
Appendix to the article "Practical lower and
upper bounds for the Shortest Linear Superstring"

Bastien Cazaux1,2, Samuel Juhel2, and Eric Rivals2

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
bastien.cazaux@cs.helsinki.fi

2 L.I.R.M.M., UMR 5506, Université Montpellier, CNRS, Montpellier, France
& Institute of Computational Biology, Montpellier, France
samuel.juhel@zaclys.net, rivals@lirmm.fr

1 Previous approximation algorithms using a greedy strategy for
superstring problems

We recall the greedy algorithm for SLS (Algorithm 1), and other more complex approxima-
tion algorithms for SLS that are based on greedy strategy. These algorithms are known as
MGreedy (Algorithm 3) and TGreedy (Algorithm 4). Both used a common procedure which
is termed LCGreedy ((Algorithm 2), and computes a linear cover of the input set P . A linear
cover is a set of linear strings that covers all strings of P .

First, we give the Greedy algorithm for SLS. It yields an approximate linear superstring
for P . Greedy is conjectured to have an approximation ratio of 2 – its current ratio is 3.5.
Ukkonen has proposed a linear time implementation of Greedy [2].

Algorithm 1: Algorithm Greedy

1 Input: a set of strings P ; Output: a linear superstring of P ;
2 while |P | > 0 do
3 choose u and v in P (necessarily distinct) such that ov(u, v) is maximised;
4 let w be the merge of (u, v);
5 replace u, v by w in P ;
6 return the single element of P

We call Algorithm 2 LCGreedy. It is very similar to CGreedy: the only difference is on
line 6. In fact, when the chosen overlap would circularise a linear string, it does not use this
overlap, but instead store the linear string in the set L. Instead of a cyclic cover, it yields
a linear cover of P . Moreover, because of the greedy strategy, the overlap that would have
circularise the linear string, is the least from those used to build that linear string. This
means that in the EHOG, this overlap corresponds to a node that is the closest to the root
in terms of word length, compared to all other nodes traversed for building this linear string.
This is related to cut(P), which is defined on page 7 just before Proposition 7.

Now, Algorithm 3 gives MGreedy. It first applies LCGreedy to P to get L, and then
concatenates the word of L.

Algorithm 4 gives TGreedy. It first applies LCGreedy to P to get L, and then applies
Greedy on L. TGreedy is given below. It is known that TGreedy achieves an approximation
ratio of 3 for SLS [1].

© Bastien Cazaux, Samuel Juhel and Eric Rivals;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 18; pp. 18:1–18:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Appendix to the article "Practical lower and upper bounds for the Shortest Linear Superstring"

Algorithm 2: Algorithm LCGreedy

1 Input: a set of strings P ; Output: L a set of strings;
2 L← ∅;
3 while |P | > 0 do
4 u and v in P (not necessarily distinct) such that ov(u, v) is maximised;
5 if u = v then
6 L← L ∪ {u};
7 else
8 P ← P \ {u, v} ∪ {pr(u, v)ov(u, v)su(u, v)};

9 return L

Algorithm 3: Algorithm MGreedy

1 Input: a set of strings P ; Output: wm an approximate linear superstring of P ;
2 L← LCGreedy(P);
3 wm ← concatenate in an arbitrary order the strings of L;
4 return wm

Algorithm 4: Algorithm TGreedy

1 Input: a set of strings P ; Output: wt an approximate linear superstring of P ;
2 L← LCGreedy(P);
3 wt ← Greedy(L);
4 return wt

2 Extension of our algorithm with an improved bound

Algorithm TGreedy somehow performs two rounds of greedy optimisation, when the original
Greedy performs only one. Similarly, we can extend our algorithm LCGreedyMin by per-
forming another round of greedy optimisation (instead of simply concatenating the strings
of the linear cover output by LCGreedyMin). Let us call this algorithm TGreedyMin.

Algorithm 5: Algorithm TGreedyMin

1 Input: a set of strings P ; Output: wt an approximate linear superstring of P ;
2 L← LCGreedyMin(P);
3 wt ← Greedy(L);
4 return wt

The original proof of the approximation ratio of TGreedy can be reused to show that
TGreedyMin also achieves an approximation ratio of 3. This yields the following theorem.

I Theorem 1. Let P be a set of strings and let wopt denote an optimal solution of SLS of
P . Algorithm TGreedyMin computes in linear time in ||P || an approximate superstring wt

satisfying:

|wopt| ≤ |wt| ≤ 3× |wopt| .

B. Cazaux et. al. 18:3

Compared to LCGreedyMin, TGreedyMin would takes more time because of the other
round of optimisation. Given the empirical results of LCGreedyMin, we suppose that the
improvement in term of superstring length would be rather small compared to the solution
of LCGreedyMin.

References
1 A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation of shortest

superstrings. Journal of the ACM, 41(4):630–647, 1994.
2 E. Ukkonen. A Linear-Time Algorithm for Finding Approximate Shortest Common Super-

strings. Algorithmica, 5:313–323, 1990.

SEA 2018

	Previous approximation algorithms using a greedy strategy for superstring problems
	Extension of our algorithm with an improved bound

