPANY A COMPANY A A A A A COMPANY	
I	A COMPANY A COCHAN ANY A A A COMPONIC A COMPANY A A A COMPONIC A COMPONIC A COMPONIC A COMPONIC A COMPONIC A CO	
I	A COMPANY A COCTATION AND A REPORT OF A COTTAIN A RANGE OF A COTTACY A CONTRACT OF A	
ľ		CALLAGGELIGECGEGCAGGGGALGCCCALCGELIACEGEGCAGGGEGE
l	a component a color an art a sa component component a sa sa secto com a com - a canto co	
I	A GOT OO ANT A GO GT AT ATT A A A GTT GTT GO A GTT - A A A A A GOTT GT A GTT - GG ATTT GT	
I	A GOT OO ANT A GO GT AT ATT A A A GTT GTT GO A GTT - A A A A A GOTT GT A GTT - GG ATTT GT	
I	A GOT OO ANT A GO GT AT ATT A A A GTT GTT GO A GTT - A A A A A GOTT GT A GTT - GG ATTT GT	-CATTAGGT GTGCGTGCAGGGGATGCCCATCGTTACTGTGAAAAAATCAGCGCGTTU
I	A COT OCANT A COCT AT ATT A A A CTT OT COACTT - A A A A A COTT OF A CTT - COATTT OT	-CATTAGGTTGTCGTGCAGGGGATGCCCATCG-TTACTGTG-AAAAATCAGCGCGTTU
I	A COT OCANT A COCT AT ATT A A A CTT OT TO A CTT - A A A A A COTT OF A CTT - COATTT OT	-CATTAGGTTGTCGTGCAGGGGATGCCCATCGTTACTGTG-AAAAATCAGCGCGTTU
I	A COT OCANTA COCTATIATIA A A A COTTO TO A COTTO - A A A A COTTO CO A COTTO CO A COTTO CO	CATTAGGTTGTCGTGCAGGGGATGCCCATCGTTACTGTGAAAAAATCAGCGCGTTU
I		CATTAGGTTGTCGTGCAGGGATGCCCATCGTTTACTGTGAAAAAATCAGCGCGTTC
	A COT OCANTA A COCT AT ATT A A A COTT OF TO A COTT A A A A A COTT OCA COTT OCANTER	CATTREETTETCETECR-GEGATECCCATCETTACTETEAAAAAATCAGCGCGTTC
		CATTREETTETCETECREEGEATECCCATCETTACTETEAAAAAATCAGCGCGTTC
		CATTAGETTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAATCAGCGCGTTC
		CATTREETTETCETECREEGEATECCCATCETTACTETEAAAAAATCAGCGCGTTC
		CATTREETTETCETECREEGEATECCCATCETTTACTETEAAAAAATCAGCGCGTTC
- 68		

K=1

AGCTCCAATAGCGTATAITAAAGTTGTTGCI	GTT-AAAAAG-CTCGTAGTT-GO	ATTTCT-GGGAGGGTGCC-	AATGTCCG-CTAACGTGCG
AGUTUUAATAGUGTATATTAAAGTIGITGU	GTT-AAAAAG-CICGIAGII-GU GTT-AAAAAG-CICGIAGII-GU	ATTTUT-GGGAGGGGGGGCU- ATTTUT-GGGAGGGGGGGCU-	AATGIUUG-UTAAUGIGUG. Marcheelen Meereele
AGCTCCAATAGCGTATATTAAAGTTGTTGC	GTT-AAAAAG-CTCGTAGTT-GO	ATTTCT-GGGAGGGTGCC-	AATGTC G-CTAACGTGCG
AGC <mark>TCC</mark> AA <mark>TAGCGTATATT</mark> AAA <mark>GTTGTT</mark> GCI	<mark>.GTT</mark> -AAAAA <mark>G-CTCGT</mark> AG <mark>TT</mark> -GO	<mark>ATTT<mark>CT</mark>-GGG<mark>A</mark>GGG<mark>TGCC</mark>-</mark>	<mark>ATATC⁷G-CTAACGTGCG</mark>
AGCTCCAATAGCGTATATTAAAGTTGTTGC/	GTTAAAAAAG-CTCGTAGTT-GO	ATTTCT-GGGAGGGTGCC-	AND COG-CTAACGTGCG.
AGGICCAAIAGUGIAIAIIAAAGIIGIIGI AGCTCCAATAGCCTATATAAAGIIGIIGIIGG		T <mark>AIIICI</mark> -GGG <mark>A</mark> GGG <mark>IGLC</mark> - NTTT <mark>CT</mark> -CCCNCCCTCCC	AAIGICCG-CIAACGIGCG.
AGCTCCAATAGCGTATATTAAAGTTGTTGC	GTT-AAAA G-CT/GTAGTTGG	GATTTCT-GGGAGGGTGCC-	AATGTCCG-CTAACGTGCG
AGC <mark>TCC</mark> AA <mark>TAGCGTATATT</mark> AAA <mark>GTT</mark> G <mark>TT</mark> GCI	<mark>.GTT</mark> - <mark>AAAAA</mark> G- <mark>CTC</mark> GTAG <mark>TT</mark> -G0	<mark>ATTTCT</mark> -GGG <mark>A</mark> GGG <mark>T</mark> G <mark>CC</mark> -	AAT <mark>GTCCG-CTAACGTGCG</mark>
AGCTCCAATAGCGTATATTAAAGTTGTTGCI	GTT-AAAAAG-CTCGTAGTT-GO	CATTTCT-GGGAGGGTGCC-	AATGTCCG-CTAACGTGCG
AGCTCCAATAGUGTATATTAAAGTTGTTGC AGCTCCAATAGCGTATATTAAAGTTGTTGC	GTT-AAAAAG-CICGIAGII-GU GTT-AAAAAG-CTCGIAGII-GU	ATTTCT-GGGAGGGGGGGC-	AATGTCCG-CTAACGIGCG.
AGCTCCAATAGCGTATATTAAAGTTGTTGC	GTT-AAAAAG-CTCGTAGTT-GO	ATTTCT-GGGAGGGTGCC-	AATGTCCG-CTAACGTGCG
AGCTCCAATAGCGTATATTAAAGTTGTTGC/	GTT-AAAAAG-CTCGTAGTT-GO	G <mark>ATTT<mark>CT</mark>-GGG<mark>A</mark>GGG<mark>TGCC</mark>-</mark>	AAT <mark>gtccg-ctaacgtgcg</mark>
	GTT-AAAAAG-CTCGTAGTT-GO	GATTTCT-GGGAGGGTGCC-	AATGTCCGACTAACGTGCG
AGCTCCAATAGCGTATATTAAAGTIGTIGC	GTT-AAAAAG-CTCGTAGTT-GC	ATTTCT-GGGAGGGGGGGGCCA	AATGTCCG-CTAACGTGCG
AGCTCCAATAGCGTATATTAAAGTTGTTGC/	GTTAAAAAAG-CTCGTAGTT-GO	ATTTCT-GGGAGGGTGCC-	AATGTCCG-CTAACGTGCG
AGCTCCAATAGCGTATATTAAAGTTGTTGC	GTTAAAAAAG-CTCGTAGTT-GO	GATTTCT-GGGAGGGTGCC-	AATGTCCG-CTAACGTGCG
		HITTCT-GGGAGGGGIGCC-	AATGTUUG-UTAAUGTUUG Matetoog-etama
AGCTCCAATAGCGTATATTAAAGTTGTTGC	GTTAAAAAAG-CTCGTAGTT-GO	ATTTCT-GGG <mark>A</mark> GGG <mark>TGCC</mark> -	AATGTCCG-CTAACGTGCG

K=3

GGG - 🗋 GG CI <u>- C</u>(<u>--C</u> <u> - C</u> G-<mark>C</mark>I l H G-<mark>C</mark>I G-<mark>C</mark>(CG | T | T | T | I | T | T G-<mark>C</mark>(- Itle Butter CG <u>ت ا ت ا ت</u> G-<mark>C</mark>(G-<mark>C</mark>(G-<mark>C</mark>(G-<mark>C</mark>I i i i i H. l Gr G-<u>C</u>(16 $\frac{1}{7}$ – **F** 16 G G-<mark>C</mark>I G-<mark>C</mark>I CG -1333<mark>8</mark>333 JIU <u> - C</u> <u>-- [[|</u> G-<mark>C</mark>I - 🗋 🛙 <mark>ر را را</mark> G-<mark>C</mark>(L. J. τ GGGG<mark>A</mark>G -C(

28

F Primers sequences

	<u> </u>	~~4.		<u></u>
1 84231		ACA-C	CCGCCC-	·G <mark>TC</mark>
2-1340	- G <mark>TAC</mark> A	L <mark>CA-C</mark>	ra <mark>g</mark> ada	<mark>:G</mark> T
3-132			e <mark>c</mark> ccc	
332				
4_91	-G <mark>TAC</mark> A	ACA-C	CC <mark>GT</mark> CC-	- <mark>GTC</mark>
5 91		ACACC	cc <mark>gc</mark> cc-	- <mark>G<mark>T</mark></mark>
6 87			re <mark>e</mark> eme-	. <mark>cn</mark> c
<u>/_04</u>	TAC A	ACH-C	.u <mark>u</mark> uuu-	- <mark>GTC</mark> G
8 78	-G <mark>TA</mark> CA	A <mark>CA-</mark> I	CGCCC-	- <mark>G<mark>TC</mark></mark>
975		ACA-C	CC <mark>A</mark> CCC-	-G <mark>TC</mark>
			e <mark>c</mark> ece_	
<u>+0</u> _42				
11_/3	- <mark>GTAT</mark> A	K <mark>C</mark> K-C	:0 <mark>9</mark> 000-	G <mark>TC</mark>
12 70	-G <mark>TAC</mark> A	<mark>NTA</mark> -C	CC <mark>G</mark> CCC-	- <mark>G<mark>T</mark>C</mark>
1370		A <mark>C</mark> A-C	: <mark>T</mark> GCCC-	- <mark>GTC</mark>
14 67			recer_	
14 <u>0</u> /				
15_59	-G <mark>TAC</mark> A	Ч <mark>С</mark> А	-C <mark>G</mark> CCC-	-G <mark>TCA</mark>
16 58	-G <mark>TAC</mark> A	LCA-C	CC <mark>G</mark> CCC-	
17 52	CCTAC		re <mark>e</mark> eee-	
10-11				
10 44	- GTACA		.u <mark>u</mark> uu	
19_40	-G <mark>TAC</mark> A	4CACC	CCCCC	G
20 38		ACA-C	cc <mark>g</mark> aca-	-G <mark>TC</mark> G
21-33	– <mark>C</mark> M– CZ		re <mark>e</mark> eee-	. <mark>cnc<mark>m</mark></mark>
			la <mark>c</mark> aaa	
22_33	- G <mark>TAC</mark> A		-cecce-	G <mark>TC</mark> G
23 33	-G <mark>TA</mark> CA		CC <mark>GA</mark> CC-	-G <mark>TC</mark>
24 32			cc <mark>cccc-</mark>	GTCA
25-20			re <mark>e</mark> ee-	
23 30				
26_29	-G-ACA	ICA-C	ce <mark>eccc</mark> -	• <mark>GTC</mark> G•
27 28		VAA-C	CCGCCC-	G <mark>TC</mark>

AA	А	1	0.101 %
AA	AA	986	
AA	AAA	4	0.406 %
AAA	AAA	240	
AAA	AAAA	4	1.667 %
CC	CC	574	
CC	000	5	0.871 %
CCC	CC	2	2.469 %
CCC	CCC	81	
GG	G	4	0.446 %
GG	GG	897	
GG	GGG	7	0.780 %
GGG	GG	5	1.553 %
GGG	GGG	322	
GGG	GGGG	1	0.311 %
GGGGG	GGGG	5	3.876 %
GGGGG	GGGGG	129	
GGGGG	GGGGGG	31	24.031 %
ТТ	Т	4	0.985 %
TT	TT	406	
ТТ	TTT	2	0.493 %
TTT	TTT	80	
TTT	TTTT	1	1.250 %

454 : systematic errors

Accuracy and quality of massively parallel DNA pyrosequencing Huse, Huber, Morrison, Sogin, and Welch. Genome Biol. 2007; 8(7): R143

- →Most errors are corrected at 1 difference.
- → Discard single singletons at 1 difference.
- Singleton : a tag which is found only once in experiment(s).
- Single singleton : a cluster at k (1) difference(s) that:
 - Contains a single member.
 - This member is a singleton.

CC/UC V4 tita

unique/o	ccur	1085/8916		cc	target	cc/ta	theorey	÷						
kO	100	645	514	131	24	5.5	445.8							
k1	99.5	370	254	116	24	4.8	383.3							
k2	99	174	108	66	23	2.9	175.0							
k3	98.5	98	58	40	23	1.7	66.7							
k4	98	61	30	31	22	1.4	29.2		62	18	44	21	2.1	83.3
k5	97.5	51	23	28	21	1.3	16.7							
k6	97	45	18	27	21	1.3	12.5							
k7	96.5	38	12	26	21	1.2	8.3							
k8	96	36	10	26	21	1.2	8.3		27	3	24	19	1.3	0.0
k9	95.5	34	9	25	21	1.2	4.2							
k10	95	34	9	25	21	1.2	4.2							
k11	94.5	34	9	25	20	1.3	4.2							
k12	94	34	9	25	20	1.3	4.2		21	1	20	17	1.2	-16.7
k13	93.5	34	9	25	20	1.3	4.2							
k14	93	34	9	25	20	1.3	4.2							
k12	92.5	34	9	25	20	1.3	4.2							
k13	92	34	9	25	20	1.3	4.2							
k14	91.5	34	9	25	20	1.3	4.2		19	0	19	15	1.3	-20.8

CC no ss k=5

Saturation curves

Assign taxonomy

- There is no genome to map on !
- Good quality annotations are in the database of RefSeq ! There is no RefSeq or Uniprot ...
- Which annotation process ?
 - Which algo (blast open, extend...)
 - Which % similarity for which taxonomy (phylum, class, Species ?).
 - May depend upon the clade !
 - Depends upon the domain amplified !
 - Bacteria: V6 & V9 (SSU).
 - Eukaryota: V4 & V9 (SSU).
 - Other molecules: LSU rRNA, house keeping genes (single copy).

Assign Taxonomy

p95-a75			95 best	95 best hit
8	Amoebozoa		8	8
590	Archaeplastida		971	971
17705	Chromalveolata		18033	17701
65	Incertae_sedis_Eukaryota		76	65
616	Opisthokonta		616	616
249	Rhizaria		348	249
8	Amoebozoa	Lobosa	8	8
537	Archaeplastida	Chlorophyta	918	918
53	Archaeplastida	Cryptophyta-nucleomorp	53	53
7588	Chromalveolata	Alveolata	7791	7584
615	Chromalveolata	Cryptophyta	660	615
591	Chromalveolata	Haptophyta	600	591
24	Chromalveolata	Katablepharidophyta	24	24
569	Chromalveolata	Picobiliphyta	569	569
8318	Chromalveolata	Stramenopiles	8389	8318
	Incertae_sedis_Eukaryota	Apusomonadidae	3	
47	Incertae_sedis_Eukaryota	Telonemia	47	47
18	Incertae_sedis_Eukaryota	Undetermined_lineage	26	18
198	Opisthokonta	Choanoflagellida	198	198
16	Opisthokonta	Fungi	16	16
402	Opisthokonta	Metazoa	402	402
233	Rhizaria	Cercozoa	325	233
16	Rhizaria	Foraminifera	20	16
	Rhizaria	Radiolaria	3	
19233			20052	19610
28286				

S

Numbers of 16S rRNA sequences per species

	>800		>1000		>1200	
	nt		nt		nt	
nbrseq	genera	species	genera	species	genera	species
1	582	4060	589	4118	592	4126
2	250	1436	245	1427	239	1411
3	131	802	133	794	126	790
4	91	444	88	445	94	454
5	76	296	75	288	77	277
6	51	201	53	190	48	178
7	40	136	38	135	38	143
8	38	124	37	119	41	110
9	32	94	36	93	34	87
10	21	82	22	82	19	82
10 <n<51< td=""><td>40</td><td>39</td><td>40</td><td>40</td><td>39</td><td>40</td></n<51<>	40	39	40	40	39	40
50 <k<101< td=""><td>36</td><td>32</td><td>35</td><td>30</td><td>33</td><td>31</td></k<101<>	36	32	35	30	33	31
>100	67	31	62	28	61	27

Most species are known from a single sequence !

→ Tags taxonomic specificities are over-evaluated.

→ Most species have not been sequenced at all.

Current Problems

- Choose domain to amplify
- Choose primers
- Cluster tags
- Assign taxonomyCompare samples
- Raw data (images are lost).
- Store tags, taxonomy and metadata in a secure manner.
 - SRA takes only .sff files.
 - Project in development with INIST.
- Query "analyzed" datasets.
 - By similarity.
 - By taxonomy.
 - By metadata (pH, °c, salinity,).
- Cloud computing, GPU computing, blades of CPU ?
- Dedicated algorithms !
- Bandwith transfert problems ?
- Build RefSeq database of good, well annotated sequences
 - Silva for Bacteria.
 - In progress for Eukaryota (col. Laure Guillou, Roscoff).
- A dedicated ontology is now required.

