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Motivation

Discovery of the Nuclein
(Friedrich Miescher, 1869) fml

Discovery of Nuclein:
from lymphocyte & salmon

“multi-basic acid” (≥ 4)

Tübingen, around 1869

“If one . . . wants to assume that a single substance . . . is the specific
cause of fertilization, then one should undoubtedly first and foremost
consider nuclein” (Miescher, 1874)
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Motivation

Learning about the Transcriptome
 What is encoded on the genome and how is it processed? fml

Computational Point of View

How to learn to predict what these processes accomplish?

How well can we predict it from the available information?

Biological View

What can we not predict yet? What is missing?

Can we derive a deeper understanding of these processes?
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c© Gunnar Rätsch (FML, Tübingen) Methods for Transcriptome Analysis NGS Bioinformatics, Paris 3 / 36

http://www.fml.mpg.de


Motivation

Learning about the Transcriptome
 What is encoded on the genome and how is it processed? fml

Computational Point of View

How to learn to predict what these processes accomplish?

How well can we predict it from the available information?

Biological View

What can we not predict yet? What is missing?

Can we derive a deeper understanding of these processes?
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Motivation

Machine Learning
Learning from empirical observations fml
Given: Observations of some complex phenomenon
Goal: Learn from data & build predictive models
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Motivation

Machine Learning
Learning from empirical observations fml
Given: Observations of some complex phenomenon
Goal: Learn from data & build predictive models

Example:

Two different classes of observations
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Motivation

Machine Learning
Learning from empirical observations fml
Given: Observations of some complex phenomenon
Goal: Learn from data & build predictive models

Example:

Inferred classification rule
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Motivation

Machine Learning
Learning from empirical observations fml
Given: Observations of some complex phenomenon
Goal: Learn from data & build predictive models

1 Large scale sequence classification

2 Analysis and explanation of learning results

3 Sequence segmentation & structure prediction
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RNA-Seq Pipeline

Deep RNA Sequencing (RNA-Seq)
fml

RNA-Seq allows . . .

High-throughput
transcriptome
measurements

Qualitative studies

New transcripts
Improved gene models

Quantitative studies at
high resolution

Differential expression
in tissues, conditions,
genotypes, etc.

pre-mRNA
intron

exon

mRNA
short reads

junction reads

reference genome
Figure adapted from Wikipedia

Goal: Obtain complete transcriptome for further analyses
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c© Gunnar Rätsch (FML, Tübingen) Methods for Transcriptome Analysis NGS Bioinformatics, Paris 5 / 36

http://en.wikipedia.org/wiki/File:RNA-Seq-alignment.png
http://www.fml.mpg.de


RNA-Seq Pipeline

Deep RNA Sequencing (RNA-Seq)
fml

RNA-Seq allows . . .

High-throughput
transcriptome
measurements

Qualitative studies

New transcripts
Improved gene models

Quantitative studies at
high resolution

Differential expression
in tissues, conditions,
genotypes, etc.

pre-mRNA
intron

exon

mRNA
short reads

junction reads

reference genome
Figure adapted from Wikipedia

Goal: Obtain complete transcriptome for further analyses
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RNA-Seq Pipeline

Common RNA-Seq Analysis Steps
fml

RNA-Seq
Reads

Read Alignment

Expression level
~ #reads

Significance 
Testing

Differentially 
Processed Transcripts/

Segments

c© Gunnar Rätsch (FML, Tübingen) Methods for Transcriptome Analysis NGS Bioinformatics, Paris 6 / 36

http://www.fml.mpg.de


RNA-Seq Pipeline

Common RNA-Seq Analysis Steps
fml

RNA-Seq
Reads

Read Alignment

Expression level
~ #reads

Significance 
Testing

Differentially 
Processed Transcripts/

Segments

De novo 
Assembly

Transcript 
Quantitation

TARs and 
Transcripts
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RNA-Seq Pipeline

RNA-Seq Pipeline Overview
fml

PALMapper

mGene.ngs

mTim 
Segmentation

rQuant

Short Reads Transcripts w/ 
QuantitationAlignm

ents

Transcripts

Read alignment Transcript finding Quantitation
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PALMapper Read Alignment Overview

Step 1: PALMapper Read Alignment
(PALMapper = QPALMA + GenomeMapper) fml
GenomeMapper for (unspliced) read mapping:

Alignments based on GenomeMapper developed in Tübingen for
the 1001 plant genome project [Schneeberger et al., 2009]

k-mer based index, well suited for smaller genomes

More info: http://fml.mpg.de/raetsch/suppl/palmapper
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PALMapper Read Alignment Overview

Step 1: PALMapper Read Alignment
(PALMapper = QPALMA + GenomeMapper) fml
GenomeMapper for (unspliced) read mapping:

Alignments based on GenomeMapper developed in Tübingen for
the 1001 plant genome project [Schneeberger et al., 2009]

k-mer based index, well suited for smaller genomes

QPALMA for spliced read alignments:

GenomeMapper identifies seed regions

Spliced alignments by QPALMA [De Bona et al., 2008]

ACCGTCGCGCGCGT...TCGGCG...AGAACGCT

TCGCGCGCAACG

DNA

Read
More info: http://fml.mpg.de/raetsch/suppl/palmapper
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PALMapper Read Alignment Accuracy

PALMapper Accuracy Evaluation
How accurately can PALMapper identify introns? fml
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c© Gunnar Rätsch (FML, Tübingen) Methods for Transcriptome Analysis NGS Bioinformatics, Paris 9 / 36

http://www.fml.mpg.de


PALMapper Read Alignment Accuracy

PALMapper Accuracy Evaluation
How accurately can PALMapper identify introns? fml

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C. elegans

 

 

TopHat

TopHat sensitiv
e

Palmapper

recall precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H. sapiens (chromosome 1)

 

 

Palmapper

recall precision

PALMapper (3.5h) and
TopHat (3.5h/10h) align-
ing 24M reads

Comparison of PALMapper with other align-
ment programs within the RGASP project
(preliminary)
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PALMapper Read Alignment Accuracy

QPALMA: Extended Smith-Waterman Scoring
fml

Classical scoring f : Σ× Σ→ R

Source of information

Sequence matches

Computational splice
site predictions

Intron length model

Read quality
information
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c© Gunnar Rätsch (FML, Tübingen) Methods for Transcriptome Analysis NGS Bioinformatics, Paris 10 / 36

http://www.fml.mpg.de


PALMapper Read Alignment Accuracy

QPALMA: Extended Smith-Waterman Scoring
fml

Classical scoring f : Σ× Σ→ R

Source of information

Sequence matches

Computational splice
site predictions

Intron length model

Read quality
information
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PALMapper Read Alignment Accuracy

QPALMA: Extended Smith-Waterman Scoring
fml

Quality scoring f : (Σ× R)× Σ→ R [De Bona et al., 2008]

Source of information

Sequence matches

Computational splice
site predictions

Intron length model

Read quality
information
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PALMapper Read Alignment Learning Algorithm

Scoring Parameter Inference
fml

What are optimal parameters?

How do we jointly optimize the 336 parameters?
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PALMapper Read Alignment Learning Algorithm

Cartoon: Maximize the Margin
fml

truefalse false

Correct alignment is not highest scoring one

Correct alignment is highest scoring one

Can we do better?
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PALMapper Read Alignment Learning Algorithm

Cartoon: Maximize the Margin
fml

false true

Technique motivated by SVMs (“large-margin”)

Enforce a margin between correct and incorrect examples

One has to solve a big quadratic problem
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PALMapper Read Alignment Learning Algorithm

How Can We Generate Data for Training?
fml

How do we obtain true alignments for training QPalma?

Simulate realistic transcriptome reads with known origin

Strategy:

1 Estimate relationship between quality score and error probability
from given reads

2 Use annotation of a few genes to simulate spliced reads

3 Introduce errors according to error model using quality strings
from given read set

4 Train QPalma on generated read set with known alignments
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PALMapper Read Alignment Reasons for High Accuracy

QPALMA RNA-Seq Read Alignment
fml

Generate set of artificially spliced reads
Genomic reads with quality information
Genome annotation for artificially splicing the reads
Use 10, 000 reads for training and 30, 000 for testing

Al
ig

nm
en

t  
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ro
r  

R
at

e

SmithW
14.19%

Intron
9.96% 1.94% 1.78%

Intron+
Splice

Intron+
Splice+
Quality [De Bona et al., 2008]
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PALMapper Read Alignment Reasons for High Accuracy

QPALMA RNA-Seq Read Alignment
fml

Generate set of artificially spliced reads
Genomic reads with quality information
Genome annotation for artificially splicing the reads
Use 10, 000 reads for training and 30, 000 for testing
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PALMapper Read Alignment Reasons for High Accuracy

Step 2: Transcript Prediction
fml

PALMapper

mGene.ngs

mTim 
Segmentation

rQuant

Short Reads Transcripts w/ 
QuantitationAlignm

ents

Transcripts

Read alignment Transcript finding Quantitation

A. Coverage segmentation algorithm mTiM for general transcripts
(no coding bias/assumption)

B. Extension of the mGene gene finding system to use NGS data
for protein coding transcript prediction (mGene.ngs)
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mTIM Coverage Segmentation Idea

mTiM: Read Coverage Segmentation
fml

Goal: Characterize each base as intergenic, exonic, or intronic
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mTIM Coverage Segmentation Idea

mTiM: Read Coverage Segmentation
fml
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mTIM Coverage Segmentation Approach

The mTiM Segmentation Approach
fml

intergenic exonic intronic

E IS

Learn to associate a state with each position given its read
coverage and local context
HM-SVM training: Optimize transformations: signal → score
Extension: Score spliced reads and splice sites

(G. Zeller et al., 2008; G. Zeller et al., in prep., 2009)
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mTIM Coverage Segmentation Approach

The mTiM Segmentation Approach
fml

Idea: Assume uniform read coverage within exons of same transcript
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mTIM Coverage Segmentation Approach

The mTiM Segmentation Approach
fml

Discrete
expression level
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Carry “expression level” information between exons of same transcript

(G. Zeller et al., 2008; G. Zeller et al., in prep., 2010)
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mTIM Coverage Segmentation Approach

Discriminative training of HM-SVMs
fml

f : R? → Σ?

given a sequence of hybridization measurements χ ∈ R?

predicts a state sequence (path) σ ∈ Σ?

Discriminant function Fθ : R? × Σ? → R such that for
decoding: f (χ) = argmax

σ∈S?

Fθ(χ, σ).

Training:
For each training example (χ(i), σ(i)), enforce a large margin of
separation

Fθ(χ
(i), σ(i))− Fθ(χ

(i), σ) ≥ ρ

between the correct path σ(i) and any other wrong path σ 6= σ(i).

A quadratic programming problem (QP) is solved to optimize θ.
[Altun et al., 2003, Rätsch et al., 2007, Zeller et al., 2008b]
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predicts a state sequence (path) σ ∈ Σ?

Discriminant function Fθ : R? × Σ? → R such that for
decoding: f (χ) = argmax

σ∈S?

Fθ(χ, σ).

Training:
For each training example (χ(i), σ(i)), enforce a large margin of
separation

Fθ(χ
(i), σ(i))− Fθ(χ

(i), σ) ≥ ρ

between the correct path σ(i) and any other wrong path σ 6= σ(i).

A quadratic programming problem (QP) is solved to optimize θ.
[Altun et al., 2003, Rätsch et al., 2007, Zeller et al., 2008b]
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mTIM Coverage Segmentation Results

Preliminary Evaluation (C. elegans)
fml
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Next Generation Gene Finding Idea

Computational Gene Finding
 Labeling the Genome fml
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Next Generation Gene Finding Idea

mGene-based Transcript Prediction
fml
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c© Gunnar Rätsch (FML, Tübingen) Methods for Transcriptome Analysis NGS Bioinformatics, Paris 23 / 36

http://www.fml.mpg.de


Next Generation Gene Finding Idea

mGene-based Transcript Prediction
fml

acc

don

tss

tis

stop

True gene model 2 3 4 5

F(x,y)

transform features

STEP 1: SVM Signal Predictions

STEP 2: Integration

genomic position

genomic position
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Next Generation Gene Finding Modeling Uncertainty

Learning to use Expression Measurements
fml

Two approaches:

Heuristic to incorporate ESTs/reads/tiling array measurements
to refine predictions

Directly use evidence during learning to learn to appropriately
weight its importance

Exon Level Transcript Level
SN SP F SN SP F

ab initio 82.3 82.6 82.5 43.1 49.5 46.1
ESTs heuristic 85.3 84.7 85.0 49.5 56.4 52.7
ESTs trained 84.8 85.8 85.3 50.5 57.8 53.9

Gene prediction in C. elegans (CDS evaluation)

Behr et al., in pre., 2010
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Next Generation Gene Finding Modeling Uncertainty

Learning to use Expression Measurements
fml

Two approaches:

Heuristic to incorporate ESTs/reads/tiling array measurements
to refine predictions

Directly use evidence during learning to learn to appropriately
weight its importance

Exon Level Transcript Level
SN SP F SN SP F

ab initio 82.3 82.6 82.5 43.1 49.5 46.1
ESTs heuristic 85.3 84.7 85.0 49.5 56.4 52.7
ESTs trained 84.8 85.8 85.3 50.5 57.8 53.9
RNA-Seq trained 84.6 84.9 84.8 49.1 55.2 52.0
RNA-Seq/ESTs trained 84.7 86.9 85.8 50.3 60.5 54.9

Gene prediction in C. elegans (CDS evaluation)

Behr et al., in prep., 2010
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Next Generation Gene Finding Results

Preliminary Evaluation (C. elegans)
fml

CDS (precision+recall)/2

expression percentiles [%]

 

mGene ab initio
mGene.ngs

10 20 30 40 50 60 70 80 90 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Next Generation Gene Finding Alternative Transcripts

Digestion
fml

mTiM and mGene.ngs predict single transcripts

mTiM exploits “uniformity” of read coverage among exons of
same transcript

mGene.ngs uses more assumptions on structure of transcripts

Alt. Transcripts: Spliced reads for splicing graph completion:

Paths through splicing graph define alternative transcripts
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Transcript Quantitation with rQuant

RNA-Seq Pipeline Overview
fml
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Transcript Quantitation with rQuant Biases

RNA-Seq Biases and Quantitation
fml
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Transcript Quantitation with rQuant Approach

rQuant – Basic Idea
fml
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Mi = wAAi + wBBi ⇒ minwA,wB

∑
i ` (Mi , Ri)
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Transcript Quantitation with rQuant Approach

rQuant – Iterative Algorithm
fml

1 Optimise transcript weights: minw

∑
i `

(∑
t w (t)p

(t)
i , Ri

)
2 Optimise profile weights: minp

∑
i `
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t w (t)p

(t)
i , Ri

)
3 Repeat 1. and 2. until convergence.
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Transcript Quantitation with rQuant Results

rQuant Evaluation I
fml

rQuant: Position-wise with profiles (estimating library and mapping bias)

compared to

Position-wise, without profiles

Segment-wise, without profiles (e.g., Jiang and Wong [2009] )

Segment-wise, with profiles (e.g. Flux Capacitor [Sammeth, 2009a])

Estimate transcript abundances

Using simulated data for A. thaliana (Flux Simulator [Sammeth, 2009b])

Subset of alternatively spliced genes

Evaluation: Spearman correlation between

Simulated RNA expression level and

Predicted transcript weights
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rQuant Evaluation II
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Transcript Quantitation with rQuant Results

Galaxy-based Web Services for NGS Analyses
fml

Galaxy-based web service http://galaxy.fml.mpg.de

PALMapper http://fml.mpg.de/raetsch/suppl/palmapper

mGene http://mgene.org/web

mTIM http://fml.mpg.de/raetsch/suppl/mtim (in prep.)

rQuant http://fml.mpg.de/raetsch/suppl/rquant/web

(Rätsch et al., in preparation, 2010)
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Summary

Summary
fml

PALMapper
Splice site predictions improve alignment performance
Outperforms many other read mappers in intron accuracy

mTiM
High specificity, sensitivity depends on read coverage
Better for identifying transcripts specific to experimental data

mGene
High sensitivity (also for lowly expressed genes)
Identifies also non-expressed genes ⇒ good for annotation

rQuant
Models library prep., sequencing, alignment biases
Accurately quantifies transcripts

Galaxy instance
Easy use of these tools

c© Gunnar Rätsch (FML, Tübingen) Methods for Transcriptome Analysis NGS Bioinformatics, Paris 36 / 36

http://www.fml.mpg.de


Summary

Summary
fml

PALMapper
Splice site predictions improve alignment performance
Outperforms many other read mappers in intron accuracy

mTiM
High specificity, sensitivity depends on read coverage
Better for identifying transcripts specific to experimental data

mGene
High sensitivity (also for lowly expressed genes)
Identifies also non-expressed genes ⇒ good for annotation

rQuant
Models library prep., sequencing, alignment biases
Accurately quantifies transcripts

Galaxy instance
Easy use of these tools
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A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engineering Support
Vector Machine Kernels That Recognize Translation Initiation Sites. BioInformatics, 16(9):
799–807, September 2000.
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