«Calcul formel avancé et application». Very brief lecture notes.

14.09.2023. Lecture 1.

1. The game guess a number : one players chooses an integer number between 1 and n, another player should find this number by asking questions with answers yes or no. There is a simple strategy that allows to find the chosen number in $\lceil\log n\rceil$ questions (bisection). Moreover, there is a non-adaptive strategy with the same number of questions (the second player asks bits of the binary expansion of the chosen number ; all questions are formulated in advance, before the first response).

These strategies are optimal : no strategy helps to reveal the chosen number in less than $\lceil\log n\rceil$ questions (in the worst case). Indeed, every guessing strategy can be represented as a binary tree (with questions in the internal nodes and the guessed numbers in a leave). Since such a tree must have at least n leaves (one leave for each possible answer), the depth of the tree must be at least $\lceil\log n\rceil$.

Exercise 1.1 (difficult). How many questions do we need to guess an integer number between 1 and 100 (asking questions with answers yes or no) if one of the answers may be false.
2. Sorting algorithms. We are given n objects ("stones") and balance scales; in one operation we can compare weights of two stones. To sort n stones by their weights, we have to do in the worst case $\log (n!)$ pairwise comparisons (no algorithm can guarantee the right answer with less than $\log (n!)$ weighings).

Exercise 1.2 (Sorting algorithms). Find the number of comparisons needed in the worst case
(a) to sort an array of size 4 ;
(b) to sort an array of size 5 .
3. Shannon's entropy. For a random variable α with n possible values a_{1}, \ldots, a_{n} such that for $i=1 \ldots n$ $\operatorname{Prob}\left[\alpha=a_{i}\right]=p_{i}$, we define its Shannon's entropy as

$$
H(\alpha):=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}
$$

(with the usual convention $0 \cdot \log \frac{1}{0}=0$).Reminder :
Proposition 1. For every random variable α distributed on a set of n values

$$
0 \leq H(\alpha) \leq \log n
$$

Moreover, $H(\alpha)=0$ if and only if the distribution is concentrated at one point (one probability p_{i} is equal to 1 , and the other p_{j} for $j \neq i$ are equal to 0), and $H(\alpha)=\log n$ if and only if the distribution is uniform $\left(p_{1}=\ldots=p_{n}=\frac{1}{n}\right)$.
4. The game guess a number revisited : one players chooses an integer number between 1 and n with known probabilities p_{1}, \ldots, p_{n}, another player should find this number by asking questions with answers yes or no. We need to estimate the average number of questions needed to identify the number.

In the class we discussed a bisection strategy that requires on average $\approx \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$ questions (but a more precise statement and a formal proof is postponed). In the class we proved only the lower bound :
Proposition 2. Every strategy of guessing a number with yes-or-no questions requires at least $\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$ on average.
Idea of the proof : concavity of the logarithm and Jensen's inequality (more details in the class).

